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ON THE MIXED (�1, �2)–LITTLEWOOD

INEQUALITIES AND INTERPOLATION

MARIANA MAIA AND JOEDSON SANTOS

Abstract. It is well-known that the optimal constant of the bilinear Bohnenblust–Hille inequal-
ity (i.e., Littlewood’s 4/3 inequality) is obtained by interpolating the bilinear mixed (�1,�2) -
Littlewood inequalities. We remark that this cannot be extended to the 3-linear case and, in
the opposite direction, we show that the asymptotic growth of the constants of the m -linear

Bohnenblust–Hille inequality is the same of the constants of the mixed
(
� 2m+2

m+2
,�2

)
-Littlewood

inequality. This means that, contrary to what the previous works seem to suggest, interpolation
does not play a crucial role in the search of the exact asymptotic growth of the constants of the
Bohnenblust–Hille inequality. In the final section we use mixed Littlewood type inequalities to
obtain the optimal cotype constants of certain sequence spaces.
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