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WEIGHTED END-POINT WEAK TYPE (p,p) ESTIMATES FOR
g, -FUNCTION WITH KERNELS OF LOWER REGULARITIES

ZHENGYANG LI AND QINGYING XUE

(Communicated by I. Peric)

Abstract. In 1970, if 1 < p <2 and A =2/p, C. Fefferman obtained the end-point weak (p,p)
boundedness of g -function. In this paper, the authors essentially improved the result given by
C. Fefferman, by showing that the weighted end-point weak type (p,p) boundedness of g -
function still holds with lower regularities assumed on the kernel for 1 < p <2 and A =2/p.
Moreover, similar results can also be extended to parametric Littlewood-Paley g} -function with
more rough kernels.

1. Introduction

As is well known, Littlewood-Paley g -function plays very important roles in the
problems associated with multipliers ([11], p. 94 and p. 232) and function spaces
(for example, Sobolov spaces (see [11], p. 162). The classical g; -function of higher
dimensions was first introduced by Stein [10] in 1961 as follows,

1/2

ni
600 =[], () WostsnPravar) 21

where u(y,t) = (B f)(y) is the Poisson integral of f and V,; = (aiyl7 e a‘%, %) In
[10], if A > 2, Stein gave the weak (1,1) boundedeness and L? (p > 1) bounds of
g, -function. In the same paper, Stein also showed that g} -function is not of weak type
(1,1) for 1 <2 < 2. Since g (f)(x) is decreasing with respect to A, thus, a natural
question arises, what happens if 1 < A < 2? In 1970, Fefferman [4] improved Stein’s
L? (p > 1) result by enlarging the region of the restriction A >2 to A >max{2/p,1}.
Moreover, if 1 < p <2, A =2/p becomes the end-point case, though the weak (1, 1)
estimate doesn’t hold by Stein’s results, Fefferman surprisingly succeeded to prove that
the following weak (p,p) boundedness still holds for 1 < p <2 and A =2/p.
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THEOREM A. ([4]) Let g; be defined as in (1.1), then
(i)If 1<p<2and A =2/p, then g, is of weak type (p,p);
(ii) If 1 < p <o and A > max{2/p,1}, then g} is of type (p,p).

REMARK 1. Note that in (i), 1 < p < 2, which means that | <A1 =2/p < 2.
Moreover, if p tends to one from the right side, then 2/p tends to two from the left
side. Thus the weak (p,p) boundedness can be looked as a replacement of Stein’s
weak (1,1) estimate for 1 <A < 2.

In 1974, by using a different method compared with Theorem A and consider-
ing the estimates of a kind of maximal function associated with g}‘L -function, which
was first introduced by Fefferman and Stein [5] in 1970, Muckenhoupt and Wheeden
obtained the following weighted results of Theorem A.

THEOREM B. ([6]) Let g) be defined as in (1.1), then

(i)If 1 <p<2and A =2/p, then g is of weighted weak type (p,p) for w € Ay;

(i) If 1 < p <o and A >max{2/p,1}, then g; is of weighted strong type (p,p)
forw e Ap)L/Z'

Since then, efforts have been made to decrease the smoothness condition of g} -
function. On one hand, the following more generalized Littlewood-Paley g -function
has been studied:

An dvd 1/2
300 = ([ [ (=) weroPSE) L s a

where y; (x) =t"y(x/t), v is a function on R” such that there exist positive constants
Co, Cy, 0 and 7y satisfying

v e LY(R") and v (x)dx = 0; (1.3)
Rll
[y (x)] < Co(1+x)) "9, (1.4)
[w(x+y) = yw(x)| < Cly|"(1L+[x)) ™7 for 2y < |x|. (1.5)

As a more generalized g} -function, L” (p > 1) bounds of g;  -function is also well
known (see for example, [7, pp. 309-318]). In 2009, Xue and Ding [13] established the
weak type (1,1) bounds of g v for A > 2. From [10], we know thatif 1 <A <2,

then g}l.w is also not of weak type (1,1). Inspired by the Fefferman’s work [4], in
this paper we considered the end-point weighted weak (p,p) boundedness of g3 v

function defined by (1.1) for 1 < p <2 and A =2/p. Our first main result is as
follows.

THEOREM 1.1. Let W be a fucntion satisfying (1.3)—(1.5) and @ € Ay, then for
1 <p<2and A =2/p, there exists a constant C > 0 such that

C
o(fxeR" g, () >a}) < ISl (1.6)
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REMARK 2. Itis easy to see that the Poisson kernel of g satisfies (1.3)-(1.5),
One may obtain immediately the weighted weak (p,p) boundedness of g; -function
for 1 < p <2 and A =2/p, which coincides with (i) of Theorem B.

If we take @ = 1 in Theorem 1.1, we obtain the unweighted weak (p, p) estimate
of gi_w -function, which essentially improves the conclusion (i) in Theorem A.

COROLLARY 1. Let y be a fucntion satisfying (1.3)—(1.5). If 1 < p <2 and
A =2/p, then g}‘L.W is of weak type (p,p).

On the other hand, efforts have also been made to study g}‘h with even more
rough kernels. For example, one may pay attention to the kind of kernels with compact
support (the classical operator g; does not need to satisfies the compact condition,
thus they are quite different in this sense), This compact support assumption allows
us to consider the corresponding theory along with more rough kernels. Then one
may consider the the parametrized Littlewood-Paley g7 -function. Let us first give the
definition. Suppose that Q € L'(5"!) is homogeneous of degree zero on R" and
satisfies

- Qx)do(x') =0, (1.7)
where §"~! denote the unit sphere of R"(n > 2) equipped with Lebesgue measure
do =do(x'). Let @P(x) = Q(x)|x|"""Pxp(x), where p > 0 and B denotes the unit
ball in R". Then the parametrized Littlewood-Paley g5 -function is defined by

i An dvd 1/2
w0 = ([ Lo () o srores)

where 1 > 1 and ¢ (x) = %P (x/1).
If p =1, in 1990, Torchinsky and Wang [8] obtained the weighted L?> bounded-
ness of u;’p . In 1999, Sakamoto and Yabuta [9] established the L? boundedness of

,u;[’p , theirs results can be summarized as follows.

THEOREM C. ([9]) If Q satisfies (1.7) and Q € Lipg(S"~'), 0< B <1, ie.
QW) QO < -y, ¥y es, (1.8)

then
(@)for A >1, p>0and2< p <o, 17 (f)llp < CopppllFllp:
(b)for A >2/p, 0<p<n/2and 2n/(n+2p) < p <2, |, (/)lp <Cpppplfl
(c)for A>2/p, p>n/2and 1< p <2, lu;"(Nllp < Copppllfllps
(d)for 0<p <n/2, 1 <p<2n/(n+2p), there exists a function Q € Lipg (S"~ ")
satisfies (1.7), such that H.Ll;t’p(f)Hp <Gy pppllfllp are not bounded on LP(R").

P

In 2002, Ding, Lu and Yabuta [2] improved the conclusion («) in Theorem B
with more rough kernels, Q € LlogL(S"~!). In 2005, Ding and Xue [3] established
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the weak type (1,1) bounds of [.1;7” for p > n/2 and A > 2. In 2007, Xue, Ding and
Yabuta [14] studied the weighted weak-type (1, 1) bounds of u;’p for A > 2 and the
weighted L? bounds of ;,L;[’p . The main point in the above results is that the properties
of “;7;) depends heavily on whether it is bigger or smaller than one half of p. In this
paper, our second main purpose is to show the following weighted weak-type (p,p)
boundedness of ;" for A =2/p.

THEOREM 1.2. If @ € Ay, Q€ Lipg(S"™'), 0 < B < 1, satisfies (1.7), then for
A=2/p, 0<p<n/2and max{2n/(n+p),2n/(n+1/2p)} < p <2, there exists a
constant C > 0 such that

” C
O{xeR"| 1PN >a) < —|fl7,. (1.9)

THEOREM 1.3. Let ® € Ay. Suppose that Q € Lipg(s"~') (0 < B < 1) and
satisfies (1.7). Then, for A =2/p, p >n/2 and 2n/(n+1/2p) < p <2, there exists a
constant C > 0 such that

* C
o(fxeR"| 1" (f)x)>a}) < Sl (1.10)

REMARK 3. One may guess the best region of p in Theorem 1.2-1.3 is 2n/(n+
2p) < p < 2, which is the same as in Theorem B. However, we don’t know whether it
is true or not. In fact, our estimates in the proof of Theorem 1.2-1.3 have already been
very delicate and complex.

This paper is organized as follows. In Section 2, we give the proof of Theorem
1.1. The proof of 1.2 will be given in Section 3. The proof of Theorem 1.3 is quite
similar to the proof of Theorem 1.2, we therefore omit the details of it. In the appendix,
we give a simple proof of a lemma used in the proof of our theorems.

2. Proof of the weighted weak-type (p, p) bounds of g}‘w

In this section, we will prove Theorem 1.1, the weighted weak-type (p, p) bounds
of g% Ay . Some basic ideas in the proof of Theorem 1.1 are taken from [4]. We begin
with a lemma which is essential to our proofs.

LEMMA 1. Let € Ay, f € LL,(R") and o > 0 be given, there is a collection
{Q;} of pairwise disjoint Whitney cubes, functions u and b on R" with the following
properties:

(i) Q=U;0;, o(Q) < /1],

(i) & le |[f)|Po(y)dy < CoP, for any one of the cubes {Q;}.
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(iii) For any cube Q; of the collection, let 0 i be a cube with the same center as Qj,
but with twice as large a side. Then no point of R" lies in more than N of the
cubes Qj. We say that the Q; have bounded overlaps.

(V) f=u+b.
() |u| < Co almost everywhere, and |[ul|p < | f||z -

vi) fQ 1b(y)|Po(y)dy < CoP for each cube Qj from the collection.

(vii) b is supported in Q, b =73;b;, where each bj is supported in a Whitney cube
fQ i(y)dy =0 for each cube Qj from the collection.

Lemma 1 is the weighted extension of the decomposition lemma in [4]. The proof
is just a modification of the classical proof, for completeness, we give the proof of this
lemma in the appendix.

Now we will apply the above lemma to prove Theorem 1.1.

Proof of Thoerem 1.1. Let f € L5 (R") and o > 0. We need to show that

C
o({reR" & (N >a}) < ZIfI7- (2.1)

Applying Lemma 1 to f and o, we obtain a decomposition f = u+ b, satisfying all
properties in Lemma 1. Since g; (f) < g (u) + g3 (b), we have

o({xeR" g, (f) > (C+1)a}) < o({re R"|g] (u) > a}) + o ({x € R"[g} (b) > Car}).

To estimate @ ({x € R"|g} (1) > o}), note that conclusion (v) in Lemma 1 and the L,
bounds [1] of g7 , we obtain

o(re®| g >a)) < [ g o = [ fuo]’

C
< E/R|M(X)|1’a)(x)dx< J/RV(X)V?(D Odx

Thus we have proved

o((re®| g >a)) < . (22)
Hence, to show (2.1), it is sufficient to prove that

o(fre®| g B)() > Cod) < 1|, @3
To show inequality (2.3), we need a basic decomposition of g3 , the method of this

decomposition is coming from [4]. Firstly, we introduce some notation. If x € R" and
Q; is Whitney cube from the collection Q; in Lemma 1, then x ~ Q; means that x
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belongs to a cube Q; , which touches or coincides with Q;. In addition, we denote

bj(x) =b(x)- x0;(x).
By definition,

X ' dydt\ V/?
600 = ([ oo () [Zwo 25
Then we have g; (b)(x) < gEll) (b)(x) +g§f)(b)(x), where
B t dydi\'?
x>_(//w (r+|x—y|) %"””‘b tn+1)
n t dydt\ '/?
:<//R <r+x—y) %‘“b ,nﬂ) '

So to prove (2.3), and thus to finish the proof of Theorem 1, we need to show that

C
o(fxeR &) >Cay) < Irl, 24)
and
n (2) C p
o({xeR"| g (b)x)>Ca}) < Zlfl7p. (2.5)

Now we prove (2.4) first.
Proof of (2.4). By the condition (1.5) of v, conclusion (vi) in Lemma 1,

S w0 =| 3 [ wo-nvoi < 3 [ wo-nlbla:

y”“Qj y”“Q/ y"OQI

C()l‘a
<Y sup—L / b(2)]d=
2 G o

)

t
<CY swp—" oo
ST Gy

On the other hand, it is clear that

t9 0/ t9
sup ——————|0; gc/ S
ceg; (t+y—z|)+8™! 0 (t+y—z|)no

for any cube Q; satisfying y » Q;, the constant C is independent of ¢. Therefore,

Y, wisbj(y ‘<Ca2/ L<Ca/ Ldz <Ca.
yQ; S y=Qj t—|—|y—z‘ G R7 (t+|y_z‘)n+6 N
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(1)

Putting the estimate we just proved into the definition of g, *, we obtain

£ )P gca//Rf'ﬁl <t+|)tc—y|) 2 viehil

y=Qj
So to prove (2.4), we have to show that o ({x € R"| 7 (x) > a}) < & f[|7, . By the
Chebysheyv inequality, it suffices to prove that

dydt

tnT C(X/(X)

L 7 ) (x)dx < Ca'P|If]17, (2.6)

By the definition of / , we have

x)dx:/ // <7t )
n Rn+l t.'-‘x_y‘
bi(y)|dyd
//]R"+1 (ln </\x —y|<t x x) yOQZQ Ve ‘ var
//- ( /- tln n )
R eyl [x— yl“
//R"“ p W;é v+ bj( )‘Mw(y)dydt

cz // —}w,*b )| @(y)dyd. 2.7)

( Rn+l
y°°Q j

dydt
tn+l ( >dx

2 l//,*b

y*Q;

2 v bj( 'dydt
y=Qj

We denote z; as the center of the cube Q;, and r; the sidelength of Q;, respectively.
Recalling the geometry of the Whitney cubes, that is, if Q; touches Q;, then 1(Q;)/4 <
1(Q;) < 41(Qi), where I(Q) means the diameter of Q. So we have

{yeR" yxQ;} C{yeR", |y—z|>r;/4}, VzeQ;. (2.8)

Now we consider [g 5 1|y +b;(y)|dydt, the jth summand in the right-hand side of
(2 7). By using property (2.8) and fQ i(z)dz =0, it can be controlled by a constant

T

y e]Rn+l
van,

// /}u/t —2) = wi(y — )| bj(2)dzeo(y)dydt

y’ e]Rn+l
ly—z|>

- /Q @iz /Q (abi(a)dz 2.9)

—2)— Yy —Zk))b (2)dz|o(y)dydt
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where

1
na= [ o= wi-w)|ew)d
(y.r)eRH!
1ri<ly—2|<2)z—zj

// ;W’(y_z)_‘Vt()’—Zk)lw(y)dydt.

+1
(nt)eRY
[y—z|>2|z—z)]

Estimate for Jy(z). Recall the condition (1.4) of v, i.e. |y(x)| <Co(1+|x])7%,
and note that since z,z; € Q;, +r; < [y —z| <2[z—zj|, then [y —z|, |[y—z| and r; are
comparable. Hence, by definition of J;(z),

5-1
t
h(x)<C / | R O
Rn+l
\y 2| <2z~

We consider two subcases, 1 > |y —z| and r < |y — z|, respectively. Note that if ¢ >
[y —z|, then

Jiz) £C / / 7" o(y)dydt < (rf)n /‘y ervi, o(y) dy < Co(z).

DR, o]y
iri<ly—2|<2lz—z;|

If r < |y —z|, with a similar estimate above, we also have J;(z) < Co(z).
Estimate for J»(z). Recall the condition (1.5) of v, i.e.

Wl +y) = w@)| <Gl (1+x) 7770, for 2|y| < |-

By definition of J>(z),

|z—z;]7t%~
// (t+ [y —z[)+r+8 o0)dydt

y’ e]Rn+l
y— Z\>2\Z zj

2z, oo (y)
—c // ez glt” OW) 4o
: (t+ly—grrre®

(yr)eR™H! t>|y 7
y— Z\>2\z zj]

|z —2"1° " o(y)
+C1 // W(j dt —CI(JQI( )+J272(Z)).
()R 1< ly—z]
\y Z\>2\z zjl



WEIGHTED WEAK TYPE (p,p) ESTIMATES FOR g} FUNCTION 691

Firstly, we consider J, 1(z), note that ¢ > |y —z| > 2|z —z;|, we have

e =z o ()
a(z) = // Wfi)’d’

Rn+l
ly— Z\>2\z Z,\ >y—2

< // lz—z;|"t " L o(y)dydt

yt eRIHrl
[y—z|>2|z— Z,\t>|y—ZI

</ Mw(y)dy
= y-2fz20e—g] |y — 2T
<CMw(z).

As for J,5(z), we denote N = max{2|z—z|,7}, then

|z — ;%!
J22(2) = // Ww@)dﬂﬁ

(1) ER”JA
[y—z|>2[z— z/|f>\ny\

ezt
< ] oot
y’ e]Rn+l

[y— ZI>N

We consider two cases, 1 > 2|z —z;| and 1 < 2|z — zj|, respectively.
Note that if 7 > 2|z —z;|, then N =7, and

z—zj|"0! z—z|"
m@< [ | e <C Lemaill oy

V—2|>2]z—z;] [y — 2"
Rn+l

\y Z\>f

<CMo(z) < Co(z).

If 1 <2|z—zj|, then N = 2|z —z;|, with a similar estimate, we have J;,(z) < CM®(z).
Thus, we obtain J,(z) < CM®(z). Putting the estimates of J;(z) and J,(z) into
(2.9), we have the jth summand in the right-hand side of (2.7) satisfying

=1
L) hweniomaa <c [ b0
Therefore,
/nf CZ/ b(z)|o(z) Cz,ocw 0)) (2.10)

=Cao(Q) <Ca'|f]7,,
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this completes the proof of (2.6). Since we have reduced inequality (2.4) to inequality
(2.6), we have also proved (2.4).
Now we are in the position to prove (2.5), we will use the condition p =2/A.

Proof of (2.5). Recall that inequality (2.5) states that

C
o({xeR"| gg?)(b)(x) >Ca}l) < JHJC”{Z’)

Since 0(Q) < %Hszg) , it will be enough to prove that

o(fxe BNQ [ ¢ (0)(w) > Co) < 171

Let y; be the center of Q;, now if x € R"\Q, then for any point y in Q;, there exsist
constants C; and C3 that independent of variables satisfying Co|x —y;| < |x —y| <
Cs|x—yj|. Since X, .o, [ xb;(y) ? is an empty sum if y ¢ Q, because of that if x ¢ Q
then x ~ Q; never holds. therefore, for x € R™MQ,

An 2
2 t dydt
0= [[ () | Z webio)] o
1+ [x—yl ~Qi 4
Qx(0,%2) e
°° t dydt
; 0 Jo \1 4=yl ;é, t it
1
gczﬁ/ / A=t by favar. @
7 x=yil"t Jo; V~0;

By definition of y ~ Q;, the relation y ~ Q; depends only on which cube y is located
in, we can assured that

S wixbi(y Y wixbi(y)|, y€Q;. (2.12)
y~Q; VJNQJ
Denote that b/ = Xy ~0;bi and ¢(x) = (1+ |x[?)~"3". Recall the condition (b) of y
that |y (x)| < Co(1+ |x|)™"~°, we have
/ / A1 S yh(y dydt:/ / Ay b () Pdyde (2.13)
Q; y~0; Q; /0

</,1/Omtln_"_l(|‘!ft|*\b"l(y))za’ydt (2.14)
gc/,l /Omfln_"_l(@*\bjl(y))zdydt (2.15)

We claim that V L€ N, 3 Cp s.t.

16(8)] < L

-t 2.16
BEDE (210
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Now we first prove the claim (2.16). Since ¢ is a smooth function, and its any derivative
is integrable, then

16(8)]|- < |91l <C, (2.17)

and for Yo € R", we have

|E96(&)| = |[cD¢(&)| < C|ID%9 (&)1 < C,
so for any given L € N and || > 0, we get
“ C
N ey X 770 218
)< fFor < @18

combine (2.17) and (2.18), we conclude that for any given L € N, we have

N CL

Thus we have proved the claim (2.16). By (2.16), we get

N C
’¢t(€)| < 7(“5“_1)[

(2.19)

Recalling
2 DL

=
L)W =2 n 82 [ )|y
F(z) R
is Riesz potential operator with order r. Since p =2/A, then
1 1 (ln{n)

Pl Rl (2.20)

By Plancherel theorem, (2.19), (2.20) , we get
“ n—n— j 2
L |t g 6710 Py
= An—n—117 (312
= [ [ e @) Paga
*° o 1 -~ 2
<C//t“"17bl dédt,
L  Jo (|l‘§‘+1)2L|| |(§)’ é

Take t|&| = s, and by the boundedness of the Riesz potential operator (see e.g., [12, p.
11]), we have

/n/()mtlninil}d’t* |b~f\(y)}2dydt
gC/’l /Ooosln—n—lﬁ‘érq—)m’|ﬁ‘(€)|2d€ds

n—nA , > . .
S C/R,, (1E1 22 1691(8)1)°dE = Cllanmy 2 (1B 132 < CI7 130,
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combing this with (2.13) and (2.11), we obtain

C .
(87 (B)))? <Y 16130
j e =yl

By the estimate above, it yields that
n C 2
o(fxeBN\Q| P >Cah <o [ (b)) wxax

- o(x)
<< ||be2/ O gy 21
052; v —yjl™

R -Q |x

Note that @ € A;, then w(BQ;) < CB"w(Q;), we obtain

/ 7(0()6) Adxg/ 7(0()6) Adx— Z/ 7(0()6) Adx
RN\Q [x =y R”\Q,- \x—yf\" 52020105 [x =yl

S

Recalling the geometry of the Whitney cubes, that is, if Q; touches Q;, then 1(Q;)/4 <
1(Q;) < 41(Q;), and for fixed x, x ~ Q;, holds for at most N Whitney cubes. Putting
inequality (2.22) into (2.21), we have

o(fre BN\Q| g2 (b)) > Cal) < Z 15712, ‘[’QQ;)

<oy 3 (Qi /, i|bi<y>ﬂdy)’2’w<Q,->

J yji~Qi
S Z > ( (y)”w(y)dy> "0(0))
J yi~0i Q/
= 53 a0(0) < cnfuzg : (2.23)
j

Hence, we completed the proof of (2.5).
The proof of Theorem 1.1 is thus finished. [J

3. Proof of the weighted weak-type (p, p) bounds of ,u;[’p

In this section, we will prove Theorem 1.2. Since the proof of Theorem 1.3 is
similar to Theorem 1.2, we omit the details here.

Proof of Thoerem 1.2. Fix o > 0 and let f be in L%, we have to show

o(fre®| wP ()W > a)) < il
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Following the arguments in the proof of Theorem 1.1, it is sufficient to show that

. c
o({xeR" uP(b)(x)>a}) < EHJC”Z{{’,

To do so, we have only to prove

n s C
o(fxe R b)) >Ca}) < Il
and
n 2,p
o({reR"| w?P(b)x)>Cal) < —IIfHLp,
where
An 2 1/2
t ) Y of dydt
= par P o *bi(y)| =
and A 2 1/2
t ) ! T o dydt
= DR — @ xbj(y) P} :
( 1<t+|x—y| y~0Q; mr

Now let us begin with the proof of (3.2).

Proof of (3.2). By definition of ¢ and conclusion (vi) in Lemma 1, we have

Q
S o) =| X [ 2D
, , tP|y—z\ P
y=Q; }"’“Q/ZeQ/_
\y—z\'<t

Qy— ZI/
gv;,‘ <0, t"\y z"=P i}z

ly—z|<r
Qy—2)|
<C sup 7_0‘|Q'|~
yo@Z‘Q, 2€0; tPly —z|n—P J
[y—z|<t

Since y = Q;, it is clear that

QO-2)| o 1Q0-2)

sup - .
weg; Ply—z"P = tPly—z"P
[y— z\<t
Therefore,
Q(y
| Y 9P xbj(y)| < Ca Q03| g,

0, y—zl<t 1Py —z[*7P

695

3.1)

(3.2)

(3.3)
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By the estimate above, we obtain

P () ()2 < C // ! bi( —dyd’—c.,aﬂ
(”A ( )(x)) slo 1 t—|—|x—y| y% (pt * ( )
To prove (3.2), it suffices to prove that
Z(x)o(x)dx < Co' 7P| f]17,
R” ®
Using the method in proof of estimate (2.7) in Theorem 1.1, we also have
[ 2 dx<CZ/ / —|(p,*b o (y)dydi.
y=Q;J0O

Recall z; is the center of the cube Q;, r; is the sidelength of Q;, and

1
VeR Yy~ 0} c{yeRy—2>rjl}, VzeQ;. 34
Since fQ i(z)dz =0, then

=1
/y 0 /0 o b w(y)dydr
*Lj

- -1 Qy-z) Q@- z,))
‘/ng_,./o =i (y—zw—f’ e ) b oLy
‘i;z‘)j’
-z)  Qy—gz) '
/Qf // p“ |y—2\" P y—znP o(y)dydr|b;(z)|dz. (3.5)

r]<|y z|<z

In order to estimate (3.5), recall z,zx € Q;, y » Qj, by the mean value theorem, we
have

Qy-2 Q-z)
y—z P Jy—gr

—-z)  QO-—z)

‘ Qy—z) Q—z)
=z P [y—zP

y—zl"P  |y—zlP

B

rj yo
y =zt T |y —g[rmeth

<C

Putting the estimate into (3.5), then

/WQJ/O —}q)t xDbj(y)|w(y)dydt

/Q/ // f"“<y—ZI” P e ”*ﬁ)w(y)dydtbj(z)'dz

(1) ER”JA
rj<|y z|<t

= [ O+ K@) bz (36)




WEIGHTED WEAK TYPE (p,p) ESTIMATES FOR g; FUNCTION 697

Now we consider K| (z), doing the t-integration first,

1 ri
Ki(z) = // me(y)dydthMw(z)éCw(z).

+1
(n) R,
fri<ly—zl<t

Similarly, we obtain K;(z) < Cw(z), putting these two estimates into (3.6), we have

Lo ) o =biomai <c [ 1@l

Simiar arguments as in (2.10) yield that

Rn

ZWoWdr<CY, [ bE)oEd < ca 7|/,
J 79 ¢

So we have proved (3.2). O
Proof of (3.3). Similar to (2.5), to prove (3.3), it is sufficient to prove
C
o({lreRN\Q| 1" (b)(x) > Ca}) < I/, (3.7)

By the method in proof of estimate (2.11), we have

(> <c2 = |M/ / A=Y s bi(y)Pdydr. (3.8)

y~0Q;

Recall the argument of (2.12), we have

2
2 Vi xbj(y)

yji~Qj

2
D wixb(y)| =

y~Qj

, YEOQ;. (3.9)

Note that b/ = Zy ~0; b;, by Plancherel theorem, then we have
Z O * b

/ / 7Ln —n—1
Q’ yNQj
< /"/0 tln_"_1|qot*bj(y)|2dydt

_ = An—n— - 2 l efi!j-y Q(y) ?
[ e / L
_. /wzl"—"—l/ Bi(E) Pk (&) dEat.

0 R~

Denote y= 1min(1,1/p),

d ydt

ddr

kP (&)| satisfying following properties [9, p. 110-112]:



698 Z.L1AND Q. XUE

If t <1/|€], then |k (&) < CIEJe. If ¢ > 1/|&], then |k (&)] < CIE|7Pr— 7P +
|E|7/2¢7/2 | By these estimates, we have

o 2

//tln_"_l Z o xD;(y)| dydt

;70 y~Q;
1/1&]

<c/ At b(E) | €3 Pagdr
0

//m = 1/ IB(E)P(1E| P 4 £V 2aEdr
<c [ p@&)Pier / 5‘rl”‘"‘1dtdé (3.10)
+C / b(&)[*1E| 2P / ;gltl"*"*“zypdzdg
+c/ (&) [21E] V//m Ann=1-Taqg

<C [ (&I B dE = Cllia (NI < CIEIE,

since A =2/p, 0 < p <n/2 and max{2n/(n+p),2n/(n+1/2p)} < p <2, we can
assure that the right side of the second inequality is integrabel. Thus, we obtain

(”A <CZ |An||b HLI’7

repeat the same estimate of (2.21), (2.22) and (2.23) we complete the proof of (3.3).
Since we have reduced the proof of inequality (3.1) to inequality (3.2) and inequality
(3.3), we have also proved (3.1).

The proof of Theorem 1.2 is finished. [

4. Appendix

Proof of Lemma 1. First, noting that if we take the open set Q = {x € R"|f*(x) >
ol}, where

frx) = SUP (0) F)IPo(y)dy,

then the proofs of conclusion (i), (ii) and (iii) in Lemma 1 is quite similar to the
decomposition Lemma in [4], we therefore omit the details of them. Now, we define

1
bi=(f—— [ fax)yo,
i O|@Qf0mf

b=7%;b;j and u= f —b. Hence, it’s clear that conclusion (iv) and (v) are true.
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Next, we need to obtain the estimates of . By definition,

u(x) = @fij(y)dy ifx€Qj,
@) if x¢ Q.

Hence, on the set R"\Q, u= f. On each Q i, for @ € Ay, the Holder inequality gives

that
/ o)l (s < |
Qj

- (Q,-ﬁl/ (“’(fo’)%v(y)dy)p
(IQP /w dy)

P
o(x)dx

| If( )Idy

Thus, we have proved ||ul[;p < Hf”L{j, Now we need to show that |u| < Ca holds
almost everywhere. Note that w € Ay, then @ € A,, by conclusion (ii) and Holder
inequality

‘QA 1l = 150 / )@ (x) <)lc>dx
< (QL| |, 1rwlrowa)” (7 [ o716 mﬁ
(g7, reorat) : (51l co(x)dx>_%
(57l f<x>|f’co<x>dx)% <car. @

Thus, if x € Q;, we have |u(x)| < Co. If x € R"\Q, by estimate (4.1) and Lebesgue
differentiable theorem

1
P
W= f(x)= lim / 7@ < lim c( |f(x)pa)(x)dx) <ca’.
XEQ; ‘QJ| (Q/)
‘ /‘_’ ‘ /‘_’
Therefore, we proved the conclusion (v).
Finally, it is obviously that conclusion (vi) follows from |[ul|;» < [|f{/;z . This
finished the proof of this Lemma. [J
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