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ON THE MIXED (¢;,¢,)-LITTLEWOOD
INEQUALITIES AND INTERPOLATION
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(Communicated by I. Peri¢)

Abstract. It is well-known that the optimal constant of the bilinear Bohnenblust—Hille inequal-
ity (i.e., Littlewood’s 4/3 inequality) is obtained by interpolating the bilinear mixed (¢1,¢2)-
Littlewood inequalities. We remark that this cannot be extended to the 3-linear case and, in
the opposite direction, we show that the asymptotic growth of the constants of the m-linear

Bohnenblust-Hille inequality is the same of the constants of the mixed (Z 22 ,1?2) -Littlewood
m+2

inequality. This means that, contrary to what the previous works seem to suggest, interpolation
does not play a crucial role in the search of the exact asymptotic growth of the constants of the
Bohnenblust-Hille inequality. In the final section we use mixed Littlewood type inequalities to
obtain the optimal cotype constants of certain sequence spaces.

1. Introduction

The mixed (¢1,¢,)-Littlewood inequality for K =R or C asserts that

= oo 2

S {3 (Ut e <(v2)" i, M

=1 \Jj2,sjm=

for all continuous m-linear forms U : ¢o X --- x ¢ — K, where (¢;);, denotes the
sequence of canonical vectors of co. It is well-known that arguments of symmetry
combined with an inequality due to Minkowski yields that for each k € {2,...,m} we
have

1
1 2
e (e . Py 122 1
2 m—
S o(Z( X U <(v2)" i,
Jtedk=1=1 \ k=1 \Jig15-5Jm=1
2)
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which is also called mixed (¢;,¢;)-Littlewood inequality. For the sake of simplicity
we can say that we have m inequalities with “multiple” exponents (1,2,2,...,2),...,
(2,...,2,1). These inequalities are in the heart of the proof of the famous Bohnenblust—
Hille inequality for multilinear forms [6] which states that there exists a sequence of
positive scalars (BX)™_in [1,c0) such that

m+1
2m

oo 2m
< 2 'U(eiw'"’eim) m+l> SBEHU” (3)

i eim=1

for all continuous m-linear forms U : ¢g X --- X ¢g — K. This inequality is essentially
a result of the successful theory of nonlinear absolutely summing operators (for more
details on summing operators see, for instance, [5, 12, 13] and references therein).
To prove the Bohnenblust-Hille inequality using the mixed (¢;,¢,)-Littlewood in-

equalities it suffices to observe that the exponent mzfl can be seen as a multiple ex-
ponent (mzjfl yeees mz+f1) and this exponent is precisely the interpolation of the expo-
nents (1,2,2,...,2),...,(2,...,2,1) with weights 6, =--- = 6,, = 1 /m. Mixed Little-

wood inequalities are also crucial to prove Hardy-Littlewood inequalities for multilin-
ear forms (see [3, 10] and the references therein).

2. Mixed Littlewood inequalities and interpolation

The optimal constant of the 3-linear mixed (¢}, ;) -Littlewood inequality for real
scalars with multiple exponents (1,2,2) and (2,1,2) were obtained in [7, 11] (these
constants are precisely 2). Curiously, the arguments could not be extended to obtain
the optimal constant associated to the multiple exponent (2,2,1). However, using the
3-linear form

U(x,y,z) = (21 +22) (x1y1 +X1y2 + X291 — X2y2) + (21 — 22) (X¥3Y3 + X3Y4 + X4Y3 — X4Y4)

it is easy to show that the optimal constant associated to the multiple exponent (2,2,1)
is not smaller than /2. So, interpolating the three inequalities we obtain the estimate
21/3 5 21/3 % \/fl/ ? for the 3-linear Bohnenblust—Hille inequality, i.e., 25/°, but it
is well-known that the optimal constant of the 3-linear Bohnenblust—Hille inequal-
ity is not bigger than 23/4. So we conclude that the optimal constant of the 3-linear
Bohnenblust—Hille inequality cannot be obtained by interpolating the optimal constants
of the multiple exponents (1,2,2), (2,1,2) and (2,2,1).

In the paper [2], Albuquerque et al. have shown that the Bohnenblust-Hille in-
equality is a very particular case of the following theorem:

THEOREM 1. Let 1 < k < m and ny,...,n; > 1 be positive integers such that
ny+--+ng=m,let qi,...,q; € [1,2]. The following assertions are equivalent:
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(A) There is a constant C[]E_._qk > 1 such that

[h] o q1
k=2 e

s N7 "
DS (i (i\A(e’” ) qk) ) <% Al
i o€y X Yqqn

=1 ih=1 i1=1 \i=1

@

for all continuous m-linear forms A : co x --- X cg — K.
1 1 o ktl
Ly bkl
(B) q1 Tt a2

The inequalities (4) when k =m, q; =2 and ¢ = 2@"—’2 forall [ e {1,...,j—
1,j+1,...,m} can be called mixed (E -2 ,€2> -Littlewood inequality for short (see

[11]). The best constants C%,, ,, ( C}I,f for short) are unknown (even its asymptotic
S RTES

growth is unknown). We stress that it is even unknown if the sequence (C}f):zl is
increasing. By the Khinchin inequality it can be proved (see [4]) that

K —1 K
C2 2m—2 2m—2 < A 2m—2 Cm71 . (5)

om0 m m

where A, are the optimal constants of the Khinchin inequality. Using an interpolative
procedure, or the Holder inequality for mixed sums, this means that

K -1 K
Cm g A2m—2Cm71'

We shall prove the following asymptotic equivalences:

K K K
Cm71 ~ 9 2m=2 2m—2 ™Y szd 2n=2 5 (6)
S e TS ames s

7T m m T om

that seem to have been overlooked until now. This means that the search of the pre-
cise asymptotic growth of the best constants of the Bohnenblust—Hille inequality is
equivalent to the search of the precise asymptotic growth of, for instance, the sequence

sz,,,,z 2 and no interpolative procedure is needed. As a corollary con-
> om

R

clude that the inequality (5) is asymptotically sharp.

The proof of (6) is simple. If 7,,_1 is a (m — 1)-linear form, we define

T (W, X"y =T, (6P ,x(m))xgl).
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Then

- 2
2 ’7;11—1 (ej27-~-7ejm) "
J2sedm=

- - N\ T2
- z( S Tules. ) —>
J2,

Nl—

A=t U=t
<CGuwz e ||Tull

=Cmo o [Tl
Tom m

‘We thus conclude that

K K
Cm71 < C2 2m=2 2m—2 -+

om0ttt m

Therefore

K K -1 K
Cm—l < C27 2n’17172 2n’1n—2 <A 2m-2 Cm—l :
Since (for both real and complex scalars)

lim A3}, =1,

m-—eo m

we conclude that

K K
Cm_1 ~ 9 2m=2 2m—2 -

m Y m

The other equivalences are similar.

3. Cotype 2 constants of /, spaces

Let 2 < g <o and 0 < s <. A Banach space X has cotype g (see [l, page
138]) if there is a constant C; s > 0 such that, no matter how we select finitely many

vectors xi,...,x, € X,
s l/s
dt) , (7)

" i
lal* ) <Cas| [
kgl Vo

where r; denotes the k-th Rademacher function. The smallest of all of these constants
will be denoted by Cy ¢(X).

By the Kahane inequality we know that if (7) holds for a certain s > 0 than it
holds for all s > 0. It is well-known that for all p > 1, the sequence space £, has
cotype max{p,2}. The optimal values of C,(¢,) for 1 < p <2 are perhaps known
or at least folklore, but we were not able to find in the literature. Classical books like
[1, 8, 9] do not provide this information.

i 1 ()X
k=1



ON THE MIXED ({,/;)-LITTLEWOOD INEQUALITIES AND INTERPOLATION 725

In this section we shall show how the optimal cotype constant of £, spaces can be
obtained using mixed inequalities similar to those treated in the previous section. From
now on, py is the solution of the following equality

F(Po-i-l) _ VT

5 A

>
THEOREM 2. Let 1 <r < po~ 1.84742. Then
Cop (b)) =272

Proof. Tt is not difficult to prove that C, ,(¢,) < 2 251 (see [1, pages 141-142]).

11 . .
Now we prove that 272 is the best constant possible.
Let A: co x co — R abilinear form and define, for all positive integers n,

Ame Lo — ér

by
Ape(x) = (A(x, ek))Z:l :
It is simple to verify that
[Anell < lIA]-

In fact,

1/r
||An,e“ = sup HAne H = sup (2 |A x ej } )

[lxll<1 [IxlI<1

1/r
< sup 7 (A(x,-)) sup (2 |(P | )
)*

Ixf<1 weB<

< sup [|A(x,-)|| sup le(ej)l
<1 0SB )¢ =1

1

Ta,1) (Ane) < Co () [Anell-
sl
t)
ze[O 1] ;

It is also well-known that A, is absolutely (2, 1)-summing and
In fact, for any continuous linear operator u : co — ¢, we have
u(@x)|* ] <Cale /
(£ bl (M S
C2 7 Sup
< Cor(Cr)[ul] sup Z o (x)] -
P8y =1
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‘We have
v [ byt )
S Y Al en)| = 3 Anele)|
=1\ =1 A=l
n
<Cor(6r) |[Anell sup Z |(P(ej)’
9<B(ey)" =1
< C2,r(£r) HA” .
plugging

A(x,y) = x1y1 +X1y2 + X291 — X2)2

into (8) we conclude that

)

(2-2%)% <20,(4))

and thus

S =

21+
2

Il
o
~I—
|
D=
O

C2,r(€r) 2

A simple adaptation of the above proof gives us:

PROPOSITION 1. Let 1 <r < 2. Then

Nl—

Coy(ly) =27

forall s > 0.

The same argument of the previous result provides:

COROLLARY 1. Let pg~ 1.84742 <r < 2. Then

- —1/r
1 (T

NSV

~1—=

A=

2 g C2,r(€r) g
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