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ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATORS
ON ZYGMUND-TYPE SPACES WITH NORMAL WEIGHT

JUNTAO DU, SONGXIAO L1* AND YANHUA ZHANG

(Communicated by S. Stevic)

Abstract. In this paper, we investigate the boundedness, compactness and essential norm of
weighted composition operators between Zygmund-type spaces with normal weight.

1. Introduction

A positive continuous function ¢ on [0,1) is called normal, if there exist positive
numbers a and b, 0 < a < b, and 6 € [0,1) such that (see [22])

) ~ o)
0 decreasing on [,1) and lim o =0
Hir) is increasing on [8,1) and lim K(r) =
(1_r>b ’ r—1 (l—r)h

Let D be the open unit disk in the complex plane C and H (D) the space of all
analytic functions on . Let H*(ID) denote the bounded analytic function space on D).

Suppose @ is normal on [0,1). An f € H(D) is said to belong to the Bloch-type
space, denoted by Ay, , if (see [9], for example)

£l = 1£(0)] +Sg£w(|2|)|f’(1)l <o

It is easy to check that A, is a Banach space with the norm || - ||, . When 0 < o < eo
and o(t) = (1 —12)%, we get the o-Bloch space (often also called the Bloch-type
space), denoted by %%. In particular, when (¢) = 1 —1>, we get the Bloch space,
denoted by A. See [35] for more information of the Bloch space.

Let u be normal on [0,1). The Zygmund-type space, denoted by 2, is the space
of all f € H(ID) such that

11l 2 = £ O)]+ £ (0)] +Slelgu(|1|)|f”(1)l <o
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It is also easy to see that 2, is a Banach space with the norm || - ||z, . When u(z) =
1 — 1%, we get the Zygmund space (the terminology seems was introduced in [11]). For
more information on the Zygmund space, see, for example, [11, 13, 14, 23, 26]. When
w(t) = (1—1*)%, we get the Zygmund-type space 2. For the corresponding space
in the unit ball setting, see, for example, [23, 26]. For some generalizations of Bloch-
type and Zygmund-type spaces, see, for example, the spaces introduced and studied by
Stevié in [24, 25,27, 28, 29].

Throughout the paper, S(ID) denotes the set of all analytic self-maps of D). Asso-
ciated with ¢ € S(ID) is the composition operator Cy,, which is defined by

Cof =foo, feHD).

Let u € H(ID). The weighted composition operator, denoted by uCy,, is defined on
H(D) as follows.

(uCof)(z) = u(2)f(9(2)), feHD).

We refer to the books [4, 35] for the theory of composition operators and weighted
composition operators.

The boundness, compactness and essential norm of composition operators and
some related operators on Bloch-type spaces and Zygmund-type spaces with @(¢) =
(1 —1%)* were studied, for example, in [1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 15, 17, 18,
19, 20, 21, 30, 31, 32, 34, 36, 37]. See [5, 6, 8, 9, 16, 33] for some related results on
Bloch-type spaces %, and Zygmund-type spaces Z}; .

Recently, Ye and Hu in [32] have characterized the boundedness and compact-
ness of weighted composition operators on the Zygmund space 2. In [7], Esmaeili
and Lindstrom extended the results in [32] to the case of Zygmund-type spaces with
w(t) = (1—1*)%. Moreover, they gave some estimates of the essential norm of weighted
composition operators.

Motivated by [7, 32], in this paper we obtain some sufficient and necessary con-
ditions for the boundedness and compactness of the operator uCy : 2, — 2. More-
over, we give some estimates of the essential norm of weighted composition operators
uCop: 2y — Zo.

Recall that the essential norm of uCy, 2, — 25, denoted by [|uCo|l¢, 2, =, , is
defined by

[uColle,2, -, = inf{uCp — K|| , -, : K is a compact operator of 2y — %} .

Constants are denoted by C, they are positive and may differ from one occurrence
to the next. We say that A < B if there exists a constant C such that A < CB. The
symbol A ~ B means that A S B SA.
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2. Auxiliary results

In this section, we give some auxiliary results which will be used in proving the
main results of this paper. They are incorporated in the lemmas which follow.

LEMMA 1. [8] Suppose W (t) is normal on [0,1), then there exists |, € H(D),
such that

(I) Forany t €[0,1), w.(t) € R", w.(t) is increasing on [0,1);

(1) inf (1) (1) > 0; supu(fz])|p(2)] < ee.
tE[OJ) z€eD

In the rest of the paper, we will always use [, to denote the analytic function
related to pu in Lemma 1.

LEMMA 2. Suppose U is normal on [0,1). Then the following statements hold.

(I) There exists a 6 € (0,1), such that 1 is decreasing on [3,1), lin}[,t(t) =0.
t—

(I) Forall fixed o« > 1,3 € (0,1), when t € (0,1),s € (B,1),
1 s s ] s% g% ¢ Ss—1t
)~ Ut~ , / —dtz/ ——dt, / dtz/ —dr.
HORBED= 0T e w0 b w@™ b w@ " h ww)

(II) Forany z €D, |f5w.(n)dn| S 3 wo(0)dr. If n| < |2], u(|z])|u(n)] < C.

Proof. Suppose B € (0,1) and o > 1. We only prove that

5% g0 ¢ S s —t
—dm/ ST
/o (1) 0 u(r)

when s > . The proofs of the other statements can be found, for example, in [6].
For any 7 € (g,s), there is an 1 € (¢,s) C (%, 1) such that
§* —1¢

o—1

=oan- -,

s—1
80 s* —t%* ~ s —t. Therefore
.Yasa_t s g0 O S gt
» —dt:/ —oct"‘*ldt%/ ——dt.
/ﬁ—a (1) § u@*) 5 u()

When s > 3, since

BB — Bs— Bs— B
0</ ua’t</ S—tdt</ s—tdt</ Ldt<+c>o,
§ u@) § u) 0 u() 0 u(r)
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Bs—1t Bs—¢
—dm/ —di~1.
/ﬁ u(t) 0 u(r)

2

we have

Therefore

s g% ¢ s g% ¢ Bs—t¢ Ss—t Ss—t
—dt}/a —dt%/ —dt+ —dt%/ —dt
/o u(r) By u() B ou) B u(t) 0 u(t)
It is obvious that
S o _ S ¢
/ u tdtg/ :dt
o () 0 u(t)

s*—1 Ss—t
—dm/ __dr,
(1) o u(r)

as desired. The proof is compete. [

So, we get

The following estimates can be found in [26, 33].

LEMMA 3. Suppose [ is normal on [0,1). Then for every z€ D and f € 2,
we have

<
< (14 [ o)Wl and @< (1+ [ B i)

LEMMA 4. [33] Suppose that | is normal on [0,1) such that fol ﬁdt < oo, If
{fn} is bounded in B, and converges to 0 uniformly on compact subsets of D, then

lim sup|f,(z)| =0

= zeD

|2| IZ\ —t

LEMMA 5. [5,26] Suppose that U is normal on [0, 1) such that hm Jo ydt <

co. If { fu} is bounded in 2, and converges to 0 uniformly on compact subsets of D,
then

lim sup|f,(z)| =0
= zeD
To study the compactness, we need the following lemma, which can be get by
Lemma 2.10 in [30].

LEMMA 6. Suppose that @ and | are normal on [0,1). If T : 2y — %4 is
bounded, then T is compact if and only if whenever { f,} is boundedin %, and f, — 0
uniformly on compact subsets of D, lim ||T f,|| , = 0.

n—soo
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3. Main results and proofs

In this section, we will use the following symbols. Suppose that u € H(D), ¢ €
S(D) and p is normal on [0,1), we define

Mo(z) = u"(2), M1(z) = 20/ (2)9(2) + u(2) 9" (z), M2 (2) = u(z)(¢' (2))*,

Gu(2) 1+/IZ‘ L Hu() 1+/‘ZI|Z|_’d D
7)) = ——dt, Z)= t, zel.
! o () 8 o u()

Then for any f € H(D), we have

(uCp)"(2) = Mo(2) £ (9(2) + M1 (2)f'(9(2)) + Ma(2)f" (9(2))-

THEOREM 1. Suppose that u € H(D), ¢ € S(D), @ and p are normal on [0,1).
Then uCy : 2, — 2 is bounded if and only if

supo:) (|Mo<z>|Hu<<p<z>> M )| Gulp(@) + %) co )

Proof. Assume that (1) holds. By Lemma 3, we get
|(uCo )(0)| < |u(0)|Hu (@(ON I f 1l 20 S 1SNl 25
|(uCo )" (0)] < (Ju'(0)|Hyu(9(0) + [u(0)¢(0)|Gu (9(0))) | fll 2 S I1.f ]l 2,
and

WCpf)'(2)] < <|M0(Z)|Hu(§0(2)) 1M1 (2) G (0(0)) + “'(]T’;—((j'”) 1l

The above three inequalities and the assumed conditions imply that uCy : 2, — Z is
bounded.
Conversely, suppose uCy : 2, — Z¢ is bounded. Since 1,7,7% € Zu, we get

sup@(|z])|Mo(z)| <eo,  supo(|z])[M;(z)| <o, supa(|z])|Ma(z)| <eo.  (2)
zeD zeD z€eD

For any & € D with |@(§)] > 5. let a = @(&). Now, we define

h@ = [ [ wydran,

8a(z) =hp (Zz) - 2ha3|a|’2 (23) + ha“\a\"‘ (14)

and
Ja(2) = 6h, (22) - 8ha3\u\’2 (ZB) + 3hu4\u\’4 (14)~

By a calculation, we have
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@ [hall 2 <C. llgall 2 <C. [l full 2, <C.

(6) ha(@ = o (JaP — )pa(0)de, Hy(@) = a fy (o), [1)(@)] = a®p.(|af?).
© ga(@) = g,(@ = 0. g(@) = 2a*al*w.(lal*) +2a* [ p. (o).

@) ful@ = Jo" (jal* ~.(0)de. fi@) = (@) =
By (¢), (d), Lemmas 1 and 2, we get

Lo S @80 |(uCoga)"(E)] < uColllgal 2

and
lo(8)l _
(gDl " P~ o2l ot )] < Il

when |@(&)| > 1. From the last two inequalities and (2), we have

sup ST < supa ) M 0 (0(2) <= )

By Lemma 2, we have

lp(8)l
(DM E) [ e~ oD ) Fi(o(E))

< Hquhall%ﬂLw(lé\)(IMo((S) A @(E))| + ML (9(E))])
S lluCollllall, +w(|€I)IMo(§)IHu(<P(€))+%.

By (2), (3) and the boundness of uCy,, we get

Sgﬂgw(IZI) IM1(2)| Gu(9(2)) <o

The proof is complete. []

THEOREM 2. Suppose that u € H(D), ¢ € S(D), @ and p are normal on [0,1).
If uCy : 2, — Z4 is bounded, then the following statements hold.

(I) When supGy(z) <eo and supHy(z) < eo,
zeD z€D

: o(|z]) | M (z)|
|uCoplle, 2, — 2, ~ limsup ——————.
ez lp(z)|—1 u(le(2)])
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(II) When supGy(z) =e and supHy(z) < ee,

z€eD zeD

) o(|z))|M2(z)| .
uCoplle. 2, — 2z, ~ limsup —————== + limsup & (|z|) |M1(z)| Gy (@(2)).
[uColle, 2, o1 L@ e '

(III) When supG(z) =eo and supH,(z) = oo,
z€eD zeD

. o(lz])|Ma(z)| | ..
uCplle, %, — 2, ~ limsup ——————=+limsup o(|z|) |M(z)| Gu(9(2))
[uColle, 2, w1 HIe@D p@ '

+limsup @(|z[)[Mo(2)|Hu (¢(2))-
@)1

Proof. Since uC, is bounded, (1) and (2) hold. For any fixed p, =1— + pram i )
(2) and Lemma 6, it easily follows that uCp, ¢ : 2, — Z¢ is compact. Fix s € (0,1),

[uColle, 2, — 2, < |[UCop — uCp, ol 2, -2, = P |(uCy — uCp,p) fl 2,
ZuS
< e 1(Iu(O)kn.,f(@(O))l+Iu’(O)kn,f(@(O))l+|u(0)<p’(0) 1. (0(0))])
ETR

+ sup sup o(|z])[Mo(2)|[kn,r (¢ (2))]
17125, <1l0)I<s

+ sup  sup  @([z])[Mo(2)|[kn,r(@(2))]
1l <1s<lo()<1

+ sup sup o(|z])[Mi(2)|[&, ;(¢(2))]
11l 21, <Ll()] <5

+ sup  sup  o(|2))[Mi(2)]k, ;(9(2))]
1l 2, <15<lo()]<1

+ sup  sup o([z))[Ma(2)[k, ((¢(2))]
1l 2, <1 o)<

+ sup  sup (|2 [Ma(2) Ik f(@(2))],

/1l 2, <1s<|o(z)|<1

“)

where k, f(z) = f(z) — f(paz). When [|f 2, <1, we see that [k, | 2, <2. By
Lemma 3,

lkn,p (2)] < 2Hy(2), |k £(2)] <2Gu(z), |k £(2)] < (5)

u(lzl)
By Lemma 3 and

d oo palel 2| — pulz] |z =t
dtdn :/ 7dl‘+/ dt = H;(z) — H, nZ),
/ (1) 0 u() P &) ()

Wzl Jo a2l M(t)
we have
o (2)] = /p / £/ (e)drdn + /pnzf(o)dn’<HM(Z)_HM(PnZ)+1—Pn ©)
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and
K, ()] = /p sz”(zm (1= py) ( /0 " e +f’(0)) ‘
I2|
</pnlz‘u()dt+( — Pu)Guu(pa)- (7)

When |z| < s, by Cauchy’s estimate, we have

2 2 2
()] < max |f(E)] < 2 max ()] € ——,
1—|g| =z 15K 1—5 = Lgs (l—s)u(l%)

which implies that

" o /" 2(1 _p") I—P,%
k 4 = d 1_ 2 n4 ~X 3 : 8
1= [ man 0 )| < R TP

By (2), (6), (7) and (8), we get

limlim ~ sup  sup (|z])[Mo(2)l|kn,r(@(2))] =0, 9)
S 1] g, <1 () <5
limlim sup  sup o(|z])|M;(2)]k, ((¢(2))] =0, (10

S Vi PPRSTEIR;

limlim sup  sup o(|z])|M2(2)|ky ;(@(2))] =0 (11)

ST 1| g, <10 (2) <

and

lim  sup  (u(0)ky, (9(0))] + i (0)ks £ (9(0))] + [u(0)/ (0)K, (9(0))]) = 0. (12)

77 ] g, <1

(I). Suppose sup Gy (z) < e and supH,(z) < eo. By (2), (6), (7) and (8), we obtain

zeD z€eD

lim lim ~ sup  sup  (|z])[Mo(2)[lkn.r (¢ (2))] =0,

ST 1]l g, <Us<p(2)|<1

limlim sup  sup  (|z])|M1(2)]lk, ;(9(2))| =0

SR 1]l g, <Ls<p(2) <1

and
miim sup  sup () MK (0(2)] S limsup 2D M)
=1 ) <Ls<lp()|<1 oe—1 ko))
Hence, by (4) and (9)—(12), we get
oM

|uCoplle, 2, — 2, < llm luCy — uCp, ||34ngthsup .
orezu ¢ Pr® il Zu lo(z)|—1 u(le@)|)
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Next, we prove that [|uCo|., 2,2, 2 limsup (()‘l%(lz))‘ Assume {&,}> , C D
lp(2)|—1

such that lim |@(&,)| = 1. Let a, = ¢(&,) and
n—o0

anl n )
— t(ja)) /0 /0 w2()drdn.

Then {p,} is bounded in 2, and p, — O uniformly on compact subsets of . If
K: 2, — Z4 is compact, by Lemmas 4-6, we have

lim sup\p (z)] =0, lim sup |p,(z)| =0, lim ||Kpy]| 2z, = 0. (13)
n—ee n—soo

n—boc

Thus

[uCp — K| 24— 2 Z |(uCop = K)pul| 2, = [uCopnl| 2, — [ Kpnll 2,
> 0(|8])[(uCppn)" (&)l = |Kpull 2,
> o(|&)IM2(E)P" (9(8n)] — O (1) [Mo(En) pa (9 ()]
=0 (8) M1 (8:) P, (@(En))] = | KPall 2, - (14)

Let n — . By Lemmas 1 and 2, (2) and (13), we get

)| M2 (Sn
|uCy —KH,%H,%, ZlimsupM

e H(Q(E))
which implies

)

o(|z])|M2(2)]
uCoplle, 2, — 2, 2 limsup ———————
leCole.2 lo@)—1  M(P(2))
as desired.

(IT). Suppose sup Gy (z) = o= and supHy (z) < e=. By (2), (6) and (7), we get
z€eD z€eD

lim lim ~ sup  sup  (|z])[Mo(2)[lkn.r (¢ (2))] =0,

ST 1]l g, <Us<p(2)|<1

limlim ~sup  sup  (|z])|M1(2)[lk, £ (9(2))| < limsup (|z])[M1(2)|Gu(@(2)),

s—1n—oo

11l 25, <L s<lp() <1 9] —1
and
M
limlim sup  sup  @(2)|Ma(2)[KL (¢ (2))] < timsup LUDIM2E]
=L ), <Ls<p(2)|<1 o1 H(eE)])

Thus, by (4) and (9)—(12), we get
||”C<p||e’2"u—>fi"w < }712130||”C<p - uCPn‘PHQFu_’fw

cmsap UG
S Lgf{iﬁ “ulo@)) +\1¢(Z>S|'i?w(|zl>|Ml (2)|IGu(9(2))-
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Next, we prove

: o(lzDM )] | .
uCo|le, 2, — 2, 2 limsup ————==+limsup o(|z|)|M;(z)|Gy (¢(2)).
[uColle, 2, — . limsup = lo@) T msup (I2)IM1(2)|Gu(9(2))

Let {&,};7 , C D such that lim [@(&,)| = 1. Let a, = ¢(&,) and

713

g (7 wear) an g (7 ) an
Jo par)di SO

Then {r,};_, isboundedin 2, and {r,} converges to O uniformly on compact subsets
of D. If K Z, — Z is compact, by a calculation and Lemmas 5 and 6, we get

rm(z) =

1
lim sup|r,(z)| =0, lim [|[Kryllz, =0, (@) =0, |r(a)| =~ . (15)

n— e n—seo u(lanl)
Similarly to (14), we have
[uCp — K| 2, 2,
2 0(|&)) M2 (&n)ry (9(6n)| = @(|1&a) IMo (&) ra(@(Ea)) | — 1K T | 2, -
Let n — . By (2) and (15), we have

M
C Kl 2,2, 2 Timsup 2 V2 S

e H(|Q(G)]

In the same way, taking

2

o
T e Plwa
we have
[uCp — K| 2~ 2 hirf:pwqganl(gn)‘GIJ((P(gn))'
From the arbitrary of K and {§};_,, when sup Gy (z) = e and supH,(z) < ee,

. . zeD zeD
we obtain the desired result.

(IIT). Suppose sup G (z) = o= and supHy (z) = e=. By (6), we have
zeD zeD

limlim ~sup  sup  o(|z])[Mo(z)[[kn,r (¢(2))] S limsup a(|z])|Mo (2)|Hu (¢ (2)),
T £l g, <5<l <1 (@)1

limlim ~sup  sup  (|z])|M1(2)]lk, (9(2))] < limsup @(|z])[M1(2)|Gu(@(2))

ST ] g, <Ls<|p(2)] <1 lo(x)|—1
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and

limlim sup  sup (zDIMa(2)| I (0(2)] < timsup ZLEIAEE
ST g, <Ls<lo(2)|<1 o@)—1 H(e@))

By (4) and (9)—(12), we get

[uColle,2— 20 < ‘lir(nfloup w(IZI)IMo(Z)IHu(w(Z))+‘1ir(n)sl'up o(|z])IM1(2)|Gu(e(z))
o(z)|—1 o(z)|—1

~ () IMa(z)|
Flimsup = Tl

Next we give the lower estimate of [|uCy||¢, 2,2, . Assume {§,}_; C D such
that lim |@(&,)| = 1. Let a, = ¢(&,). Set
Nn—oo

10h§’31 (2}) - 15/13;1“%‘,2 (24) + 6h32|an‘,4 (2°)
han (a_n) ’

ha(2) :/OuZ/On Wi (t)dedn.

el (1 o))
Jo™ I3 a(s)dids

Thus {7,};, is bounded in 2, and converges to 0 uniformly on compact subset of
D. By Lemma 6 and a calculation,

T,(2) =

where

In [5], we have proved that

lan|
lim K512, =0. @) ='(@) =0, |u@|~ [ [ wdan. (6
Similar to (14), we have

[uCp — K| 25y~ 2 2 O(1Ea]) M0 (5) T (9(En)) | — K Tul| 2, -

Let n — co. By (16), we have

1uCo — K| 2, 2z, 2 Timsup (18a])[Mo () [ Hy (@(n)). (17

Since the test functions {r,} ", are boundedin 2} and converges to 0 uniformly
on compact subset of D, we have

lim ||[Kryl| 2, =0, 7y(@) =0, |rl(@)|~ :
ng}'}oH r"H-pr rn(a") |rn(a")| ,u(|anD
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By Lemma 3,
H”qu - K”fp—’gw
2 0(1&:)|M2(8n)ry (9(6n))| — @ (1)) Mo (&)1 (@(Ea)) | — 1K 7| 25,

> %—w<|&n|>|Mo<én>|Hu<<p<én>>— 1Kl .

So

[uCyp — K| 21, 22, + 0 (|Ea]) [ Mo (&) | Hu (@(En)) 2 O [M>(S,)]

— [1K7all 2,
u(le(Gn)l)
Let n — co. We get

. @(18])[M2(&n)]
uCp — K| 2, ., > limsup — 22250 (18)
¢ g n—soco u(lo(&)l)
In the same way, using test functions {g,};_,, we have
[uCp — K|| 25, 2, Z limsup o(|&,|)|M1(E:)|Gu(@(En))- 19)

Nn—oo
From the arbitrary of K and {&,};_,, when supG(z) = e and supH,(z) = o, by
zeD zeD
(17)=(19), we have

. o(|z)|Ma(z)| | .
|uCylle.2,— 2, = limsup ——————> + limsup (|z|)|M(z)|Gu(¢(z))
et o@—1 HOE) e !

+limsup o(|z|)|Mo(z)|[Hu (9(z)),
lp(z)|—1

as desired. The proof is complete. [

COROLLARY 1. Suppose that u € HD), ¢ € S(D), ® and 1 are normal on
[0,1). If uCy : 2y — %4 is bounded, then following statements hold.

(I) When supGy(z) <o and supHy(z) <eoo, uCy: 2, — %4 is compact if and
z€D zeD
only if

imsap 2EDREL

oel—1 1))
(1) When supGy(z) = and supHy(z) <o, uCy: 2y — 24 is compact if and

zeD zeD
only if
. o(|z])|M2(2)| .
limsup —————+ lim (|z|)|Mi(z)|G 7)) =0.
\w(z)lj wo@D) e, (I2]) IM1(2)| Gu(9(2))

(III) When supGy(z) = e and supHy(z) = oo, uCy : 2 — 2y is compact if and

zeD D
only if
lgo(zﬁi‘i( 1o +“’('Z'>'M1<Z>|Gu<¢<z>>+w<|z|>|Mo<z>|Hy<<p<z>>) 0.
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