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INEQUALITIES AMONG EIGENVALUES OF DIFFERENT
SELF-ADJOINT DISCRETE STURM-LIOUVILLE PROBLEMS

HAO ZHU AND YUMING SHI

(Communicated by I. Peri¢)

Abstract. In this paper, inequalities among eigenvalues of different self-adjoint discrete Sturm-
Liouville problems are established. For a fixed discrete Sturm-Liouville equation, inequalities
among eigenvalues for different boundary conditions are given. For a fixed boundary condition,
inequalities between the n-th eigenvalues for two different equations are given. These results are
obtained by applying continuity and discontinuity of the n-th eigenvalue function, monotonicity
in some direction of the n-th eigenvalue function, which were given in our previous papers, and
natural loops in the space of boundary conditions. Some results generalize the relevant existing
results about inequalities among eigenvalues of different Sturm-Liouville problems.

1. Introduction

A self-adjoint discrete Sturm-Liouville problem (briefly, SLP) considered in the
present paper consists of a symmetric discrete Sturm-Liouville equation (briefly, SLE)

— V(faAyn) + Gnyn = AWnyn, n€[1,N], (1.1)

and a self-adjoint boundary condition (briefly, BC)

Yo YN _
A (foAyo) B (fNAyN) =90, 12

where N > 2 is an integer, A and V are the forward and backward difference operators,
respectively, i.e., Ay, = Vu1—yn and Vy, =yu—yu_1; £ = {fi}’_o. = {qn}}_, and
w = {w,}\_, are real-valued sequences such that

fa #0 for n€[0,N], w, >0 for ne[l,N]; (1.3)

A is the spectral parameter; the interval [M,N] denotes the set of integers {M,M +
1,---,N}; A and B are 2 x 2 complex matrices such that rank (A,B) = 2, and satisfy
the following self-adjoint boundary condition:

01\ o (0 1\,
A(_IO)A _B<_10>B, (1.4)
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where A* denotes the complex conjugate transpose of A.

Throughout this paper, by C, R, and Z denote the sets of the complex numbers,
real numbers, and integer numbers, respectively; and by z denote the complex conju-
gate of z € C. Moreover, when a capital Latin letter stands for a matrix, the entries
of the matrix are denoted by the corresponding lower case letter with two indices. For
example, the entries of a matrix C are ¢;;’s.

As it is mentioned in [1, 7], the discrete SLP (1.1)—(1.2) can be applied to many
fields, ranging from mechanics, to network theory, and to probability theory. The eigen-
values of (1.1)—(1.2) play an important role in studying these physical problems and
they change as the SLP changes. Thus, it is naturally important to compare the eigenval-
ues of different SLPs. In this paper, we shall establish inequalities among eigenvalues
of different SLPs.

Recall that a self-adjoint continuous SLP consists of a differential SLE

—(p)y') +q(t)y=Aw(t)y, 1€ (a,b), (1.5)

A (<pyy('§l<)a>) b <<pyy('l>7()b>) =0 (10

where —eo < a < b < +e; 1/p,q,w € L((a,b),R), p,w > 0 almost everywhere on
(a,b), while L((a,b),R) denotes the space of Lebesgue integrable real functions on
(a,b); A and B are 2 x 2 complex matrices such that rank (A, B) =2 and (1.4) holds.
For a fixed differential SLE (1.5), inequalities among eigenvalues for different self-
adjoint BCs have been extensively studied by many authors (cf., e.g. [3, 4, 5, 6, 8,
10, 12, 13, 14, 15, 20, 21]). Using the variational method, Courant and Hilbert in
[5] gave inequalities among eigenvalues for different separated BCs. Using the Priifer
transformation of (1.5), Coddington and Levinson in [4] gave the classical inequalities
among eigenvalues for periodic, antiperiodic, Dirichlet and Neumann BCs under some
conditions on the coefficients of (1.5). See also [20]. For an arbitrary coupled self-
adjoint BC, Eastham and his coauthors in [6, Theorem 3.2] identified two separated BCs
corresponding to the Dirichlet and Neumann BCs in the above case, and established
analogous inequalities. Their proof also depends on the Priifer transformation of (1.5).
See also [8]. These inequalities are extended to singular SLPs and other cases [3, 10,
12, 13, 14]. Using natural loops in the space of self-adjoint BCs, Peng and his coauthors
in [15] gave a short proof of [6, Theorem 3.2], and obtained new general inequalities.
See Theorem 4.53 in [15].

Next, we recall the related existing results of inequalities among eigenvalues of dif-
ferent self-adjoint discrete SLPs (1.1)—(1.2). For a fixed self-adjoint BC (1.2), inequal-
ities among eigenvalues for different coefficients of (1.1) were obtained by Rayleigh’s
principles and minimax theorems in [16]. Then these results were extended to higher-
order discrete vector SLPs in [17]. For a fixed equation (1.1), by using some oscillation
results obtained in [ 1] and some spectral results of (1.1)—(1.2) obtained in [16], inequal-
ities among eigenvalues for periodic, antiperiodic, and Dirichlet BCs were given under
the assumption that f, >0, |l <n<N—1,and fy = fy =1 in [19]. Under the same
conditions of the coefficients of (1.1) and by a similar method used in [19], these results
in [19] were extended to a class of coupled BCs in [18].

and a BC
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The aim of the present paper is to establish more general inequalities among eigen-
values of different SLPs (1.1)—(1.2). For a fixed equation, inequalities among eigenval-
ues for different separated BCs are established in Theorem 3.1, and among eigenvalues
for different BCs in a natural loop are established in Theorems 3.3 and 3.5-3.7. Then,
the inequalities in Theorems 3.3 and 3.5-3.7 are applied to compare eigenvalues for
coupled BCs with those for some certain separated ones (see Theorems 3.8, 3.9, 3.11
and 3.13-3.15), and eigenvalues for different coupled BCs (see Theorem 3.16). The
inequalities in Theorems 3.8, 3.9, 3.11 and 3.13-3.15 extend those in [18, Theorem
3.1] to a more general case. For a fixed BC, inequalities between the n-th eigenval-
ues for two equations with different coefficients and weight functions are established in
Theorem 4.3, which generalize those in [16, Theorem 5.5] and [17, Theorem 3.6] in the
second-order case. Combining the above results, one can establish inequalities between
the n-th eigenvalues of two SLPs with different equations and BCs (see Corollary 4.4).

The method used in this paper is different from those used in [4, 6, 8, 18, 19,
20]. On the one hand, the approaches used in [4, 6, 8, 20] in the continuous case
depend on the Priifer transformation of (1.5). Although the Priifer transformation in
discrete version were given in [2], some of its properties in continuous version can
not be extended to the discrete one and thus similar methods used in [4, 6, 8, 20] are
difficultly employed in studying the discrete problem. On the other hand, the variational
method used in [16, 17] is restricted to compare eigenvalues, which have the same
index, of different SLPs, and it seems to us that the method used in [18, 19] in the
discrete case is hardly extended to a more general case. However, motivated by the
method used in [ 5], the following ingredients can be employed to study our problems:
(1) the continuity and discontinuity of the n-th eigenvalue function, which were studied
in [22]; (2) the monotonicity of the n-th eigenvalue function, which can be deduced
from [22, 23]; (3) natural loops in the space of self-adjoint BCs. Thus, the work in this
paper is a continuation of our previous works [22, 23].

This paper is organized as follows. Section 2 gives some preliminaries. Some
notations are introduced and some lemmas are recalled. Especially, natural loops in
space of self-adjoint BCs, are presented. In Section 3, inequalities among eigenvalues
for different boundary conditions are given. In Section 4, inequalities between the n-th
eigenvalues for two different equations are established.

2. Preliminaries

In this section, some notations and lemmas are introduced. This section is divided
into two parts. In Section 2.1, topology on space of SLPs and several useful properties
of eigenvalues are recalled. In Section 2.2, natural loops in space of self-adjoint BCs
are presented.

2.1. Space of SLPs and properties of eigenvalues

Let the SLE (1.1) be abbreviated as (1/f,q,w). Then the space of the SLEs can
be written as
QY = {(1/f,q,w) € R*¥*1: (1.3) holds},
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and is equipped with the topology deduced from the real space R*V*! . Note that Q5"
has 2V*! connected components. Bold faced lower case Greek letters, such as @, are
used to denote elements of Q§’+ .

The quotient space
= M§,4(C)/GL(27@)7

equipped with the quotient topology, is taken as the space of general BCs; that is, each
BC is an equivalence class of coefficient matrices of system (1.2), where

M; 4(C) := {2 x 4 complex matrix (A,B) : rank(A, B) =2},
GL(2,C) := {2 x 2 comlplex matrix 7 : det T # 0}.
The BC represented by system (1.2) is denoted by [A|B]. Bold faced capital Latin

letters, such as A, are also used for BCs. The space of self-adjoint BCs is denoted by
2T . The following result gives the topology and geometric structure of % .

LEMMA 2.1. ([23, Theorem 2.2]) The space BC equals the union of the follow-
ing relative open subsets:

lan 0 z |
ﬁ&:{[o : —1 bzz} : 0127b22€R,z€C},

lap z 0} .
6542{[0 Z by 1}.a12,b21€R,26C},

2.1

air —1 0 z ||
ﬁéc,a:{[ - —lbzz} : a117b226R,z€C},

ajp—1 z 0
6’%4:{[ 2 0 by 1:| : au,bgleR,ze(C}.

Moreover, B° is a connected and compact real-analytic manifold of dimension 4.

Lemma 2.1 says that ﬁ&, @’FA, @’écs, and ﬁéCA together form an atlas of local
coordinate systems on Z°C .

The space Q£’+ x A of the SLPs is a real-analytic manifold of dimension 3N 45
and has 2V*! connected components.

The following result gives the canonical forms of separated and coupled self-
adjoint BCs.

LEMMA 2.2. ([21, Theorem 10.4.3]) A separated self-adjoint BC can be written

as
cosa —sinae 0 0

Sap = 0 0 cosf —sinf |’
where o € [0,7), B € (0,7]; and a coupled self-adjoint BC can be written as

[eiyK| - I}:

(2.2)

where y € (—m,n], K € SL(2,R):= {2 x 2 real matrix M : detM = 1}.
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In particular, So - is called the Dirichlet BC; S g for any 8 € (0, 7] or S for
any o € [0,7) is called the BC which is Dirichlet at an endpoint. By % and %¢
denote the space of separated self-adjoint BCs and that of coupled self-adjoint BCs,
respectively. Then B = B\ U Be, and B is an open subset of BT .

Next, several properties of eigenvalues are presented. For each A € C, let ¢(1) =
{0,(A)IY_, and w(4) = {y,(A)}Y_, be the solutions of (1.1) satisfying the following
initial conditions:

do(A) =1, foAdo(A) = 0; wo(A) =0, foAyp(A) = 1.

Then the leading terms of ¢y (1), Wn(A), fnA@n(A), and fyAyy(A) as polynomials
of A are

ot (N e ) a1 et NoL o Y Nt
(—1) I (wi/ £i) ) A2 (=155 (1 fo) TL (wi/ £i) J AT,
" " 2.3)

-1
1
1

11

1

0 (o T /70 ) 4% 0 (o) T i/ 1)) 2

1

respectively. See [23] for details.
The following result says that the eigenvalues of a given SLP can be determined
by a polynomial.

LEMMA 2.3. ([23, Lemmas 3.2 and 3.3]) A number A € C is an eigenvalue of a
given SLP (1.1)—(1.2) if and only if A is a zero of the polynomial

I['(A) =detA+detB+G(A),
where

G(A) = Cll(bN()L) + clng(A) + CzlfNA(bN()L) + szfNAl//N(l),
c11 = anbii —anbsi, c12 = ai1by — az b1y,

21 = anbiy —anby, ¢ = ai1hy —axbp.

Let (@,A) € Q%’J’ x AC. Set

—ay1 + foarz b1z
r=r(@A):=ran (-azl + foaz b22> @4

Obviously, 0 < r < 2. The following result establishes the relationship between analytic
and geometric multiplicities of each eigenvalue of a given SLP and gives a formula for
counting the number of eigenvalues.

LEMMA 2.4. ([23, Lemma 3.4 and Theorem 3.3]) For any fixed self-adjoint SLP
(1.1)—(1.2), all its eigenvalues are real, the number of its eigenvalues is equal to N —
2+r, where r is defined by (2.4), and the analytic and geometric multiplicities of each
of its eigenvalue are the same.
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Lemma 2.4 can also be deduced from [16, Theorem 4.1] and [17, Theorem 4.3].
By Lemma 2.4, we shall only say the multiplicity of an eigenvalue without specifying
its analytic and geometric multiplicities. Based on these results, the problem (1.1)—(1.2)
has k = N —2 + r eigenvalues (counting multiplicities), which can be arranged in the
following non-decreasing order:

A< <A< < Ay

The n-th eigenvalue A4, can be considered as a function in the space of the SLPs, called
the n-th eigenvalue function. The following result gives a necessary and sufficient
condition for all the eigenvalue functions to be continuous in a set of space of SLPs.

LEMMA 2.5. ([22, Theorem 2.1]) Let O be a set of Q§’+ x BC. Then the num-
ber of eigenvalues of each (®,A) € O is equal if and only if all the eigenvalue functions
restricted in O are continuous. Furthermore, if O is a connected set of QE* x %C,
then each eigenvalue function is locally a continuous eigenvalue branch in O .

2.2. Natural loops in the space of self-adjoint boundary conditions

In this subsection, natural loops in the space of self-adjoint BCs are presented.
We remark that these natural loops will play an important role in studying inequalities
among eigenvalues for coupled BCs and those for some certain separated ones.

LEMMA 2.6. In BC, we have the following limits:

S — fim |18 20]_J01 00
L e |0zbyy 1|~ |00by 1]

BT lalzz_O o 1611200
Sz'_tkﬂo{o z tl]_{o 0 10]’
See pim |$-1 20]_[1000
3T SEe |z 0 by 1| T |00by 17
BT a“—lZ_O o a11—100
S“'_,E‘fw[z 0 tl]_[o 0 10}’

S qim |10 Z]_[too0 o
5'_.Y4>:t°° z 0 —1b22 o 00—1b22 ’

BT a11—1 0z o a11—100
Sﬁ'_zﬂlﬂo[z 0 —1z]_[0 001}’

S e fim |10 Z]_[010 0
T 0z—1byn| [00—-1bp]’

BRT 1a12 0z o 1a1200
Ss = lim [Oz—lt]_[OOOI}
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The following result gives some natural loops in %°*.

LEMMA 2.7.

(i) Every BC A € ﬁ& lies on the following two simple real-analytic loops in ZBC :

ls z O
Clazby = {A(s) = [Ozbzl 1] , sER}U{Sl},

A 1 z0
%1,4,1@12 = {A(l) = |:0 aéz j 1:| , 1 e R} U{Sz}.

(ii) Every BC A € ﬁéCA lies on the following two simple real-analytic loops in 9BC :

-1 7z 0
Crazpy = {B(s) = [z 0 b; 1] ,s5€ R} U{Ss},

- —-1z0
Craza, = {B(t) = [az“ 0 i 1] Jte R} U{S4}.

(iii)) Every BC A € ﬁ& lies on the following two simple real-analytic loops in ZBC :

s—1 0 z
%2737171722: {C(S) = |:Z 0 _1 b22:| 9 SGR}U{SS}a

A 10 2
Gosaan = {00 =[5 0 F] rerutse.

(iv) Every BC A € ﬁ& lies on the following two simple real-analytic loops in B° :

Is 0 z

Cl3zbn = {D(t) = [0 -1 bzz} , S € R} u{Ss},
A 1 z O

C30an = {D(t) = |:0 aéz —Zl z} o GR} U{Ss}.

REMARK 2.1. Lemmas 2.6 and 2.7 can be deduced from Lemmas 3.1 and 3.7
in [15], respectively. €7 4.5, \{A} is connected for any fixed A € € 4p,, . Similar
result holds for other natural loops in (i)—(iv) of Lemma 2.7. Foreach 1 <i <8, S;
is called a limit boundary condition (briefly, LBC) in the corresponding natural loop.
Note that all the LBCs are separated ones.

3. Inequalities among eigenvalues for different boundary conditions

In this section, for any fixed equation, inequalities among eigenvalues for different
BCs are established. This section is divided into four parts. In Subsections 3.1-3.4,
inequalities among eigenvalues for different separated BCs, among eigenvalues for dif-
ferent BCs in a natural loop, among eigenvalues for coupled BCs and those for some
certain separated ones, and among eigenvalues for different coupled BCs are estab-
lished, respectively.
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3.1. Inequalities among eigenvalues for separated BCs

In this subsection, we shall first compare the eigenvalues for different separated
BCs Sy in two directions « and B, separately. Then we give an application to
compare eigenvalues for an arbitrary separated BC with those for the BCs which are
Dirichlet at an endpoint.

For convenience, denote A,(t, B) := 4,(S,g) for short, and § := arctan(—1/fp) +
mif fo >0; & :=arctan(—1/fp) if fo <O.

THEOREM 3.1. Fix a difference equation @ = (1/f,q,w). Then (@,Sqp) has
exactly N eigenvalues if o0 # & and B # 7, exactly N — 1 eigenvalues if either o # &
and B=m or =& and B # 1, and exactly N — 2 eigenvaluesif o« =& and = 7.
Further, forany 0 <oy < 0p <& <oz <oy <m,and 0 < By < P < &, we have that

(i) the eigenvalues of the SLPs (®,S, g,) for any By € (0,7), i = 1,---,4, satisfy
the following inequalities:
Ao(0, Bo) < Ao(o, Bo) < Ao(eu,Bo) < Ao(0,Bo) < A1(02,Bo) < A1(au,Bo)
< A(ou,Bo) < Ai(03,Bo) < -+ < Av—2(0n,Bo) < Av—2(a1,Bo) <
An-2(04,Bo) < An-2(03,B0) < An—1(02,B0) < Anv—1(e1,Bo) < Av-1(04,Bo),

and in addition, Ay_1(0u,Bo) < An-1(03,B0) if 03 #&;

(i) similar results in (1) hold with N —2 and N — 1 replaced by N —3 and N — 2,
respectively, in the case that By =1,

(iii) the eigenvalues of the SLPs (®,Sg, ;) for any oy € [0,8)U (8. 7), j= 1,2,
satisfy the following inequalities:
Ao(00,B1) < Ao, Br2) < Ai(0o, i) < (e, fr) <+ <
< An-2(00,B1) < Av—2(00,B2) < Av-1(00, B1),

and in addition, Ay_1(0,B1) < An—1(ct0,B2) if Bo # 7,

(iv) similar results in (iii) hold with N —2 and N — 1 replaced by N —3 and N — 2,
respectively, in the case that o =& .

Proof. The number of eigenvalues of (@,A) in each case can be obtained by
Lemma 2.4. Firstly, we show that (i) holds. Let By € (0,7). By (i) of Corollary 4.2
in [22], the n-th eigenvalue functions A, (o, By) are strictly decreasing in o € [0,&) or
o€ (&,m) forall 0 <n < N-—1. This implies that

Au(02,Bo) < An(0t,Bo), O

<
3.1
A,n(a47ﬁ()) < A’H(O@Hﬁo)» 0 < n
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and in addition, Ay_(0y, Bo) < Av—1(03,Bo) if a3 # &. Again by (i) of Corollary 4.2
in [22], Au(o,Bo), 0 < n < N — 1, have the following asymptotic behavior near 0 and

hm An(ot, Bo) = A,(0,Bp), 0<n<N—1,
hm Ao(ex, ﬁo) —oo, 11121 (e, Bo) = An—1(8,Bo), 1 <n<N-—1,
o—G
hm A0, Bo) = An(E,B0), 0<n<N—2, lim Ay_;(o,By) = +oe.
a—Et o—ET

Thus,
(01, Bo) < 2n(0,B0) = lim_Au(ex,Bo) < An(0u,Bo), 0<n<N—1,
(03, Bo) < (&, Bo) = 11121 7Ln+1(05 Bo) < Ans1(02,B0), 0<n <N -2,

which together with (3.1), implies that (i) holds. See also Figure 3.1 for N =4.

A

Figure 3.1: The n-th eigenvalue function of .

The proof of assertion (ii) is similar to that of (i) by (iii) of Corollary 4.2 in [22].

Now, we show that (iii) holds. Let o € [0,&)U (&, 7). By (ii) of Corollary
4.2 in [22], A(0p,B), 0 < n < N —1, are strictly increasing in 8 € (0,7) for all
0<n<N-1.Thus,

Aan(a()7ﬁ1)<ln((x()7ﬁ2),0<n<N-27 (32)

and in addition, Ay_1 (0w, B1) < Av—1(0o,B2) if B2 # m. Again by (ii) of Corollary 4.2
in [22], A, (00, B), 0 < n < N — 1, have the following asymptotic behavior near 0 and

lim 24,(c0,B) = (00, m), 0 <n<N -2, BlimﬁN_l(ao,ﬁ)er
lim Ao(ao,B) = —oo, ﬁlinoljn(ao,ﬁ)zln_l(ao,n), I<n<N-1
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Thus,
zfn((xf)7ﬁ2) < 2fn(a(bﬂ:) = ﬁirg+z’n+l(a07ﬁ) < 2’n-&-l(a(bﬁl)a O g n < N_27

which together with (3.2), implies that (iii) holds. See also Figure 3.2 for N = 4.

A

Figure 3.2: The n-th eigenvalue function of 3.

The proof of assertion (iv) is similar to that of (iii) by (iv) of Corollary 4.2 in
[22]. O

The following result is to compare eigenvalues for an arbitrarily separated BC with
those for the BCs which are Dirichlet at an endpoint.
COROLLARY 3.2. Fix a difference equation @ = (1/f,q,w) and a separated BC
Sey.p,- Then we have that
(i) forany o € (0,8) and fo € (0,7),
%(%7[30) < {)’O(Oaﬂo)a%(%a TC)} < A‘l(a()aﬂo) < {A‘l (Oaﬂ0)7z’l((xo7 7'5)} <
< An-2(a0, Bo) < {An—2(0,Bo), An—2(at0, ) } < An—1 (00, o) < An—-1(0, Bo);

(ii) forany ap € (&,m) and By € (0,7),
20(0, Bo) < Ao(0, Bo) < {21(0, o), Ao(00, )}
< Mi(00,Bo) <{22(0,B0), i (00, )} <--- <
An—2(at9, Bo) < {An-1(0,P0), Av—2(00, )} < An—1(00,Po);
(iil) for any o9 =& and Py € (0,7),
20(0, Bo) < Ao(0, Bo) < {A1(0, o), Ao(00, )}
< Mi(00,Bo) <{22(0,B0), i (00, )} <--- <
An-3(00,Bo) < {An-2(0,Bo), Av—3(0t0, ) } < An—2(00,B0) < An-1(0,Bo);
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(iv) forany ap € (0,€) and By =,

Ao(00, Bo) < 20(0,Bo) < A1 (o, Bo) < A1(0,Bo)
< < Av—a (o, Bo) < Av—2(0,Bo);

() forany oy € (&,7) and fo = 1.

20(0,Bo) < Ao(00,Bo) < A1(0,Bo) < A1 (0w, Bo)
<+ < An-2(0,B0) < An—2(00,Bo);

(vi) forany oy =& and By =T,

20(0, Bo) < Ao(00, o) < -+ < An-3(0,Bo) < An—3(00,Bo) < An—2(0, Bo);
(vii) forany op =0 and By € (0,7),

Ao(a, o) < Ao, ) < -+ < An—2(00,Po) < An-2(00,7) < Ay-1(co, Po),
where the notation {Ay(0, o), Ao(ao, )} means each of 2(0,Bo) and Ao(op, ), etc.

Proof. (1) and (iii), (i) and (iv), (ii), and (iii) of Theorem 3.1 imply that assertions
(1)—(ii), (iii), (iv)—(vi), and (vii) hold, respectively. U

3.2. Inequalities among eigenvalues for different BCs in a natural loop

In this subsection, we shall establish inequalities among eigenvalues for different
BCs in a natural loop (given in Lemma 2.7). We shall remark that inequalities among
eigenvalues for different BCs in a natural loop will play an important role in establishing
inequalities among eigenvalues for coupled BCs and those for some certain separated
ones, and among eigenvalues for different coupled BCs in Subsections 3.3 and 3.4.

Firstly, we shall establish inequalities among eigenvalues for different BCs in the
natural loops €1 4 ; ,, and €} 4.4, separately.

THEOREM 3.3. Fix a difference equation @ = (1/f,q,w). Let

lap z 0
Ala,ba) = [0 ;2 b2y 1} L

Then (@,A(ay2,b31)) has exactly N eigenvalues if ajp # 1/fo and exactly N — 1
eigenvalues if ap =1/ fo; (@0,S1) has exactly N eigenvalues in any case; (@,S;) has
exactly N — 1 eigenvalues if ayy # 1/ fy and exactly N —2 eigenvalues if ajy = 1/ fo,

where S1 and S, are specified in Lemma 2.6. Further, for any aglz) < agzz) <1/fo <
a@ < ag) and béll) < bgzl), we have that
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(i) the eigenvalues ln(agiz)) of the SLPs ((O,A(agiz),bm)), i=1,---,4, and 1, (Sy)
of (®,S1) satisfy the following inequalities:

o)) < Ao(aly) < 20(S1) < Ao(aly) < Ao(al?)

< (@) < M(aly) < M(S) < (aly) < a(ad)
< < Ao (al) < Avoa(@ly) < Av-a(S1) < Ay—a(aly)
<w-2(a2) <Av-1(@) < aw1(@ld) <A1 (S1) <Ay @),

and in addition, Ay_ 1(a12) An— 1(a12) lfa12 <1/fo;

(ii) the eigenvalues A, ( J) ) of the SLPs (®, A(a127b£1))), j=1,2, and 1,(S3) of
(@,S,) satisfy the followmg inequalities:

2o()) < A(5)) < 20(S2) < (b)) < (S > M(S2) <<
Avoa(B8)) < Ay 3 (b)) < An-3(S2) < w2 (b)) < Av 2 (Bl )>

and in addition, Ay 2(b$)) < Av_2(S2) < v 1(BS)) < A 1 (b)) if arn #
1/ fo.

Proof. The number of eigenvalues of (@,A(a12,b71)), (@,S1), and (®,S;) can
be obtained by Lemma 2.4 and direct computations.

Let A(s) and 6} 4.5, = {A(s) : s € R} U{S;} be given as those in (i) of Lemma
2.7. Then A(a\)) = A<a§g,b21), i=1,---,4. By (i)(ii) of Theorem 4.1 in [22], the
eigenvalue functions A, (A(s)) are continuous and non-decreasing in (—eo,1/f) and
(1/ fo,4oe) forall 0 < n <N — 1. Thus, one gets that

An(@)) < (@d), 0<n < N=2, 2,(aY) < @), 0<n<N—1,  (33)

and in addition, ?LN,l(aglz) < - 1(a52)) if a12 < 1/fo. By (iii) of Theorem 4.1 in
[22], 2, (A(s)), 0 < n < N— 1, have asymptotic behavior near 1/ f; as follows:

fim 2a(A() = A(A(1/f0), 0<n<N =2, lim Ay-i(A(s)) = o=
Nad 0) 5— 0)~

lim A(s)) = —o, lim A,(A(s)) = A,—1(A(1 ,1<n<N-1.
lm (A === lim A (AG) = 2 1(A/f)

Since 61 4.5, \{A(1/fo)} is connected by Remark 2.1 and (@,A) has exactly N
eigenvalues for each A € 61 4.5, \{A(1/f0)}, An restricted in €1 4., \{A(1/f0)}
is continuous for each 0 <n < N —1 by Lemma 2.5. This, together with Lemma 2.6,
implies that vErjl;lmkn (A(s)) = A,(Sy) forall 0 < n < N—1. See Figure 3.3 for N =4.
Thus,
(a ) Aa(S1) < JLn(a )O<n<N—1

Anl@2) < 2(A(L/fo)) < Anir(@d).0<n<N-2.

(3.4)



INEQUALITIES OF SELF-ADJOINT DISCRETE STURM-LIOUVILLE PROBLEMS 661

Figure 3.3: The n-th eigenvalue function of s.

Hence (3.3)—(3.4) imply (i) holds. A .

Then we show that (ii) holds. Let A(¢) and €} 44, = {A(?) :1 € R}U{S>} be
given as that in (i) of Lemma 2.7. Then A(a127bgl)) A(bgl)) j=1.2.

Let ajp # 1/fy. Then A,(A(r)) are continuous and non-decreasing in 7 € R for
all 0 <n < N—1 by (i)-(i) of Theorem 4.1 in [22]. Thus, foreach 0 <n <N —1, one
has that

Aa(b8)) < 2, (). (3.5)

To see the limits of A, (A(¢)) at 4eo, we notice that for 7 # 0,

(t):[lalz zo}:[lalz—zz/t 0 —Z/t} (3.6)

>

0z t1 0 —z/t —1-1/t

In the case that aj > 1/ fy, direct computations show that A(r) € %, 5 if 1 <05
A(t) € B, 5 if t >0;and S; € A 3., where

By, = {A€OF a2 > 1/fobn >0, (a1 =1/ fo)b > |2}
) 11/£,00
%13 —{AG@13 (alz—l/fo)b22<|z| } [O {)f010:|»
B 3r = {A € ﬁ1 s (@ —1/fo)ban = |z a1 = 1/ fo, b2 > }\{C}~

Note that lirin A(t) =S, by Lemma 2.6. Then, it follows from (iiia) of Theorem 4.3
t—too
in [22] that

lim Ag(A(1)) = —eo, lim A(A() = Ay 1(82), 1 <n<N -1,

t——oo0

Jim (A1) = 2n(S2), 0 < n <N -2, tliTN)LN_l(A(t)) = oo,

See Figure 3.4 for N =4.
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Figure 3.4: The n-th eigenvalue function of t.

Thus,
Zn(b) < im n(A(0) = 4n(S2) = 1im A1 (A(0) < Ar (BY)),  (3.7)

for 0 <n<N—2.(3.5) and (3.7) imply (ii) holds in the case thatAalg >1/fp.
In the case that a12 < 1/ fo, direct computations imply that A(r) € 5 if 1 <O0;

Ar) e B, if 1 >0;and S, € B 3, where

@13, —{AGﬁlg app <1/ fo,b2n < (alz—l/fo)b22>|Z|2},
B3 = {A € 6’173 Harn—1/fo)ban = |2|*,a12 < 1/fo,b2n < }\{C}~

By (iiib) of Theorem 4.3 in [22], similar arguments above yield that (ii) holds in this
case.

Let ajp =1/fp. Then S, = C. Since €} 4.4, \{S2} is connected by Remark
2.1 and (@,A) has exactly N — 1 eigenvalues for each A € € 4;4,,\{S2}, by Lemma
2.5 the eigenvalue function A, is continuous and locally forms a continuous eigenvalue
branch in €7 4.4,,\{S2} for each 0 <n <N —2. By Theorem 4.6 in [23], A,(A(z))
is non-decreasing in ¢ € R, and thus (3.5) holds for each 0 <n < N—2. By (3.6) and
direct computations, it follows that A(t) € B3 if t <0;and A(t) € %3 ift>0.1In
addition, tEI}ELA(Z) =S, by Lemma 2.6. It follows from (iiic) of Theorem 4.3 in [22]

that
lim Mo(A(r)) = oo, lim An(A(1) = An_1(S2), 1 <n <N -2,

Jim In(A(1)) = 1,(S2), 0<n <N — 3, lim An-2(A(t)) = +oo.
Thus, (3.7) holds for each 0 < n < N — 3. Hence, (ii) holds. [

REMARK 3.1. The inequalities in Theorem 3.3 may not be strict. See the follow-
ing example.
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EXAMPLE 3.4. Consider (1.1)—(1.2), where

f0:17fl:17f2:176]1:512:07W1:W2:17N:27

and
1 s —10
Ay(s) == [0 s } X

Then, by Lemma 2.3,
F(A)=—(s— DA*+2(s—2)A.

663

Thus, for each s € (—oo, 1)U (1,00), there are exactly two eigenvalues for A;(s) and

exactly one eigenvalue for A;(1):

0 ifs<1,
A(s)=1<2(s=2)/(s—1) ifl<s<2,
0 ifs>2,

2(s—=2)/(s—1) ifs<1,
Mls) =140 if1<s<2,
2(s—=2)/(s—=1) ifs>2.

Note that

. 0100
Si=lim Auls) = [000 1]'

It is easy to see that there are exactly two eigenvalues for S, and they are 0 and 2. See

Figure 3.5.

Figure 3.5: The n-th eigenvalue function of s in Example 3.4.
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Then Ao(S1) = Ao(A1(s5)) <2A1(S1) <Ai(Ay(s)) for s <13 Ao(S1) =Ao(A1(s)) <
2(S1) for s= 13 Zo(A1(5)) < A0(S1) = A1 (A1 (5)) < A1(S1) for 1 < s < 25 Ao(As(s)) =
2,()(81) :AI(AI (S)) < A,] (S]) for s=2;and A()(A](S)) :%(Sl) < A,] (Al (S)) < 2,1 (S])
for s > 2.

Secondly, we shall establish inequalities among eigenvalues for different BCs in
the natural loops 624, 5,, and 624 ,, » separately.

THEOREM 3.5. Fix a difference equation @ = (1/f,q,w). Let

anp—1 z 0
A(air,ba1) = [ Z“ 0 by 1] € Osa.

Then similar results in Theorem 3.3 hold with a;», a1i2, 1/fo, S1, and S; replaced by

aip, agl, —fo, S3, and Sy, separately, where i=1,---,4, and S3 and S4 are specified
in Lemma 2.6.

Proof. By asimilar method to that used in the proof of Theorem 3.3, one can show
that Theorem 3.5 holds with the help of Theorems 4.2 and 4.4 in [22]. [

Thirdly, we shall establish inequalities among eigenvalues for different BCs in the
natural loops ¢33 .p,, and 653, , separately. We shall remark that here we only
give the inequalities in the case that z # 0 since we shall apply Theorem 3.6 to coupled
BCs, which satisty that z # 0. One can establish the inequalities in the case that z =0
with a similar method.

THEOREM 3.6. Fix a difference equation @ = (1/f,q,w). Let

-1 0 z
A(allab22) = |:a;l 0 —1 b22:| € ﬁgféa

where 7 # 0. Then (®,A(ai1,byy)) has exactly N eigenvalues if by (aiy + fo) # |2|%,
and exactly N — 1 eigenvalues if by (ay; + fo) = |2|?; (@,S5) has exactly N eigen-
values if byy # 0, and exactly N — 1 eigenvalues if byy = 0; (@,Se) has exactly N
eigenvalues if ayy + fo # 0, and exactly N — 1 eigenvalues if ay; + fy = 0, where Ss
and S¢ are specified in Lemma 2.6. Further, we have that

(i) in the case that by; =0, for any a(lll) < a(lzl), the eigenvalues Ay, (agil)) of (@

A(agil),bzz)), i=1,2, and A,(Ss) of (®,Ss) satisfy the following inequalities:

o)) < A(aly) < do(Ss) < Aa(al})) < Ai(al)) < A (Ss) <

(3.8)
Ina(a)) < Aw-a(al)) < Aw-a(S5) < Ao (af))) < Ao (@ <2>>,
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(ii) in the case that by # 0, for any agll) < aﬁ) <zl /b2y — fo and |2)? /by — fo <
aﬁ) < aﬁ), the eigenvalues ln(agil)) of ((o,A(a(lil),bgz)), i=1,---,4, and A,(Ss)
of (®,Ss) satisfy the following inequalities:

Jofal}) < o(al))) < 20(S5) < Aofaly)) < Ao(a}) <
hafary) < Ma(a)) < <hSs <A (ai) < Mi(ai})
<o < awa(al) < Avoalal}) < Awoa(Ss) < Avalafy) <

/IN—z(a(lzl) < Awv-1(a])) < Av-i(al})) < Aw-1(Ss) < Av-1(al}),
and in addition, AN,I(agll) <Ay 1(6111) lfa11 <|z? /b2 — fo;

(iii) in the case that ay) + fo = 0, for any bglz) < bgz), the eigenvalues ln(bgz)) of
(a),A(au,bgz))) and 1,(Se) of (®,Se) satisfy (3.8) with a(lll) and Ss replaced
by bgz) and Sg, separately, where i = 1,2;

(iv) inthe case that a1+ fo # 0, for any bgz) < b22 <22/ (a1 + fo) and |z /(a1 +
fo) < bgz) < bgz), the eigenvalues An(b gz)) of (@, A(alhbgz))) and 2,(S¢) of
(@,S¢) satisfy (3.9) with a(n) and Ss replaced by béz) and S¢, separately, where
i=1,-,4, and in addition, Ay 1(b$Y) < Ay_1(b53)) if b < |22/ (@11 + fo).

Proof. By a similar method to that used in the proof of (ii) in Theorem 3.3, one
can show that (i) holds with the help of Theorems 4.3—4.4 of [22]; (iii) holds with the
help of Theorems 4.2 and 4.4 of [22]. By a similar method to that used in the proof
of (i) in Theorem 3.3, one gets that (ii) and (iv) hold with the help of Theorem 4.4 of
[22]. O

Fourthly, we shall establish inequalities among eigenvalues for different BCs in
the natural loops 67 3 ; 5,, and 673 ;,q,, With z # 0, separately.

THEOREM 3.7. Fix a difference equation @ = (1/f,q,w). Let

1 0 z
Mt [ 0 | e ot

2
_ z|* /b2 —
fo, Ss, and S¢ replaced by a3, a(llz), ayp—1/fo, 12?/ban+1/fo, S7, and Sg, sepa-
rately, where i =1,---.4, and S7 and Sg are specified in Lemma 2.6.

where 77 0. Then similar results in Theorem 3.6 hold for ayy, a(lil) , arr+fo,

Proof. By a similar method to that used in the proof of (ii) in Theorem 3.3, one
can show that (i) holds with the help of Theorems 4.3—4.4 of [22], and (iii) holds with
the help of Theorems 4.1 and 4.4 of [22]. By a similar method to that used in the proof
of (i) in Theorem 3.3, one gets that (ii) and (iv) hold with the help of Theorem 4.3 of
[22]. O
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3.3. Inequalities among eigenvalues for coupled BCs and those for some certain
separated ones

In this subsection, we shall first establish inequalities among eigenvalues for a cou-
pled BC and those for some certain separated ones applying Theorems 3.3 and 3.5-3.7.
Then, for a fixed K € SL(2,R) and y € (—x,0) U (0,7), we shall compare eigenval-
ues for [K| —1I], those for [¢!”K|— 1], and those for [~K|—I]. Combining the above
two parts, we shall establish inequalities among eigenvalues for three coupled BCs and
those for some certain separated ones, which generalize the main result of [18].

Firstly, we shall establish inequalities among eigenvalues for a coupled BC and
those for some certain separated ones in the next two theorems. Set A,(e’K) :=
An([eYK| — 1)) for briefness.

THEOREM 3.8. Fix a difference equation @ = (1/f,q,w). Let A = [¢""K| 1],
where K € SL(2,R) and y € (—x,n]. Then (®,A) has exactly N eigenvalues if ki —
Sokia # 0, and exactly N — 1 eigenvalues if ki1 — fokip =0; (@,Tk) has exactly N
eigenvalues if k11 # 0, and exactly N — 1 eigenvalues if ki1 =0; (®,Uk) has exactly
N —1 eigenvalues if k11 — fok12 # 0, and exactly N —2 eigenvalues if ki1 — fok12 =0,
where

_for 0 o _ [kukeoo0
TK'_[OO—kglkn]andUK'_[O 0 10]'

Furthermore, we have that

(i) the eigenvalues of (@0,A) and (@, Tk) satisfy the following inequalities:

Jo(Tx) < Ao(¢7K) < Ai(Tk) < A (¢K)

) (3.10)
< <A (Ty) < Av-i(€7K)
in the case that (kn — f0k12)k11f0 >0;
Ao(€K) < Ao(Tk) < A1 (e'K) < Ay (Tk) 31D
<< v-1(€7K) < Av-1(Tk) '
in the case that (ki1 — foki2)ki1fo <05
20(Tk) < Ao(e7K) < M1 (Tk) < A (e7K) (3.12)
< < Av-2(Tk) < Wy—2(e"K) < Ay—1(Tk) -
in the case that ki1 — fok12 =0;
20(e"K) < Ao(Tk) < A1(e7K) < A1(Tk) 3.13)

<o < v (€K) < An—2(Tk) < Ay—1(€"K)

in the case that k;1 =0;
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(ii) the eigenvalues of (@0,A) and (@,Ug) satisfy the following inequalities:

Zo(eK) < 20(Uk) < A (¢7K) < A (U)

) ) (3.14)
<< Av2(e7K) < Av2(Uk) < Av-1(€7K)
in the case that ki1 — fok12 #20;
20(e"7K) < Ao(Ug) < A1 (¢7K) < A1 (Ug) (3.15)

<o < Ao (@7K) < An3(U) < Ay (e7K)

in the case that ki1 — fok12 = 0.

Proof. The number of eigenvalues of (®,A), (@,Tk), and (®,Uk) in each case
can be obtained by Lemma 2.4 and direct computations. Let k;; # 0. Since detK =1,

L kio/ki —e/ki 0
—elykzl —elykzz 0 1

A:[eiVK—I}:[ [1‘”2 <0

C
0 z b21 1] 661'4’

where ayy := ki /k11, bo1 := —kp1 /k11,and z:= —eiy/kll . Then by (i) of Lemma 2.7,
A € 6142, NC1 4,4, and the corresponding LBCs satisfy that

g _[01oo0]_for 0 0]_,
L=100by 1| 100 —ky by |~ 6
o 1a1200 o k11k1200 _

Sz_[ }_[0 010]_UK'

0010

Note that (k11 —f0k12)k11f0 >0, (kll _f0k12)k11f0 <0, ki1 — fok1o =0, and k11 —
Sokia # 0 are equivalent to ajp < 1/fy, aia > 1/fo, a2 = 1/fo, and ain # 1/ fo,
respectively. Therefore, by Theorem 3.3, one gets that (ky; — foki2)ki1fo > O implies
(3.10); (k11 — fok12)k11.fo <O implies (3.11); k11 — fokio = 0 implies (3.12) and (3.15);
kll —f0k12 7é 0 implies (3.14).

Let k11 = 0. Now we show that (3.13)—(3.14) hold in this case. Since k;; =0,
—ki2ky1 = 1. Denote

€ k12
Ke:— eSL2,R), ecR.
€ ((—1+£k22)/k12k22> (2.R)

Then ling) K¢ = K. By the definition of Tx and Ug, we see that
E—

for 0 0 _[ekn00
Te. = [001—ek22 sklg] and Uk, = [0 0 10}

Then . _
[€"Ke| — 1] — [€7K| —1], Tk, — Tk, Uk, — Uk, as € — 0.

Since ki, # 0, one can choose a sufficiently small £ > 0 such that € — fykjp #0,
where 0 < € < g . Thus, by Lemma 2.4, there are exactly N eigenvalues for each
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[e"Ke| — 1], 0 < & < g, and by Lemma 2.5, A,(¢'’K;) is continuous in € € [0,€],
which implies that

M(e7Ke) — Ay(e7K), as € =07, 0<n<N—1. (3.16)

Suppose that k1 < 0. By Lemma 2.4, (®,Ug,) has exactly N — 1 eigenvalues
for each € € [0,€]. Thus by Lemma 2.5, 4,(Ug,) is continuous in € € [0,¢&;], which
implies that

M(Uk,) — A, (Ug), as € =07, 0<n<N—2. (3.17)

If fo >0, then Tx € %, 3, and Tk, € B; 5, where € € (0,&] and

B 3 1= {A € @’Eg s (ann + fo)bar = |z]%,a11 + fo = 0,b2 > 0}\{(3}7
B3, = {A € 053 an = —fo,bn =0, (an + fo)ba > |z|2}.

Note that € can be chosen such that 1 — €ky, > 0 for any 0 < € < €. By Theorem 4.4
in [22],
M(Tk,) — —oo, 2n(Tk,) — Ay—1(Tk), as € — 0", 1<n<N-1. (3.18)

If fo <0, then T € %3 and T, € %, 5, where € € (0,€] and

B3 = {A € 053 (an + fo)ba = |z*,a11 + fo < 0,b3 < 0}\{C},

1@2_73 = {A S ﬁé% (a4 fo)ban < |Z|2} .

By Theorem 4.4 in [22], (3.18) holds.

Since (€ — foki2) fo€ >0, where 0 < € < &1, by (3.10) and (3.14) for [¢"YK,| —1],
ho(Tk,) < Ao(€"Ke) < {M1(Tk, ), A0(Uk, )}
<M (eKe) < {Ma(Tk, ), M (Ug, )} < - < (3.19)
In-2(e"Ke) < {An-1(Tx, ), Av—2(Uk, )} < An—1(e7Ke).
Let € — 07 in (3.19). It follows from (3.16)—(3.18) that (3.13)~(3.14) hold for [¢"VK| —
1.

Suppose that k1 > 0. With a similar method to that used in the case that k5 <0,
one can show that (3.13)—(3.14) hold for [¢"K|—1]. O

THEOREM 3.9. Fix a difference equation @ = (1/f,q,w). Let A = [¢'"K|—1],
where K € SL(2,R) and y € (—n,n]. Then (®,Sk) has exactly N eigenvalues if
kip #0, and exactly N — 1 eigenvalues if kip =0; (@,Vk) has exactly N eigenvalues
if fokao —kp1 # 0, and exactly N — 1 eigenvalues if fokas —kp1 =0, where

_[to o o [k kno00
Sk = [OO—kgzklg]andVK'_[O 0 01}

Furthermore, we have that
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(i) the eigenvalues of (@,A) and (®,Sk) satisfy the following inequalities:

Zo(eK) < 2o(Sk) < A (€7K) < A (Sk)

_ , (3.20)
< < Av2(€7K) < Av—2(Sk) < Av—1(€7K)

in the case that kj; =0;

20(Sk) < Ao(€7K) < Ay (Sk) < Ai(e"K)

, 3.21)
< < Ayv-1(Sk) < Av-1(€7K)

in the case that (kyy — foki2)kia > 0;

Xo(e"K) < 20(Sk) < Ai(eK) < A1(Sk)

<
(3.22)
< < Av-1(e7K) < An—1(Sk)

in the case that (kn — foklz)klz <0;

20(Sk) < Ao(€K) < A1 (Sk) < Ai(e7K)

_ (3.23)
< Av—2(Sk) < Av—2(e""K) < An—1(Sk)

in the case that ki1 — fok12 =0;
(ii) the eigenvalues of (@0,A) and (@, Vi) satisfy the following inequalities:

o(€K) < 20(V) < i (€7K) < M (V)

) . (3.24)
<o <2 (e7K) < Av—2 (Vi) < Av—1(€7K)

in the case that fokyy —ka; =0

20(Vi) < Ao(eK) < A1 (Vi) < Mi(e7K)

, (3.25)
< Av-1 (Vi) < Ay—1(€'7K)

in the case that (ki) — foki2)(foka —ka1) >0

Ao(e'K)

Ao(Vk) < Ai(e7K) < A1 (Vi)
<o <A

| (3.26)
N—1(€7K) < Av—1(Vk)

<
<

in the case that (kn — foklz)(fokzz — k21) <0,

Xo(Vk) < Ao(e"K) < M(Vk) < A (eK)

<
) (3.27)
< Ay 2(Vi) < An-2(eK) < A1 (Vi)

in the case that ki1 — fok12 = 0.
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Proof. The number of eigenvalues of (@,A), (®,Sk), and (@, Vk) in each case
can be obtained by Lemma 2.4 and direct computations. Let ky; # 0. Since detK =1,
—kafkn =1 0 e/l | |z 0 —1bn

A=[e"K|— 1) = [ewk“ ¢Thz =10 ] _ [“11 ~10 z

] € 053,

where ayy := —ky1 /kay, 7 := €'V /kay, by := ki2/kaz. Then by (iii) of Lemma 2.7,
A € 62321, 23,24, » and the corresponding LBCs satisfy that

g [l00 0] _[10 0 0]_g
571001 | = [00—knkin| K
o a11—100 o k21k2200 o

Sﬁ_[o 001}_[0 001]“”“

Note that by; = 0 is equivalent to kj; = 0; in the case that byy # 0, one gets that
ai + fo < [2*/ba, ai + fo > |z* /b2, and a1 + fy = |z|* /by are equivalent to
(ki1 — fokia)kio > 0, (ki1 — foki2)ki2 < 0, and ky; — fokio = 0, respectively; aij +
fo =0 is equivalent to fpkp, — kp; = 0; in the case that aj; + fy # 0, one gets that
by < |z* /(a1 + fo), baz > |z]*/(a11 + fo), and b = |z]*/(a11 + fo) are equivalent
to (k11 — fok12)(fokao —ka1) > 0, (ki1 — foki2)(fokaa —ka1) <0, and ki1 — fokio =
0, respectively. Therefore, by Theorem 3.6, one gets that kj» = 0 implies (3.20);
(kll —f0k12)k12 >0 implies (3.21); (k11 —f0k12)k12 <0 implies (3.22); k11 —f0k12 =0
implies (3.23) and (3.27); fokaa —kz1 = 0 implies (3.24); (k11 — foki2) (fokaa —ka1) >0
implies (3.25); (k11 — foki12)(fokaa — k21) < O implies (3.26).

Let k5> = 0. Now we show that (3.21)—(3.23) and (3.25)—(3.27) hold in this case.
Since ky» =0, —kj2kp1 = 1. Denote

= ki1 k12
Ke= <(_1+8k11)/k12 € ) €SL(2,R), ecR. (3.28)

Then lin(l) K. = K. By the definition of Sx and Vi, one has that
E—

Sk, =

€

100 O - —14¢€ky1 €k12 00
[OO—sli and VKE_[ 0 001

Then ‘ ‘
[€"Ke| — 1) — [¢7K|—1], Sk, — Sk, Vk. — Vi, as € — 0.

In the case that (kj; — foki2)kio > 0, by (3.21) for [eYKe|—1], € > 0, one gets
that ) :
Ao(Sk.) < Ao(e'"Ke) < A1(Sk,) < A1(eKe) (3.29)
<o < Awo1(Ske) < Av-1(eKe). '

Since ki1 — foki2 # 0 and kyp # 0, there are exactly N eigenvalues for each [e/? K| —1]
and for each Sk, , where 0 < & < 1, by Lemma 2.4. It follows from Lemma 2.5 that
Au(eKe) and A, (Sk,) are continuous in € € [0, 1], which implies that,

An(€'Ke) — Ay(e7K), Ay(Sk.) — Au(Sk), as € =0T, 0<n<N—1. (3.30)
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Let € — 07 in (3.29). It follows from (3.30) that (3.21) holds for [¢VK| —1].

With similar arguments to the proof of (3.21) for [¢/YK| — I], one can show that
(3.22)~(3.23) hold for [e/"K| —1I].

Next, we show that (3.25)—(3.27) hold for [¢/K|—1I]. In the case that —(k;j —
Jok12)ka1 > 0, one can choose an € > 0 sufficiently small that (k11 — fok12)(fo€ —
(—1 —|—8k11)/k12) = —(kn —foklz)(kzl —|—8<k11 —foklz)/klz) >0 and 1— S(kn —
Jok12) >0, 0 < e < g . Then by (3.25) for [¢'VK,| — 1], where 0 < € < €], one has that

Z0(Vi.) < Ao(€7Ke) < Mi(Vi,) < h(eKe)

, 3.31)
< S Av-1 (Vi) < Av-1(€7Ke).

Since ki1 — foki2 75 0 and 1 —kj1€+ fokpe=1— 8(k11 —foku) > 0, by Lemma 2.4
there are exactly N eigenvalues for each [¢/"K| — I] and each Vg, , where 0 < & < g.
By Lemma 2.5, A,(eVK¢) and A,(Vk,) are continuous in € € [0,&], which implies
that

dn(€7VKe) — Ay(€"K), Au(Vi,) — Au(Vk), as € =07, 0<n<N—1. (3.32)

Let € — 0T in (3.31). It follows from (3.32) that (3.25) holds for [¢VK| —1].
With a similar argument to the proof of (3.25) for [¢K| —I], one can show that
(3.26)~(3.27) hold for [¢"K| —1]. O

REMARK 3.2. (ii) of Theorem 3.8 and (i) of Theorem 3.9 can also be obtained by
dividing the discussion into two cases: kj» # 0 and kjp = 0, applying Theorem 3.5,
and using a similar method to that used in the proof of them; while (i) of Theorem 3.8
and (ii) of Theorem 3.9 can also be obtained by dividing the discussion into two cases:
ky1 # 0 and kp; = 0, applying Theorem 3.7, and using a similar method to that used in
the proof of them.

The following result, which is a direct consequence of Theorems 3.8-3.9, gives
comparison of eigenvalues for [¢'7K|— I] with those for Sk, those for Uk, those for
Tk, and those for Vg under the assumption that k;; — fokjo =0.

COROLLARY 3.10. Fix a difference equation @ = (1/f,q,w). Let A = [¢"TK| —
1] € B, where K € SL(2,R) and y € (—x,x. If ki1 — fokio =0, then
{A(Sk). 20(Tk), 20(Vk)} < Ao(e"K) < {A1(Sk). A1 (Tk),
M(Vk),20(Ux)} < Ai(e7K) < {22(Sk), 22(Tk), A2(V),
2 (Ug)} < - < Av-3(e7K) < {An-2(Sk), Av—2(Tk), Av—2(Vk),
An-3(Ug)} < Av-2(e"K) < {Av-1(Sk), Av—1(Tx), Av—1(Vk)}.

Note that a coupled BC [¢/”K| — I] can be written as [¢/"/?K| — e~"Y/?I]. Then by
Lemma 2.3, a simple calculation yields that

1—‘(2,) = ZCOS)/— k22¢1v(l) +k21l//N(l) —|—k12fNA¢N(A) — kllfNAwN(JL). (3.33)
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Thus, the eigenvalues for [¢/’K|— 1] are the same as those for [e~YK| —I] by (3.33).
Now, it’s ready to establish inequalities among eigenvalues for the three coupled BCs:
[K|—1], [¢"K|—1], and [—K|— 1], and those for the corresponding separated ones.

THEOREM 3.11. Fix a difference equation @ = (1/f,q,w) satisfying that Hf.vz_ol
(1/fi)>0. Let y€ (—m,0)U(0,7) and K € SL(2,R) satisfy that ki1 — foki2 # 0. Then
the eigenvalues of SLPs (®,[K|—1]), (@,[¢"K|—1]), (0,[—K|—1]), and (®,Sk)

satisfy the following inequalities:
(1) for kiy —f0k12 >0 and kip >0,
Ao(Sk) < A(K) < Ao(e"K) < Ao(—K) < A1 (Sk) < A (—K) <

A (€7K) < M(K) < --- < Ay-2(Sk) < Av_2(K) < Ay_2(e"K) <

Mv-2(—K) < Anv-1(Sk) < Av_1(—K) < Ay_1(€7K) < Ay_1(K)

in the case that N is even;

Ao (Sk) < A0(K) < Ao(e7K) < Ao(—K) < Mi(Sk) < Mi(—K) <
M(e"K) < M(K) <+ < Av-2(Sk) < Av-2(—K) < Ay_2(e""K)
< Ay-2(K) < Ay-1(Sk) < Av-1(K) < Ay-1(€7K) < Ay—1(—K)

in the case that N is odd;

(i) for ki1 —f0k12 >0 and ki <0,

(3.34)

(3.35)

Mo(K) < Ao(e7K) < Ao(—K) < Ao(Sk) < 41 (—K) < 4 (e"K) < i (K)

<SM(Sk) <+ < Ayv2(K) < Ay-2(e"K) < Ay—2(—K) <

AN-2(Sk) < y—1(—K) < An—1(e""K) < An—1(K) < Ay—1(Sk)

in the case that N is even;

Ao(K) < Ao(eK) < Ao(—K) < Ao(Sk) < M (—K) < A1 (e"K) < A1 (K)

<Ai(Sk) <--- < Ay-a(—K) < Ay-2(e"K) < Ay-2(K) <

An-2(Sx) < Av-1(K) < Ay-1(e"K) < Ay-1(—K) < Ay—1(Sk)

in the case that N is odd;

(iii) for ki >0 and ki, =0,

2o(K) < Zo(e7K) < Ao(—K) < Ao(Sk) < A (—K) < Ai(¢K)
<A (K) < Mi(Sk) <+ < Ava(K) < Ay-—2(e"K) < Ay-2(—K)

< Anv-2(Sk) < An-1(—K) < Ay-1(e"K) < Ay-1(K)

in the case that N is even;

Ao(K) < Ao(e7K) < Ao(—K) < A0(Sk) < Ai(—K) < A1(e7K)
< M(K) SM(Sk) < < Ay-a(—K) < Ay_2(eK) < Ay_a(K)

< An—2(Sk) < Av—1(K) < Ay—1(e"K) < An—1(—K)



INEQUALITIES OF SELF-ADJOINT DISCRETE STURM-LIOUVILLE PROBLEMS 673

in the case that N is odd;

@iv) assertions in (1)—(iii) hold with K replaced by —K .

Proof. First, we show that (i) holds. We only show that (3.34) holds, since (3.35)
can be shown similarly. By (2.3) and (3.33), one can easily verify that the leading term
of T'(1) as a polynomial of A is

N-1
(=DM 1/ folwn TT wi/ £:)) kit — foki2) AN
i=1

Since k11 — foki2 >0 and 1/fo(wyTTY-," (wi/fi)) > 0, one has that
lim T(A) = —eo, lim (L) = —oo, (3.36)
— o0

A——oo
in the case that N is even.

Let y € (—m,0)U(0,7). By Lemma 2.3, 4,(¢'’K), 0 < n < N — 1, are exactly
the zeros of the polynomial T'(1) for (@,[¢”’K|—1]). It follows from Theorem 3.1
in [23] that A,(¢’?K) is a simple eigenvalue for each 0 < n < N — 1. Thus by Rolle
mean value Theorem, there are exactly N — 1 real zeros for T'(A) and they are denoted
by x1,---,xy_1. Then x, € (A,_1(e""K), A,(€"7K)), and T'(1) is strictly increasing in
(—eo,x1) and strictly decreasing in (x1,x2). Hence I'(x;) > 0. From (3.33), (3.36),
and the above discussion, it follows that Ao(K) < Ao(e”’K) < Ag(—K) and A (—K) <
A1(e"K) < A1(K). Similarly, one can show that

Aj(K) < Aj(€"K) < Aj(—K), j=0,2,4,--- ,N—2,

) (3.37)
Ai(—K) < Aj(e"K) < Aj(K), j=1,3,5,---,N—1.
Since (k11 — foki2)ki2 > 0, it follows from (3.21) that
20(Sk) < {A0(eK) 1 y € (—m, ]} < i (Sk) < {A1(€7K) 1 y € (—m, 7]} (3.38)

< < Av-1(Sk) < {w-1(e"K) s y € (—m, 7]}

Therefore, (3.37)—(3.38) imply that (3.34) holds.

Assertions (ii)—(iii) can be shown similarly.

Now we show that (iv) holds. It follows from the definition of Sx in Theorem
3.9 that Sk = S_k. Since ki1 — foki2 # 0 and the entries of K satisfy none of the
conditions in (i), (ii) or (iii), there are exactly three cases:

(") ki1 — foki2 <0, k2 <03
(i") ki1 — fokia <0, k12 >0;
(lll/) ki1 <0, ki =0.

If the entries of K satisfy (i), (ii"), and (iii"), separately, then assertions in (i), (ii), and
(iii) hold for —K, respectively. [

The following result is a direct consequence of Theorems 3.8 and 3.11.
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COROLLARY 3.12. Fixadifference equation @ = (1/f,q,w) satisfying that [T\,
(1/fi) >0. Ler K € SL(2,R).

(i) If k11 — fokiz > 0, then there are exactly N eigenvalues for [K|—1] and [—K|—
1), separately. Further, whether N is odd or even, Ay(K) is a simple eigenvalue;
if Aj(K) < Aj1(K) for some odd number j (1 < j<N—2), then A;j(K) and
Ajv1(K) are simple eigenvalues. Similar results hold in the case that A;(—K) <
Ajr1(=K) for some even number j (0 < j<N—2).If N is odd, then Ay_1(—K)
is a simple eigenvalue; and if N is even, then Ay_\(K) is a simple eigenvalue.

@11) If ki1 — foki2 <0, similar results in (i) can be obtained with K replaced by —

REMARK 3.3. Theorem 3.1in[18] gives inequalities among eigenvalues for [K|—
1], those for [¢'"K| —I], and those for [—K| —I] in the case that kj = 0 under the as-
sumption that fy = fy = 1. They are direct consequences of (iii)—(iv) in Theorem 3.11.

With the help of Theorems 3.8-3.9, (3.33), and a similar method to that used in
the proof of Theorem 3.11, one can deduce the following Theorems 3.13-3.15:

THEOREM 3.13. Fix a difference equation @ = (1/f,q,w) satisfying that Hf-V:_Ol
(1/fi)>0. Let ye (—m,0)U(0, ) and K € SL(2,R) satisfy that k| — foki2 #0. Then
the eigenvalues of SLPs (@,[K| —1)), (,[¢"K|—1]), (@,[-K|—1]), and (@,Ug)
satisfy the following inequalities:

(1) if ki1 — foki2 > 0, then
20(K) < A(eK) < Ao(—K)
A1 (e7K) < M(K) < 4 (Uk) <
M—2(—=K) < Ay—2(Uk) < Av—1(—K)

20(Ux) < M(=K) <
Mv_2(K) < Ay_2(e7K) <
< A,Nfl(eWK) < A,Nfl(K)

//\ N

in the case that N is even;
ho(K) < Ao(e7K) < Ao(—K) < Ao(Uk) < 4i(—K) <
A1(e7K) < A1 (K) < A (Uk) < Mv-—2(—K) < Ay_2(e"K) <
An—2(K) < Av—2(Ug) < Ay—1(K) < Ay—1(e"K) < Ay—1(—K)

<
<

in the case that N is odd;

(i) assertion (i) hold with K replaced by —

THEOREM 3.14. Fix a difference equation @ = (1/f,q,w) satisfying that Hf.vz_ol
(1/f)) >0. Let ye (—m,0)U(0,7) and K € SL(2,R) satisfy that ki1 — fokio # 0.
Then (i)-(ii) in Theorem 3.11 hold with ki > 0, k12 <0, and A,(Sk) replaced by
Joki1 >0, foki1 <0, and A, (Tk), respectively, where 0 <n < N — 1; (iii) in Theorem
3.11 holds with ki; >0, kip =0, and A,(Sk) replaced by fokin <0, ki3 =0, and
M(Tk), respectively, where 0 < n < N —2; (iv) in Theorem 3.11 also holds.
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THEOREM 3.15. Fix a difference equation @ = (1/f,q,w) satisfying that 1‘[{.\;51
(1/fi) >0. Let ye (—n,0)U(0,7) and K € SL(2,R) satisfy that ki, — foki2 # 0.
Then (i)-(ii) in Theorem 3.11 hold with ki > 0, k12 <0, and A,(Sk) replaced by
Jokoo — ka1 >0, fokoo — ko1 <0, and A,(Vi), respectively, where 0 <n <N — 1, (iii)
in Theorem 3.11 holds with k11 > 0, kjp =0, and A,(Sk) replaced by ki1 — fokio >0,
Jokoo — k1 =0, and A,(Vk), respectively, where 0 < n < N —2; (iv) in Theorem 3.11
also holds.

REMARK 3.4. We have not given the similar inequalities as those in Theorems
3.11 and 3.13-3.15 in the case that k1 — fok12 = O since it is not clear what the limits
of the polynomial I'(A) given in (3.33) are as A — = in this case.

3.4. Inequalities among eigenvalues for different coupled BCs

In this subsection, we shall establish inequalities among eigenvalues for different
coupled BCs applying Theorems 3.3 and 3.5.
For each K € SL(2,R), we set

T kll kll/fO . .
= <k21 (f0+k11k21)/(k11f0)) if kll 7&0’ (339)

and

K — fOklZ ki .
K= ((foklzkzz ) ks kyy ) 270 (3.40)

Note that I/(\,I? € SL(Z,R) ,and K=K =K if kiy — foki2 = 0. The next result compares
eigenvalues for [e'’K| — 1] with those for [¢""K|—1I], and eigenvalues for [¢'"K| — 1]
with those for [¢'"K| — 1], separately.

THEOREM 3.16. Fix a difference equation @ = (1/f,q,w). Let [¢"K|—1I] € #°,
where y € (—m,nt] and K € SL(2,R) satisfies that ki — fokio # 0. Then there are
exactly N eigenvalues for [¢"VK|—1I], and exactly N — 1 eigenvalues for both [eiyl? | —1]
and [eiVE | — 1], where K and K are defined by (3.39)—(3.40). Furthermore, we have
that

1) ifkll #O, then

)Ll(ei)’[/(\) <<
An-1(¢"K);

20(e7K) < Ao(el7K) < Ay (¢77K)

<
A2 (eK) < Ay (€7R) <

(ii) if k1o #£0, then

Jo(¢K) < Jole7K) < Ai(e7K) < M (€7K) < -+ <
AN-2(K) < An-2(eTK) < Ay-1(¢7K).
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Proof. By Lemma 2.4, the number of eigenvalues for each BC can be obtained
directly. Firstly, we show that (i) holds. Let ap := kip/ki1, z:= —e/ki;, and
by := —ka1/ki1. A(s) has the same meaning as that in Lemma 2.7. Then a direct
computation implies that [¢”/K| —I] = A(ay,) and [¢"K| —1] = A(1/fy). Hence, (i)
holds by Theorem 3.3.

Assertion (ii) can be shown similarly to that for (i) by Theorem 3.5. O

REMARK 3.5. The inequalities in Theorem 3.16 may not be strict. See Example
3.4.

4. Inequalities between the n-th eigenvalues for two different equations

In this section, inequalities between the n-th eigenvalues for two equations with
different coefficients and weight functions are established by applying the monotonicity
result of A, in Theorems 3.1-3.3 in [22].

Fix a self-adjoint BC
A— [an az byy blZ]
azy ay by b
in this section. Let ) := aj1by — ax1b12, Uy := axnbiy —anbyp, and N := —uy/uy if
up #0.If uy =0 and py =0, then the BC A can be written as
. L 011—10 0 L 1a120 0
either A := [0 0 —1 0} or A, := {00 1 O]' 4.1

Firstly, we give two lemmas, which play important roles in establishing inequali-
ties among eigenvalues for equations with different weight functions. Fix f={1/f;, fquo
and g = {¢,}"_,. By Lemma 2.4, the number of eigenvalues of ((1/f,q,w),A) is in-
dependent of w. Thus, we assume that ((1/f,¢,w),A) has exactly k (N—2<k<N)
eigenvalues for each w € RY'" in the following two lemmas:

LEMMA 4.1. Fix f= {0, g={g}"_;, 1<i<N, wi - w®, w

n=1’
---,wj(\?), a self-adjoint BC A, and 1 < j <k. Let Aj(w;) == A’j(w(l())7"',WEO) Wi W,

-1
---,wj(\(,)),A) be the j-th eigenvalue function in the w;-direction. If lj(wqo)) =0 for

some wgo) e R", then Aj(w;i) =0 forall w; > w?,

i

Proof. Suppose that there exists w} > wgo) such that A;(w}) # 0. By Theorems
3.1-3.3in[22], A j(w,-) is continuous in w; € R, and its positive and negative parts are
non-increasing and non-decreasing in w; -direction, respectively. This is a contradiction

to that A;(w}) #0. O

n=1’
Let Aj(w) :=24;(1/f.q,w,A) be the j-th eigenvalue function for w € RN . Then
either Aj(w) =0 for all w € RNT or A;(w) <0 forall w e RN-T.

LEMMA 4.2. Fix f={fu})_o, = {a.}\_,. aself-adjoint BC A, and 1 < j <k.
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Proof. In the case that there exists w(®) € RV* such that A;(w(?)) > 0, we shall
show that Aj(w;) >0 foreach 1 <i< N and all w; € RY, where A;(w;) is defined

in Lemma 4.1. Otherwise, there exists a w; € R™ such that A;(w;) < 0. Without loss
of generality, assume that w} < wEO). Then there must exist w/ € (w/, wg())) such that
A;j(w!) =0 by the continuity of A;(w;) in w; € RT. By Lemma 4.1, A;(w;) =0 for
all w; > w/. This contradicts kj(wfo)) > 0. Thus A;(w;) > 0 for all w; € R". This,
together with the monotonicity of A ; in each w;-direction, 1 <i < N, implies that
Aj(w) =0 forall we RN+,

In the case that there exists w(® € R¥* such that A;(w(®)) < 0, with a similar
argument above, one can show that 4;(w) <0 for all w € RV,

If it is not one of the above two cases, then A;(w) =0 forall we R¥*. [
Now, inequalities among eigenvalues for equations with different coefficients and

weight functions are established.

THEOREM 4.3. Fix a self-adjoint BC A. Consider the following two different
equations:

—V(f,gi)Ay,,) —l—qﬁ?yn = lwgi)ym ne[l,N], i=1,2, (4.2);
and the same BC A. By ln(i) denote the n-th eigenvalue of (4.2); and A. Let f;l) <

fj@ for 0 < j<N—1, qﬁ,}) < qﬁ,%) for 1 <m <N, and fjs,l) and fli,z) be two given
non-zero real numbers.

(1) If one of the following conditions (1)—(2) holds,

(1) 1y #0, ta #0, and either £\ € (—0,1/1) or £ € (1/1,+e0);
(2) either =0, up #0 or g #0, Uty =0;

then there are exactly N eigenvalues A,E") of (4.2); and A, where i =1,2. Fur-
ther, for any given 0 <n< N —1,

(a) if)L,El) > 0 and w,(nl) ZWE,%), 1<m <N, then

A <A, (4.3)

) if AV <0 and wiY <w'?, 1 <m <N, then (4.3) holds.

(i) If one of the following conditions (3)—(7) holds,
3) i #0, o #0, and f") = £ = 1/n;
@) up =0, up =0, A=A with a;; # 0, and either fé2) € (—eo,—ayy) or
fél) € (—ayi,+oo);

S) U1 =0, up =0, A=A, with a;p # 0, and either f(gz) € (—oo,1/ayp) or
fél) € (1/ajp,+e0), where Ay and A, are specified in (4.1);
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(6) 251 =0, j7%) =0, and A=A, with a;; =0;
(7 11 =0, up =0, and A = Ay with a;p =0;

then there are exactly N — 1 eigenvalues X,Ei) of (4.2); and A, where i =1,2.
Further, for any given 0 < n < N —2, assertions (a)—(b) in (i) hold.

(iii) If one of the following conditions (8)—(9) holds,
®) =0, iy =0, A=A, with ay; #0, and " = £ = —ay,;
©) =0, iy =0, A=Ay with ay #0, and f" = f% = 1/ap;

then there are exactly N — 2 eigenvalues A,S") of (4.2); and A, where i = 1,2.
Further, for any given 0 < n < N — 3, assertions (a)—(b) in (i) hold.

Proof. The number of eigenvalues of (4.2); and A in each case can be obtained
by Lemma 2.4. Firstly, we show that (i) holds with the assumption (1). Let 0 < n <
N —1. In the case that A" >0, (1), gM w) =0 for all we RN+ by Lemma
4.2. By Theorem 3.1 in [22], kn(f(1)7q(1)7w) is non-increasing in each wy, -direction,

1<m<N.Thus,if w’ >w? 1<m<N,then

2 = 2a(F Vg W) < 2 (FD,g 10, W), (44)

Again by Theorem 3.1 in [22], 4,(f,q,w?)) is non-decreasing in f; € (—eo,1/n) or
(1/m,+ee) in each f;-direction, 0 < j <N —1;andin g, € R in each g,,-direction,
1<m<N. Since /{7 < fP <1/mor t/n< V<P 0<i<N-1, g0 <qif
1 <m < N, thus

An(FD g @) < A, (F?), g, w?)) = 22 (4.5)

(4.4)—(4.5) imply (4.3) holds. In the case that /1,51) < 0, with a similar method above,
one can show that (4.3) holds.

With a similar argument to that in the proof of (i) with the assumption (1), one can
show that (i) with the assumption (2), (ii)—(iii) hold. [

REMARK 4.1. Theorem 5.5 of [16] and Theorem 3.6 of [17] give several similar
inequalities as those in Theorem 4.3 with the assumption that fél) = fé2) and fjs,l) =
f,E,z). In addition, it is required in Theorem 5.5 of [16] that w(!) = w(?) | Note that it is
not required in Theorem 4.3 that f,E,l) = f,E,z) and wl) = w(®); and it is not required in
(1)-(2) and (4)—(7) in Theorem 4.3 that fél) = féz) . Thus, Theorem 4.3 can be regarded

as a generalization of the corresponding results in Theorem 5.5 of [16] and Theorem
3.6 of [17].

Combining Theorems 3.3 and 4.3 yields inequalities among eigenvalues of SLPs
with different equations and BCs in ﬁﬁ.
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COROLLARY 4.4. Consider the following two different SLPs: (4.2); and BCs

A By = [La2 20y (4.6);
12:921 Ozbé?l’ )4 O)i
' . 1 2 :
By l,gl) denote the n-th eigenvalue of (4.2); and (4.6);. Let fj( ) < fj( ), 0<j<N—1,
q,(nl) < qﬁ,%), 1<m<N, fli,l) and fjs,z) be two given non-zero real numbers, a(llz) < a%),
and b3y <b).
(1) If one of the following two conditions (1)—(2) holds,
(1) aglz) #0, fé2)a§12) > 0, and either a%) < l/féz) or fél) > l/a(llz) ;
2) a12 =0, and either a12 l/f0 or l/féz) <0;

then there are exactly N eigenvalues A0 of (4.2); and (4.6);, i = 1,2. Further,
for any given 0 <n<N—1,

(a) if)Ln( > 0 and wﬁ,,) w,(n), 1<m <N, then
< (4.7)
(b) if?L,El) <0 and w,(nl) < w,(nz), L <m< N, then (4.7) holds.

@) If aglz) = a(lzz) = l/f(gl) = l/féz), then there are exactly N — 1 eigenvalues of
(4.2); and (4.6);, i = 1,2. Further, for any given 0 < n < N —2, assertions
(a)—(b) in (i) hold.

Proof. Firstly, we show that (i) holds with the assumption (1). Direct compu-
tations imply that ,ul() : Yl)bgz) agfb(z) = 1 ué = é’z)bglz) aggbgz =- 12 ;é 0,

and n® = —p{! /p! —a(12), i=1.2. If a?) < 1/£ then £? < 1/d\) =1/n®
since a(llz) < “(12) and f0 a12 >0. If f0 > l/aglz), then fél) > 1/n). Fix the BC

A(ag2 , g )) By (1) of Theorem 4.3, one gets that there are exactly N eigenvalues of
(4.2)1—(4.6); and (4.2),—(4.6)1, and in either case (a) or (b), foreach 0 <n < N—1,

A = 21770 ,q0 WA@Y 55))) < Aa(1/7P,42 WP A b)), (4.8)

Fix the equation (1/f®, ¢® w®). If a(122) < l/féz), then a§12) < a(122) < l/f(gz)
fél) >1/ aglz) , then agzz) > a(llz) >1/ féz). By Theorem 3.3, one gets that there are exactly
N eigenvalues of (4.2),—(4.6); and (4.2),—(4.6),, and foreach 0 <n < N—1,

Mn(1/£@,q@ w® Ay b)) < Aa(17F2,¢2 WA@Y, 6D)) = 2. (4.9)

Combining (4.8)—(4.9) yields that (4.7) holds.
With a similar argument to that in the proof of (i) with the assumption (1), one can
show that (i) with the assumption (2) and (ii) hold. [
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REMARK 4.2. One can establish inequalities among eigenvalues of SLPs with

different equations and BCs in ﬁéCA, ﬁ& ,and ﬁé% , separately, with a similar method
to that used in Corollary 4.4. We omit their details.
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