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MARCINKIEWICZ FUNCTIONS WITH HARDY SPACE KERNELS

AHMAD AL-SALMAN

(Communicated by J. Pečarić)

Abstract. In this paper we prove Lp estimates of Marcinkiewicz integral operators with kernels
in the Hardy space and supported on general subvarieties. The considered subvarieties are of the
type that caries partially the polynomial behavior as well as the behavior of convex functions.
Results obtained in this paper improve as well as generalize known results.

1. Introduction and statement of results

Let Rn, n � 2, be the n -dimensional Euclidean space and Sn−1 be the unit sphere
in Rn equipped with the induced Lebesgue measure dσ . For non zero y ∈ Rn , we let
y′ = |y|−1 y . Suppose that Ω ∈ L1(Sn−1) is a homogeneous functions of degree zero on
Rn and satisfies the cancellation condition∫

Sn−1
Ω(y′)dσ(y′) = 0. (1)

For a suitable mapping Φ : Rn → Rd (n,d � 2) and a measurable function b : R+ → R

consider the operator

μΩ,Φ,b f (x) =

⎛⎝∫ ∞

−∞

∣∣∣∣∣
∫
|y|�2t

f (x−Φ(y))
b(|y|)Ω(y′)

|y|n−1 dy

∣∣∣∣∣
2

dt
22t

⎞⎠
1
2

. (2)

The main problem concerning the class of operators in (2) is to determine whether
inequalities in the form

∥∥μΩ,Φ,b f
∥∥

p � Cp‖ f‖p hold for some 1 < p < ∞ . By special-

izing to the case Φ(y) = y and b(t) = 1, the resulting operator μΩ = μΩ,Φ,b reduces to
the well known classical Marcinkiewicz integral operator introduced by E. M. Stein in
[15]. In [15], E. M. Stein proved that μΩ is bounded on Lp for all 1 < p � 2 provided
that Ω is continuous and satisfies a Lipα (0 < α � 1) condition on Sn−1 . Subse-
quently, A. Benedek, A. Calderón, and R. Panzone proved the Lp boundedness of μΩ
for all 1 < p < ∞ provided that Ω is continuously differentiable on Sn−1 ([6]). In [10],
Ding, Fan and Pan proved that μΩ is bounded on Lp for all 1 < p < ∞ provided that
Ω is in the Hardy space H1(Sn−1) .
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When Φ(y) = ϕ(|y|)y′ and b(t) ≡ 1, where ϕ satisfies heavy conditions such as
the “finite doubling time condition” ϕ ′(Ct) � ϕ ′(t) or “growth condition” ϕ(2t) � c
ϕ(t) , it can be shown using the oscillatory estimates in [14] that the special operator
μΩ,Φ,1 is bounded on Lp(Rn) provided that Ω is in the Hardy space H1(Sn−1) . On
the other hand, if Φ(y) = ϕ(|y|)y′ where ϕ satisfies certain convexity assumptions,
it shown in [1] that the special operator μΩ,Φ,1 is bounded on Lp provided that Ω
∈ H1(Sn−1) .

However, for general mappings Φ and functions b , little is known about the
boundedness of μΩ,Φ,b for kernels Ω ∈ H1(Sn−1) . It is our aim in this paper to con-
sider this problem. More precisely, we seek Lp estimates of the operator μΩ,Φ,b when
b ∈ L∞(R+) , the function Ω is in the space H1(Sn−1) , and the mapping Φ is in the
form Φ(y) = ϕ(|y|)y′ with function ϕ caries partially the polynomial behavior as well
as the behavior of convex functions. The examples per excellence are functions ϕ that
behave like θ (t) =−t3 +e−

1
t . It is worth noticing that the function θ is neither convex

nor polynomial.
For an integer d � 0, let Pd be the class of all real valued polynomials with

degree at most d . Given λ ∈ R . A function ψ : [0,∞) → R is said to belong to the
class PC λ (d) if there exists a polynomial P ∈ Pd and mapping ϕ ∈ Cd+1([0,∞))
such that

i) ψ(t) = P(t)+ λ ϕ(t);
ii) P(0) = 0 and ϕ( j)(0) = 0 for 0 � j � d;
iii) ϕ( j) is positive nondecreasing on (0,∞) for 0 � j � d +1.
A representation of the function ψ satisfying (i)–(iii) shall be referred to by the

standard representation. It is clear that the class ∪d�0(PC λ (d)) contains properly
the class of polynomials Pd as well as the class of convex increasing functions. In
addition to the above stated example, one can easily verify that the function θ (t) =
−t2 + t2 ln(1+ t) is in PC λ (2) which is neither convex nor polynomial.

Our main result in this paper is the following:

THEOREM 1.1. Suppose that Φ(y) = ψ(|y|)y′ with ψ ∈PC λ (d) for some d � 0
and λ ∈ R . If b ∈ L∞(R+) and Ω ∈ H1(Sn−1) and satisfying (1), then the operator
μΩ,Φ,b is bounded on Lp(Rn) for 1 < p < ∞ with Lp bounds independent of λ ∈ R

and the coefficients of the particular polynomial involved in the standard representation
of ψ .

In light of the remark just before the statement of Theorem 1.1, it follows that
Theorem 1.1 is a substantial improvement of the corresponding results in [1] and [10].

A similar result as in Theorem 1.1 can be obtained for the corresponding Marcin-
kiewicz integral operators that are related to area integral and Littlewood-Paley g∗

λ
functions. In fact, we have the following:

THEOREM 1.2. Suppose that Φ(y) = ψ(|y|)y′ with ψ ∈PC λ (d) for some d � 0
and λ ∈R . If b∈ L∞(R+) and Ω ∈H1(Sn−1) and satisfying (1.1), then for 2 � p < ∞
and s > 1, the operators μ̃Ω,Φ,b and μ∗

Ω,Φ,b,s
satisfy∥∥μ̃Ω,Φ,b( f )

∥∥
p � Cp‖ f‖p (3)
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Ω,Φ,b,s

( f )
∥∥∥

p
� Cp ‖ f‖p , (4)

where

μ̃Ω,Φ,b f (x) =

⎛⎝∫
ϒ(x)

∣∣∣∣∣
∫
|y|�2t

f (z−Φ(y))
b(|y|)Ω(y′)

|y|n−1 dy

∣∣∣∣∣
2

dzdt

2(2+n)t

⎞⎠
1
2

, (5)

μ∗
Ω,Φ,b,s

f (x) =

⎛⎜⎝∫ ∫
Rn+1

∣∣∣∣∣∣∣
∫

|y|�2t

f (z−Φ(y))
b(|y|)Ω(y′)

|y|n−1 dy

∣∣∣∣∣∣∣
2

2(ns−2−n)tdzdt
(2t + |x− z|)ns

⎞⎟⎠
1
2

, (6)

ϒ(x) = {(z, t) ∈ Rn+1 : |x− z| < 2t} . The constants Cp are independent of λ ∈ R and
the coefficients of the particular polynomial involved in the standard representation of
ψ .

Throughout this paper, the letter C is a positive constant that may vary at each oc-
currence but it is independent of the essential variables. For any x = (x1,x2, . . . ,xn−1,xn)
∈ Rn , we shall let x = (x1,x2, . . . ,xn−1) . Also, for any χ : Rn → R , we let supp(χ)
denote the support of χ .

2. Oscillatory integral estimates

This section is devoted to obtain necessary estimates that we need to prove our
results. We start by establishing the following main proposition:

PROPOSITION 2.1. Let {σt,Ω,b : t ∈ R} be the family of measures defined by

(σt,Ω,b )̂(ξ ) =
1
2t

∫
2t−1�|y|<2t

exp(−i(ξ ·ψ( |y|)y′)b(|y|)Ω(y
′
)

|y|n−1 dy. (7)

Suppose that there exists ρ > 0 such that

(a) supp(Ω) ⊆ Sn−1∩{y ∈ Rn : |y− e|< ρ} where e = (0,0, . . . ,1);
(b) ‖Ω‖∞ � ρ−(n−1);

(c)
∫
Sn−1 Ω(y′) dσ(y′) = 0.

Then there exist a natural number d , a convex increasing function ϕ , and families

of measures Fl = {υ (l)
t,Ω : t ∈ R} , 0 � l � d +3 such that
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υ (d+3)
t,Ω = σt,Ω,b (8)

υ (0)
t,Ω = 0 (9)∣∣∣(υ (d+3)

t,Ω )̂(ξ )
∣∣∣ � C

∣∣∣λ ϕ(2t)ρ2max{0, 1
n−ρ}ξ

∣∣∣− 1
4(d+1) (10)∣∣∣(υ (d+3)

t,Ω )̂(ξ )− (υ (d+2)
t,Ω )̂(ξ )

∣∣∣ � C
∣∣∣λ ϕ(2t+1)ρ2max{0, 1

n−ρ}ξ
∣∣∣ (11)∣∣∣(υ (d+2)

t,Ω )̂(ξ )
∣∣∣ � C

∣∣∣λ ϕ(2t)ρmax{0, 1
n−ρ}ξ

∣∣∣− 1
4(d+1) (12)∣∣∣(υ (d+2)

t,Ω )̂(ξ )− (υ (d+1)
t,Ω )̂(ξ )

∣∣∣ � C
∣∣∣λ ϕ(2t+1)ρmax{0, 1

n−ρ}ξ
∣∣∣ (13)∣∣∣(υ (d+1)

t,Ω )̂(ξ )
∣∣∣ � C

∣∣∣λ2dtρ2max{0, 1
n−ρ}ξ

∣∣∣− 1
4(d+1) (14)∣∣∣(υ (d+1)

t,Ω )̂(ξ )− (υ (d)
t,Ω )̂(ξ )

∣∣∣ � C
∣∣∣λ2d(t+1)ρ2max{0, 1

n−ρ}ξ
∣∣∣ (15)∣∣∣(υ (l)

t,Ω)̂(ξ )
∣∣∣ � C

∣∣∣λ2dtρmax{0, 1
n−ρ}ξ

∣∣∣− 1
4l

, 1 � l � d (16)∣∣∣(υ (l)
t,Ω)̂(ξ )− (υ (l−1)

t,Ω )̂(ξ )
∣∣∣ � C

∣∣∣λ2l(t+1)ρmax{0, 1
n−ρ}ξ

∣∣∣ , 1 � l � d (17)

Proof. We shall only prove the estimates (8)–(17) for the case ρ < 1
n . The case

ρ � 1
n follows by minor modifications but with simpler argument. Let P ∈ Pd , ϕ ∈

Cd+1([0,∞)), and λ ∈ R be as in the standard representation of ψ . Suppose that

P(t) =
d

∑
k=1

ckt
k.

For 1 � l � d , let

Pl(t) =
l

∑
k=1

ckt
k

and
ψl(t) = λ ϕ(t)+Pl(t).

It is clear that
ψd(t) = ψ(t). (18)

For 1 � l � d +3, let Ψl,λ : Rn → R be defined by

Ψd+3,λ (y) = ψ( |y|)y′, (19)

Ψd+2,λ (y) = λ ϕ(|y|)(ỹ′,1)+P(|y|)y′, (20)

Ψd+1,λ (y) = λ ϕ(|y|)e+P(|y|)y′ (21)

and
Ψl,λ (y) = λ ϕ(|y|)e+Pl(|y|)(ỹ′,1)
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for 1 � l � d . Also, we let
Ψ0,λ (y) = λ ϕ(|y|)e. (22)

For 0 � l � d +3, define the measures υ (l)
t,Ω by

(υ (l)
t,Ω)̂(ξ ) =

1
2t

∫
2t−1�|y|<2t

exp(−i(ξ ·Ψl,λ (y))
b(|y|)Ω(y

′
)

|y|n−1 dy. (23)

Using the definition of Ψd+3,λ and the cancellation property in (c), it follows that (8)
and (9) hold trivially.

Now, we prove (10). Notice∣∣∣(υ (d+3)
t,Ω )̂(ξ )

∣∣∣2 � Cρ−2(n−1)
∫

Supp(Ω)

∫
Supp(Ω)

I(t,ξ ′,y′,z′)dσ(y′)dσ(z′) (24)

where

I(t,ξ ′,y′,z′) =

∣∣∣∣∣∣
2∫

1

exp(−i(|ξ |ψ(2t−1r)(ξ ′ · (y′ − z′))))dr

∣∣∣∣∣∣ . (25)

By induction, it can be shown that

ϕ(d+1)(t) � t−d−1ϕ(t). (26)

Thus, ∣∣∣∣ dd+1

dtd+1 (ψ(t)))
∣∣∣∣ =

∣∣∣λ ϕ(d+1)(t)
∣∣∣ . (27)

Thus, by (26), (27), and Van der Corput’s lemma [16], we get

I(t,ξ ′,y′,z′) � C
∣∣ϕ(2t)ξ · (y′ − z′)

∣∣− 1
d+1 ;

when combined with the trivial estimate I(t,ξ ′,y′,z′) � 1, we get

I(t,ξ ′,y′,z′) � C
∣∣ϕ(2t)ξ · (y′ − z′)

∣∣− 1
2(d+1) . (28)

By (24) and (28), we get∣∣∣(υ (d+3)
t,Ω )̂(ξ )

∣∣∣2 � Cρ−2n+2

|ϕ(2t)ξ | 1
2(d+1)

∫
Supp(Ω)

sup
ξ ′∈Sn−1

∫
Supp(Ω)

dσ(y′)

|ξ ′ · (y′ − z′)| 1
2(d+1)

dσ(z′).

(29)

By similar argument as in the proof of Lemma 5.12 in [2], we get

sup
ξ ′∈Sn−1

∫
Supp(Ω)

∣∣ξ ′ · (y′ − z′)
∣∣− 1

2(d+1) dσ(y′) � Cρ (n−1) ∣∣ρ2
∣∣− 1

2(d+1) ; (30)
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when combined with (29) and the observation that |Supp(Ω)| ≈ ρn−1, we obtain∣∣∣(υ (d+3)
t,Ω )̂(ξ )

∣∣∣2 � C
∣∣ϕ(2t)ρ2ξ

∣∣− 1
2(d+1)

and hence (10).
Next, to see (11), we first notice that∣∣Ψd+3,λ (y)−Ψd+2,λ (y)

∣∣ = |λ ϕ(|y|)| ∣∣y′n−1
∣∣ .

Thus, ∣∣∣(υ (d+3)
t,Ω )̂(ξ )− (υ (d+2)

t,Ω )̂(ξ )
∣∣∣

�
∣∣λ ξ ϕ(2t+1)

∣∣ ∫
Supp(Ω)

∣∣∣Ω(y
′
)
∣∣∣ ∣∣y′n−1

∣∣dσ(y′)

�
∣∣λ ρ2ξ ϕ(2t+1)

∣∣‖Ω‖1 �
∣∣λ ρ2ξ ϕ(2t+1)

∣∣ .
Now, we prove (12). By similar argument as that lead to (29), we get∣∣∣(υ (d+2)

t,Ω )̂(ξ )
∣∣∣2 � Cρ−2n+2∣∣∣ϕ(2t)ξ

∣∣∣ 1
2(d+1)

∫
Supp(Ω)

sup
ξ ′∈Sn−1

∫
Supp(Ω)

dσ(y′)∣∣∣(ξ )′ · (y′ − z′)
∣∣∣ 1

2(d+1)
dσ(z′).

(31)

By similar argument as in the proof of Lemma 5.12 in [2], we get

sup
(ξ )′∈Sn−2

∫
Supp(Ω)

∣∣∣(ξ )′ · (y′ − z′)
∣∣∣− 1

2(d+1)
dσ(y′) � Cρ (n−1) |ρ |− 1

2(d+1) ; (32)

when combined with (31) implies (12). The proof of (13) follows by similar argument
as that lead to (11). The verifications of (14)–(17) follow similar argument as that used
in the verifications of the corresponding estimates (10)–(13). We omit details. �

We end this section by the following simple proposition which has its roots in [1]:

PROPOSITION 2.2. Let ϕ : [0,∞)→R be convex increasing function with ϕ(0) =
0 . Let l,k ∈ Z . Suppose that r is a positive real number. For any real number t
satisfying

log2(2
k−l−1ϕ−1(r−1)) < t < log2(2

k−l+2ϕ−1(r−1)),

we have
ϕ(2t+l) � 2k+2r−1 for k � −3 (33)

and
ϕ(2t+l−1) � 2−k−2r−1 for k � 3. (34)
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Proof. Since ϕ is convex increasing, it can be shown that

ϕ(2r) � 2ϕ(r). (35)

In order to verify (33) and (34), one only needs to observe that

ϕ(2k−1ϕ−1(r−1)) � ϕ(2t+l) � ϕ(2k+2ϕ−1(r−1)). (36)

This completes the proof. �

3. Maximal functions and the Hardy space H1(Sn−1)

We start this section, by recalling the following lemma in [5]:

LEMMA 3.1. ([5]). Let {μk}k∈Z and {τk}k∈Z
be sequences of non negative

Borel measures on Rn. Let L : Rn → Rm be a linear transformation. Suppose that for
all k ∈ Z, ξ ∈ Rn , for some a � 2 , α,C > 0, and for some constant B > 1, we have

(i) ‖μk‖ � B; ‖τk‖ � B;
(ii) |μ̂k(ξ )| � CB(akB |L(ξ )|)− α

B ;
(iii) |μ̂k(ξ )− τ̂k(ξ )| � CB(akB |L(ξ )|) α

B ;
(iv) Suppose that

‖τ∗ ( f )‖p � B‖ f‖p for all 1 < p � ∞ and f ∈ Lp(Rn).

Then the inequality
‖μ∗ ( f )‖p � B‖ f‖p

holds for all 1 < p � ∞ and f in Lp(Rn) . The constant Cp is independent of B and
the linear transformation L.

Now, we prove the following result concerning maximal functions which is a gen-
eralization of Lemma 5.9 in [2]:

THEOREM 3.2. Suppose that Ψ : Rn → Rd is a non constant mapping and that
ψ ∈ PC λ (d) for some d � 0 . Suppose also that λ ∈ R . If Ω ∈ L1(Sn−1) is homoge-
neous of degree zero on Rn , then the maximal function MΨ,Ω given by

MΨ,Ω( f )(x) = sup
j∈Z

∫
2 j�|y|�2 j+1

∣∣ f (x−ψ(|y|)Ψ(y′))
∣∣ |Ω(y′)|dy

|y|n (37)

satisfies ∥∥MΨ,Ω( f )
∥∥

p � Cp ‖Ω‖1 ‖ f‖p (38)

for 1 < p < ∞ . Here, the constant Cp is independent of λ , Ψ(y′) , and the coefficients
of the particular polynomial involved in the standard representation of ψ .

Proof. By change of variables, it can be shown that

MΨ,Ω( f )(x) �
∫

Sn−1

∣∣Ω(y′)
∣∣⎛⎝sup

j∈Z

2 j+1∫
2 j

∣∣ f (x−ψ(t)Ψ(y′))
∣∣ dt

t

⎞⎠dσ(y′).
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Therefore, by generalized Minkowski’s inequality we have

∥∥MΨ,Ω( f )
∥∥

p �
∫

Sn−1

∣∣Ω(y′)
∣∣∥∥∥∥∥∥

⎛⎝sup
j∈Z

2 j+1∫
2 j

∣∣ f (x−ψ(t)Ψ(y′))
∣∣ dt

t

⎞⎠
∥∥∥∥∥∥

p

dσ(y′). (39)

Thus, to prove (38), we only need to prove that the family of maximal functions

Mψ,z( f )(x) = sup
j∈Z

2 j+1∫
2 j

| f (x−ψ(t)z)| dt
t

, z ∈ R
n

satisfy ∥∥Mψ,z( f )
∥∥

p � Cp ‖ f‖p (40)

for 1 < p < ∞ with constant Cp independent of λ , z ∈ Rn , and the coefficients of the
particular polynomial involved in the standard representation of ψ .

In order to prove (40), we follow a classical argument which is based on an appli-
cation of Lemma 3.1. In fact, since ψ ∈ PC λ (d) , there exist a polynomial P ∈ Pd

and mapping ϕ ∈Cd+1([0,∞)) satisfying (i)–(iii) in the standard representation of ψ .
For each j ∈ Z , define the measures μ j and τ j by

∫
f dμ j =

2 j+1∫
2 j

f (ψ(t)z)
dt
t

∫
f dτ j =

2 j+1∫
2 j

f (P(t)z)
dt
t

.

It is radially seen that ∥∥μ j
∥∥ � 1,

∥∥τ j
∥∥ � 1. (41)

Moreover, we have
Mψ,z( f )(x) = sup

j∈Z

∣∣(μ j ∗ | f |)(x)
∣∣ .

Let τ∗ be the maximal function corresponding to the measures {τ j : j ∈ Z} , i.e.,

τ∗ ( f ) (x) = sup
j∈Z

∣∣(τ j ∗ | f |)(x)
∣∣ .

The boundedness of the maximal function τ∗ is known on Lp(Rn) for all 1 < p < ∞ .
In fact, by Proposition 1 on page 477 in [16], we have

‖τ∗ ( f )‖p � Cp ‖ f‖p (42)

for all 1 < p < ∞ with constant Cp independent of the coefficients of the polynomial
P and the constant z .



MARCINKIEWICZ FUNCTIONS 561

Now, we verify that the condition (iii) in Lemma 3.1 holds. For each z ∈ Rn and
λ ∈ R , let Lλ ,z : Rn → R be the linear transformation given by Lλ ,z(ξ ) = λ ξ · z . It is
straightforward to see that

∣∣μ̂ j(ξ )− τ̂ j(ξ )
∣∣ �

2 j+1∫
2 j

|λ ϕ(t)ξ · z| dt
t

� C
∣∣ϕ(2 j+1)Lλ ,z(ξ )

∣∣ . (43)

On the other hand, by (26), (27), and Van der Corput’s lemma [16], we get∣∣μ̂ j(ξ )
∣∣ � C

∣∣Lλ ,z(ξ )ϕ(2 j)
∣∣− 1

d+1 . (44)

Hence, by (42), (41), (22), (44), and Lemma 3.1, the proof is complete. �

We should point out here that a generalization of Theorem 3.2 will appear in a
forthcoming paper. We end this section by recalling the definition of the hardy space
H1(Sn−1) . The hardy space H1(Sn−1) can be defined by using atoms:

DEFINITION 3.3. A function a : Sn−1 → C is called an H1 atom if it satisfies the
following:

(i) supp(a) ⊆ Sn−1∩{y ∈ Rn : |y− y0| < ρ} for some y0 ∈ Sn−1 and ρ > 0;
(ii) ‖a‖ � ρ−(n−1);
(iii)

∫
Sn−1 a(x)dσ(x) = 0.

For sake of simplicity, we shall refer to ρ and y0 in the above definition by rad(a)
and cent(a) respectively.

DEFINITION 3.4. A function Ω : S
n−1 →C is in H1(Sn−1) if there are H1 atoms

a1,a2, . . . on Sn−1 , a sequence of complex numbers {c j} with ∑
j

∣∣c j
∣∣ < ∞ , and Ω0 ∈ L∞

such that
Ω=Ω0 +∑

j

c ja j.

Here, ∑
j

∣∣c j
∣∣ � ‖Ω‖H1(Sn−1) .

4. Main lemma

In order to prove our main results, we prove the following introductory lemma:

LEMMA 4.1. Suppose that Φ(y) = ψ(|y|)y′ with ψ ∈ PC λ (d) for some d � 0
and λ ∈ R . Suppose also that b ∈ L∞(R+) and that Ω is an H1 atom on Sn−1 with
Cent(Ω) = e = (0, . . . ,1) and rad(Ω) = ρ < 1

n . Let {σt,Ω,b : t ∈ R} be the family of

measures given by (7). For a fixed j ∈ Z , let μ ( j)
Ω,Φ,b be the operator given by

μ ( j)
Ω,Φ,b( f )(x) =

(∫ ∞

−∞

∣∣σt+ j,Ω,b ∗ f (x)
∣∣2 dt

) 1
2

. (45)
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Then ∥∥∥μ ( j)
Ω,Φ,b( f )

∥∥∥
p
� Cp‖ f‖p (46)

for all 1 < p < ∞ , where Cp independent of ρ , λ , and j .

Proof. Let d , ϕ , and υ (l)
t,Ω,0 � l � d + 3 be as in Proposition 2.1. For 1 � s �

d +3, let ns be such that

ns =
{

n, s = d +3, d +1
n−1, s �= d +3, d +1

.

Let Ls : Rn → Rns be the linear transformation defined by

Ls(ξ ) =

{
λ ρ2max{0, 1

n−ρ}ξ , s = d +3, d +1

λ ρmax{0, 1
n−ρ}ξ , s �= d +3, d +1

.

Also, for 0 � s � d +3, we let {at,s : t ∈ R} be the lacunary sequence defined by

at,s =

⎧⎨⎩
ϕ(2t), s = d +3, d +2

2dt , s = d +1
2st , s �= d +1, d +2, d +3

.

Thus, by Proposition 2.1, we get

υ (d+2)
t+ j,Ω = σt,Ω,b (47)

υ (0)
t,Ω = 0 (48)∣∣∣(υ (s)

t+ j,Ω)̂(ξ )
∣∣∣ � C

∣∣at+ j,sLs(ξ )
∣∣− 1

4(s+1) (49)∣∣∣(υ (s)
t+ j,Ω)̂(ξ )− (υ (s−1)

t+ j,Ω)̂(ξ )
∣∣∣ � C

∣∣at+ j+1,sLs(ξ )
∣∣ . (50)

On the other hand, it is clear that ∥∥∥υ (s)
t+ j,Ω

∥∥∥ � C. (51)

By Theorem 3.2, we obtain that the maximal functions

(υ (s)
Ω )∗( f )(x) = sup

t

∣∣∣∣∣∣υ (s)
t,Ω

∣∣∣∗ f (x)
∣∣∣ (52)

satisfy ∥∥∥(υ (s)
Ω )∗( f )

∥∥∥
p
� Cp ‖ f‖p (53)

for all 1 < p < ∞ and for 1 � s � d +3.
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By similar argument as in [12], there exists a family of measures {τ(s)
t,Ω,1 � s �

d +3, t ∈ R} such that ∥∥∥τ(s)
t+ j,Ω

∥∥∥ � C. (54)∣∣∣(τ(s)
t+ j,Ω)̂(ξ )

∣∣∣ � C
∣∣at+ j,sLs(ξ )

∣∣− 1
4(s+1) (55)∣∣∣(τ(s)

t+ j,Ω)̂(ξ )
∣∣∣ � C

∣∣at+ j+1,sLs(ξ )
∣∣ (56)∥∥∥(τ(s)

Ω )∗( f )
∥∥∥

p
� Cp‖ f‖p ,1 < p < ∞ (57)

and

σt,Ω,b =
d+3

∑
s=1

τ(s)
t,Ω. (58)

By (58), we immediately obtain

μ ( j)
Ω,Φ,b( f )(x) �

d+3

∑
s=1

μ ( j,s)
Ω,Φ,b( f )(x), (59)

where μ ( j,s)
Ω,Φ,b is the operator that has the same definition as μ ( j)

Ω,Φ,b( f ) with σt+ j,Ω,b is

replaced by τ(s)
t+ j,Ω . Since

∥∥∥μ ( j)
Ω,Φ,b( f )

∥∥∥
p
�

d+3

∑
s=1

∥∥∥μ ( j,s)
Ω,Φ,b( f )

∥∥∥
p

it suffices to prove that ∥∥∥μ ( j,s)
Ω,Φ,b( f )

∥∥∥
p
� Cp‖ f‖p (60)

for all 1 < p < ∞ , where Cp independent of ρ , λ , and j .

Now, by an elementary procedure, choose a collection of C ∞ functions {ω(s)
k }k∈Z

on (0,∞) with the following properties:

supp(ω(s)
k ) ⊆

[
1

ak+1,s
,

1
ak−1,s

]
; (61)

0 � ωk � 1; (62)∣∣∣∣∣dlω(s)
k

dul (u)

∣∣∣∣∣ � Cl

ul ; (63)

∑
k∈Z

ω(s)
k (u) = 1. (64)

Define the functions {ψ(s)
k : k ∈ Z} on Rn by

(ψ(s)
k )̂(ξ ) = ω(s)

k (|Ls(ξ )|2)
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Then, by (64), we have

μ ( j,s)
Ω,Φ,b( f )(x) � ∑

k∈Z

I(s)j,k ( f )(x), (65)

where

I(s)j,k( f )(x) = (
∫ ∞

−∞

∣∣∣ f ∗ τ(s)
t+ j,Ω ∗ψ
t+ j�+k(x)

∣∣∣2 dt)
1
2 . (66)

Here, 
x� is the greatest integer function less than or equal to x. For k ∈ Z , let S
j

k be
the operator given by

S
j

k f (x) = (
∫ ∞

−∞

∣∣ f ∗ψ
t+ j�+k(x)
∣∣2 dt)

1
2 . (67)

By following similar argument as in [16], it can be shown that∥∥∥S
j

k( f )
∥∥∥

p
� Cp ‖ f‖p (68)

for all p ∈ (1,∞) with constant Cp independent of the essential parameters.

Now, we estimate the Lp norm of the operator I(s)j,k ( f ) . For p > 2, set q = ( p
2 )′

and choose a non-negative function v ∈ Lq
+(Rn) with ‖v‖q = 1 such that∥∥∥I(s)j,k( f )

∥∥∥2

p
=

∫
Rn

∫ ∞

−∞

∣∣∣ f ∗ τ(s)
t+ j,Ω ∗ψ
t+ j�+k(x)

∣∣∣2 v(x)dtdx.

By Hölder’s inequality, (59), and (68), we have∥∥∥I(s)j,k ( f )
∥∥∥

p
�

∥∥∥S
j

k( f )
∥∥∥

p

∥∥∥(τ(s)
Ω )∗(v)

∥∥∥ 1
2

q
� C‖ f‖p ; (69)

when combined with duality argument, we get∥∥∥I(s)j,k ( f )
∥∥∥

p
� C‖ f‖p (70)

for all 1 < p < ∞ .

Now, we estimate
∥∥∥I(s)j,k( f )

∥∥∥
2
. First, we observe that the function 2t satisfies the

conclusion of Proposition 2.2 though it is not zero at the origin.
For k � 3, by Plancherel’s theorem, (55), (33) with r = |ξ | , and (54), we have

∥∥∥I(s)j,k ( f )
∥∥∥2

2
� C

∫
Rn

∣∣ f̂ (ξ )
∣∣2 ∞∫
−∞

∣∣at+ j,sLs(ξ )
∣∣ ∣∣ω
t+ j�+k(|Ls(ξ )|)∣∣2 dtdξ

� C22(−k+3)
∫

Rn

∣∣ f̂ (ξ )
∣∣2 dξ . (71)

Hence, ∥∥∥I(s)j,k ( f )
∥∥∥

2
� C2(−k+2) ‖ f‖2 for k � 3. (72)
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Similarly, we obtain ∥∥∥I(s)j,k ( f )
∥∥∥

2
� C2

k+2
s+1 ‖ f‖2 for k � −3. (73)

By Plancherel’s theorem along with (54), we obtain∥∥∥I(s)j,k( f )
∥∥∥

2
�
√

3 ‖ f‖2 for k = −2,−1,0,1,2. (74)

Now, by (70), (72)–(74), and an interpolation, we obtain∥∥∥I(s)j,k ( f )
∥∥∥

p
� CA−|k|θ(p)‖ f‖p , (75)

for 1 < p < ∞ and θ (p) > 0 with constant C independent of ρ and j . Hence,∥∥∥μ ( j,s)
Ω,Φ,b( f )

∥∥∥
p
� ∑

k∈Z

∥∥∥I(s)j,k ( f )
∥∥∥

p
� C{∑

k∈Z
A−|k|θ(p)}‖ f‖p � Cp ‖ f‖p ,

where, Cp , C , and θ (p) are constants independent of ρ and j . This completes the
proof. �

Now, by following exactly the same argument as in Lemma 4.2, we have

LEMMA 4.2. Let ϕ , y0,ρ , j , μ ( j)
Ω,Φ,b be as in Lemma 4.1. If Ω is an L∞ function

on S
n−1 or an, H1(Sn−1) atom with rad(Ω) = ρ � 1

n , then∥∥∥μ ( j)
Ω,Φ,b( f )

∥∥∥
p
� Cp‖ f‖p (76)

for all 1 < p < ∞ , where Cp is a constant independent of λ . Moreover, it is also
independent of ρ if Ω is an, H1(Sn−1) atom.

5. Proofs of main results

This section is devoted to prove our main results. Since the proof of Theorem
1.2 can be obtained using the estimates obtained in this paper and following similar
argument as in [1]. We shall only present a proof of Theorem 1.1.

Proof of Theorem 1.1. Let ψ ,Ω,λ , and μΩ,Φ,b be as in the statement of Theorem
1.1. Since Ω ∈ H1(Sn−1) , there are H1 atoms a1,a2, . . . on Sn−1 , a sequence of
complex numbers {c j} with ∑

j

∣∣c j
∣∣ < ∞ , and Ω0 ∈ L∞ such that

Ω = Ω0 +∑
j

c ja j (77)

with ∑
j

∣∣c j
∣∣ � ‖Ω‖H1(Sn−1) . Therefore,

μΩ,Φ,b( f )(x) � μΩ0,Φ,b( f )(x)+∑
j

∣∣c j
∣∣μa j ,Φ,b( f )(x). (78)
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By Lemma 4.2, we have ∥∥μΩ0,Φ,b( f )
∥∥

p � Cp ‖ f‖p (79)

Lp for all 1 < p < ∞.
On the other hand, for an H1(Sn−1) atom a j , by using a proper rotation on Sn−1 ,

we may assume that cent(a j) = e = (0,0, . . . ,1).
It is radially seen that

μa j ,Φ,b( f )(x) �
∞

∑
l=0

2−lμ (l)
a j ,Φ,b( f )(x). (80)

By Lemma 4.1 and Lemma 4.2, we have∥∥∥μ (l)
a j ,Φ,b( f )

∥∥∥
p
� C‖ f‖p (81)

for all 1 < p < ∞ with constant C independent of the atom a j and the index l . Hence,
by (79)–(81), we get ∥∥∥μa j ,Φ,b( f )

∥∥∥
p
� C‖ f‖p (82)

for all 1 < p < ∞ with constant C independent of the atom a j . This completes the
proof. �
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