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A HILBERT-TYPE FRACTIONAL INTEGRAL INEQUALITY WITH THE
KERNEL OF MITTAG-LEFFLER FUNCTION AND ITS APPLICATIONS

QIONG L1U

(Communicated by J. Pecaric)

Abstract. By using the theory of the local fractional calculus and the methods of weight function,
a Hilbert-type fractional integral inequality with the kernel of Mittag-Leffler function and its
equivalent form are given. Their constant factors are proved being the best possible, and its
applications are discussed briefly.

1. Introduction

Assuming that f,g >0, 0 < [57 f2(x)dx < o0, 0 < [;°g?(y)dy < e, we have the
famous Hilbert’s integral inequality and its equivalent form (cf. [1, 2]):

/O°°/O°° %giy)dx‘iy<”{/wfz(x)dx}%{/mgz(y)dy}é, (1)
s ){i)y dy<”/ () @)

where the constant 77 and 7> are the best possible. There have been a number of im-
provements and extensions on inequalities (1) and (2) (cf. [3—10]), which are important
in the mathematical analysis and its applications (cf. [1, 2, 8]). In 2010, Yang [11]
presented a new Hilbert-type integral inequality and its equivalent form, as follows:
Ifp>1, l%—l—é =1, £,8>0,0< [;"LfP(x)dx < o, 0<f5°§g‘1(y)dy<oo,then

/ / e P fx)gy)dxdy < / A )dx} { /Owigq(wdy}‘l’, 3)
s [/ U dx’”dy</ () 4)

In recent years, the theory of fractional calculus has been developed rapidly, and it
has been widely used in the fields of science and engineering. Some researchers have
used the fractal theory to discuss and generalize some classical inequalities (cf. [12—
14]), but the research on the Hilbert-type fractional integral inequalities are still not
involved. In this paper, by using the theory of local fractional calculus and the method
of weight function to make a meaningful attempt, a Hilbert-type fractional integral
inequality and its equivalent form are established.
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2. Preliminaries

DEFINITION 1. (cf. [15, 16]) The o -type set of set Q are defined as the set Q%,
where 0 < o < 1. This set Q% is called a fractional set. The set Q is called base set of
fractional set.

Let R* (0 < a < 1) be the o -type set of real line numbers, if a*, b*, ¢* € R*,
then (cf. [15, 16])

1° a*+b* € RY, a*b* € R*;

2° a*+b%*=0%+a%=(a+D)* = (b+a)*;

3° a%+ (b+c)*=(a+Db)*+c*

4° a%p* = b*a* = (ab)* = (ba)*;

59 a%(b%c®) = (a®b*)c*

6° a*(b* +c%*) = a*b* + a%*c%;

7° a*+0% =a%*, a*1* =a%, (—a)* = —a%;

8° If a < b, then a®* < b*. If a* < b, then a < b.

DEFINITION 2. (cf. [15, 16]) A non-differentiable function f: R — R% (0 <
o < 1), x — f(x) is called to be local fractional continuous at xo, if for any € > 0,
there exists 6 > 0, such that | f(x) — f(x0)| < € whenever |x —xo| < 8. If f(x) is local
fractional continuous on the interval (a,b), we denote f(x) € Cy(a,b).

DEFINITION 3. (cf. [15, 16]) The local fractional derivative of f(x) of order o
(0 < o <1) at xg is defined by

70 o) = L)) gy DU+ f o))

X—X() (_x — _xO ) o

k1
——
If for all x € I C R, there exists fKD%(x) = D%...D% f(x), then we denote f €
Ds1)a(l), where k=0,1,2,---

DEFINITION 4. (cf. [15, 16]) Let f(x) € Cy(a,b). Then the local fractional
integral is defined by

o 1 b [0 1 . u o
B0 = gy, TO@ = g fim, ),

with Aty =t;—t,_; (i=1,---N), At:lma);[{At,-},and a=ty<ty <---<ty_; <ty=b
<i<

is partition of interval [a,b]. Here, it follows that ./ f(x) = 0 if a = b, I f(x) =
— 1% f(x) if a < b.

DEFINITION 5. (cf. [15, 16]) Mittag-Leffler function defined on fractal set of
fractal dimension « is by the expression:

ock

€R, and 0< o < 1.
;;1+k ren
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DEFINITION 6. If s € C, let f(x) denote a function which vanishes for negative
values of x. Local fractional Laplace’s transform Ly{f(x)} of order o is defined by
the following expression, if it is finite:

Ll 0} = Frgy | Bl =) ) )"

DEFINITION 7. Gamma function on fractal set of fractal dimension o is defined
by the following expression:

l 0o
T - E(—t% (x—1e o < 1
)= Frrgg ) Bt @, 0 <o

LEMMA 1. If m > —1, Re(s) > 0, then we have

L) (s) = T )

Proof. Setting ¢t = sx, by Definition 6 and Definition 7, we obtain

Ll }5) = gy | Eel s (a0

— l 'X) o mot o
B S(m+l)oc1"(1 ) /O Eq(—1%)1"%(dt)
Ty(m+1)
- glm+l)o U
LEMMA 2. (cf. [18,19,20]) If f,g (=0) €Cqla,b), F,G,h (>0) € Cy(SP)),
p>1, 11; +Ll=7q, SB) js a fractal surface, then we have
1° Holder inequality on the fractal set

s

ol f(0)g(x) < { gy 17 (x } {f5'8" ()},
2° Hélder weighted inequality on the fractal set

1 o o
et J] M PGt @)
N

(v [ MewFr @ @)

S(B)

A [ e @@

s(B)

The inequality keeps the form of equality, then there exist constants A and B, such that
they are not all zero and AF?(x,y) = BG4(x,y).a.e. on S,
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LEMMA 3. If 0 < o < 1, B,A > 0, we define the weight function o(c,3,A,x)
as follows:

1 oo
(D(a,ﬁj,x) = m/o EOC(_)La(xy)a)xﬁay(ﬁ_l)a(dy)a7 X € (07+°°)7
then we have r
(e, B,A,x) = ;‘éf), 5)

Proof. Setting xy = u, by Lemma 1, we obtain

1 > _
0(@,8, 4.9 = gy o EaA ) PP @)
_ 1 - _qoa 00\ (f-1)o o
_F(1+OC)/() Eo(—A%u®)u (du)
= La{ulf V()
_ Ta(B)
= Vi [l
LEMMA 4. If p > 1, %—!—é—l 0<a<l, B,A>0,and € small enough, we
define two functions f(x), g(y) as follows:
- 0, xe (0,1
flx) = ((B-Da-e Loo)

then we have

- 1
Je = { o1& (xlP1=P)= 1o i (x) }”{ola (yla1=B)—laga }qe I (6)

e = e 012 o1 (Ea(~A%()") F0E0))] > #ﬂwu—om) (e—0%).

Proof. We easily obtain:
1

jga:{olg [p(1-B) 1]Otfp }”{01"‘ [q(1-B)— 1]a~q( ))} ¢
:{llg —(l+¢&)a } {Ola (dy) }qg
1
TT(+a)
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Since H(u) = uB+D*E, (—A%(xy)®) is continuous in [x,eo) and liT H(u)=0,
U——+oo

_ £
therefore exists a constant M > 0, satisfying H(«) < M. In addition, let u a=t,

then u(_2+§)a(a’u)°‘ = —W%W(dt)“, and we can write
q

1I§Zf(x’(1+5)°‘) Ig(Ea(_xaua)u(ﬁflJr%)a)
=7r2(11+a) [ O ) i o (AP D )

Frre ), @ [
-M “ _a o 0 o

_ M T e e
_(1—§)ar2(1+a)/1 )
M o

M

S (1=8)T (14 )

Further, setting xy = u, and by Lemma 1, we have

e = e o1 [ o <Ea(—x°‘x°‘y“>f<x>g<y>>]

= 1_‘(187_7_0()/ (B-1o— (dx) [ﬁ/()lEa(_la(Xy)a)y(ﬁ_l)a+?(dy)a}
= 71_‘(18_’_ a)/l x7(1+£)a(dx)a [ﬁfo Ea(_laua)u(ﬁflJrﬁ)a(du)a}
—80‘-1Ig<x_(1+8)0‘> ( (=A%) (B-1+5)a )

Fa(ﬁ-l—%) _ga.llg<x*(l+e)a> Ioc( a(—A% 05) (B-1+% )

T ABERer (1 4 g
La(B+5) e
2/(/3""3)0‘1"(1_'_0‘) (1—%)2°‘F2(1+a)

__ Ta(B) .
_m(l—o(l)) (e—0"). O
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3. Main results
For convenience, we use notation of the double fractional integral as (see [16]):
OIO‘[I F(x,y)] = 1—|—a/ /ny )(dx)*(dy)®.
THEOREM 1. If p > 1, —+——1 0<oa<l, B,A>0, f,g(>0) € Cy(0,),
0< olo‘(x[p (=B)=1e fp(x ) <o, O < olo‘ff(y[q(l B)=tlega(y )) < oo, then we have
ol"‘[ I“Ea(—lo‘(xw"‘)f(x)g(y)] <
Lalb) (s (=90 () 5 o2 (0P ega) @)

To(B)
ABa

where the constant factor is the best possible.

Proof. By Holder weighted inequality on fractal set and Lemma 3, we obtain

ol [ IS Ea (=A% (xy)®) f(x)g(y)

=0 1% 1% Ea( 1)) 2] [ | (08 (0)]
x 4 y r

< {ol2 [ 2B (A% ) P ) 2 )
S 0 L% B ALY AP0 De

ABva 1
X { olZ [0l Ea (=A% (xy)*)8' V)~ 55 T74.) }q
1

y(q_l)
{12 [w(e.p, 2 X)X“’“"”‘”"‘f”(X)]}” {02 [@(a.B. Ay =P Degr(y)] 17
= S o (P () g2 (0P )) ®

If (9) keeps the form of equality for some y € (0,e0), then, there exist constants A
and B, such that they are not all zero, and

y(ﬁfl)a p x(ﬁ*l)a q )
Amf (X)ZBmg (v) ae.in (0,00) x (0,00).

Assuming that A # 0, then there exist constant C # 0, such that xlPU=B)=1ofp(x) =
S5 ae. inx € (0,00). We find that ( ) 0 57 (dx)® = SLngx®[y is dlffuse, which
contradicts the fact that 0 < oI% (x[PU1=P)=11@£7(x)) < co. Thus (9) takes the form of
strict inequality. So we obtain (8).

If the constant factor ~=(P) appearing on the right hand sides of (8) is not the

2B
best possible, then exists a positive constant K < ,55 ) , such that inequality (8) is still
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valid when replacing M(fx” by K. Then by (6) and (7), we have Fg,E? (I—o(1)) <K.

Letting € — 07, we get K> F" (ﬁ ) , which contradicts the fact that K < B /3([5 ) Hence,

) of (8) is the best possible. The theorem is proved. [

the constant factor = 7 ﬁa

THEOREM 2. Under the conditions of Theorem 1, we have

Olg{y("(ﬁ%)ﬁ)“ [OIgEa(—l“(xy)“)f(X)]”} < [FZT(Q)]POIO:( p(=P)=tlec g ),
(10)

La(P) ] P"is the best possible, and inequality (10) is equivalent

ABa

where the constant factor [
to inequality (8).

Proof. Letting [f(x)],, := min{n, f(x)}. Since 0 < (I (x[p(l’ﬁ)’”o‘fl’(x)) < oo,
there exists positive integer ng € N, such that 0 < ;1% (xlPU=P)=1o P (x)) < oo (n >

(g(B—1)+1)e £

mo). Setting g(3) =y o | I (Ea(=A%() ) (W)])]
np), when n > ng, by (8) we find

0< 7 (Pl (y)
18 (yla0-P)-Hogli=D (y)g, (y)

(%<y<n,n>

Moreover, by (11) we have
(g(B-D)+Da
0< IE (P Naga(y)) = g2 Ly T [ IS (Ba (2% ) )]}

< [LBhyr g orpr=e ) < o 1

It follows that 0 < oI% (y[q(l’ﬁ)’l]o‘gi(y)) < 0. For n — o, by (8), both (11) and
(12) still keep the form of strict inequalities. Hence we have inequality (10).
On the other hand, by Holder’s inequality on fractal set and (10), we have

oI [T Ea (=A% (x)*) f(x)g(y)]
(g(B-1)+a (q(1-B)-Da

= ot2{ [y D W (Ea(-A% ) )] [ T g()] )
( (B=D+De

v [013<Ea<—w<xy>“>f<x>>]p)}”’{olz<y““*’”*”°‘g‘f<y>>}
_ T'w(B [ o1 (P IP(1=B)~1)a g )}”{ola( ~1e q(y))}%,

==
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The above inequality is (8), thus inequality (10) is equivalent to inequality (8).
If the constant factor [r"—(ﬁ)

Apa

]p appearing on the right hand sides of (10) is not

best possible, then by (10), we can get a contradiction that the constant factor FA“T(Q)

appearing on the right hand sides of (8) is not the best possible. Thus the constant
factor [F)L"T(fz)]p in (10) is the best possible. [

4. Simple applications

Selecting o values and appropriate 3,4 values in (8) and (10), by Lemma 3, some
Hilbert-type fractional integral inequalities and their equivalent forms are obtained.

EXAMPLE 1. Letting oo = 3 = A = 1, we obtain (3) and (4).

EXAMPLE 2. Letting =05, B=A=1, p=¢g=2.1f f,g (>0) €Cp5(0,°0),
0< of25(x703f2(x)) <o, 0< o127 (y™*3g%(y)) < o, then we have the following
equivalence inequalities:

1

{ o2 (v ¢%(y)) } ;
(13)

Nl—

ol2 [ o122 (Eos(— (1)) (050)] < { ol (x 22 (0) }

23 {30 [ 2 (Bs (=) f )]} < SO w). ()
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