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ON THE MIXED (¢;,¢,)-LITTLEWOOD
INEQUALITIES AND INTERPOLATION

MARIANA MAIA AND JOEDSON SANTOS

Abstract. Tt is well-known that the optimal constant of the bilinear Bohnenblust-Hille inequal-
ity (i.e., Littlewood’s 4/3 inequality) is obtained by interpolating the bilinear mixed (¢1,¢2)-
Littlewood inequalities. We remark that this cannot be extended to the 3-linear case and, in
the opposite direction, we show that the asymptotic growth of the constants of the m-linear

Bohnenblust-Hille inequality is the same of the constants of the mixed (Z 22 742) -Littlewood
m+2

inequality. This means that, contrary to what the previous works seem to suggest, interpolation
does not play a crucial role in the search of the exact asymptotic growth of the constants of the
Bohnenblust-Hille inequality. In the final section we use mixed Littlewood type inequalities to
obtain the optimal cotype constants of certain sequence spaces.
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