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Abstract. The aim of this paper is to provide a full and simple characterization of functions with
domain in an arbitrary topological real vector space whose epigraph is strictly convex. In order
to achieve this description, we first give both affine and topological properties of strictly convex
subsets of general topological real vector spaces. Then, we investigate the relationship between
functions and their epigraph from the geometric and topological viewpoints.

Introduction

This paper is concerned with the relationship between strict convexity of functions
defined over a domain in a topological real vector space and strict convexity of their
epigraphs. A subset of a topological real vector space is said to be strictly convex if it
is convex and if in addition there is no non-trivial segment in its boundary. This notion
will be made more precise in Section 2.

Even though strict convexity is less studied than convexity in the literature, there
are nevertheless many fields where strict convexity of a subset of a topological real vec-
tor space is used. We give here three different examples which illustrate this geometric
property.

The first example, which is actually the starting point of the present work, con-
cerns epigraphs of functions. It is a well-known result that a function has a convex
epigraph if and only if it is convex. This is a bridge between geometric convexity and
analytic convexity (see for example [9, Theorem 4.1, page 25]). Therefore, a natural
question is to know whether the same equivalence holds when replacing “convexity”
by “strict convexity”. To the best of our knowledge, nothing has been studied about
this issue in the litterature, even in the case when the domain of f lies in Rn. This is
why we propose to fill the gap in the present paper, not only in Rn but in the general
framework of topological vector spaces. This is done in the Main Theorem that we state
in Section 1.

The second example deals with strict convexity of the unit ball in a normed real
vector space (in that case, the norm itself is sometimes called strictly convex, which is
unfortunate). This property is equivalent to saying that there exists a real number p > 1
such that the p -th power of the norm is a strictly convex function (for a proof, we may
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see Theorem 11.1 in [3, page 110]), and this is actually equivalent to the strict convexity
of the epigraph of this function as the Main Theorem will show.

It is important to work with such norms since they yield interesting properties
in functional analysis. For instance, given a Banach space E with strictly convex unit
ball, any non-empty family of commutative non-expansive mappings from a non-empty
closed convex and weakly compact subset of E into itself has a common fixed point
(see for example [1]).

Nevertheless, if the unit ball of a normed vector space is not strictly convex, this
may be offset in at least two different ways. Indeed, any reflexive Banach space can
be endowed with an equivalent norm whose unit ball is strictly convex (see for ex-
ample [8]). On the other hand, any separable Banach space can be endowed with an
equivalent norm which is smooth and whose unit ball is strictly convex (see for exam-
ple [6, page 33]).

The third example concerns optimization problems – more precisely, the relation-
ship between strict convexity and uniqueness of minimizers. When dealing with an
optimization problem on a topological real vector space, the search for a value of the
variable where the cost function achieves a minimum is much more easier in case this
function and the constraint set are both convex (see for example [4]). Moreover, if the
cost function is strictly convex, such a minimizer is then unique. On the other hand,
if the constraint set is both strictly convex and given by the epigraph of a function (we
shall see in which case this is possible owing to the Main Theorem), and if the cost
function has no minimum over the whole space, then such a minimizer is unique too.

As we may notice throughout these three examples, it is of great importance to
know whether the epigraph of a function is strictly convex or not.

Of course, for a function defined over Rn , the strict convexity of its epigraph is
merely equivalent to being strictly convex. But what happens for a function with an
arbitrary domain which lies in an arbitrary topological vector space?

In order to give a complete answer to this question and deduce some of its conse-
quences in Section 1, we shall examine two issues in Section 2: topological aspects of
epigraphs of functions defined on any topological space on the one hand, and the notion
of strict convexity for sets in general topological real vector spaces (no matter which
dimension they have or whether they are Hausdorff) on the other hand.

Finally, Section 3 is devoted to the proofs of all the results given in the previous
sections.

1. Motivations, Main Theorem and consequences

The relationship between convexity of sets and convexity of functions is given by
the following well-known result that is quite easy to prove.

PROPOSITION 1.1. Let C be a subset of a real vector space and f : C −→ R a
function. Then we have the following equivalences:

C and f are both convex ⇐⇒ Epi( f ) is convex ⇐⇒ Epis( f ) is convex .
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This is a geometric way of characterizing the convexity of a function by looking
at its epigraph.

Such a property naturally raises the issue of studying what happens when con-
vexity is replaced by strict convexity whose meaning will be given in Definition 2.5
(real vector spaces being of course replaced by arbitrary – possibly non-Hausdorff –
topological real vector spaces).

At first sight, we may believe that for a function defined over a general topological
real vector space, strict convexity of its epigraph is merely equivalent for the function to
be strictly convex in the usual sense. But this is false as we can observe in the following
example.

EXAMPLE 1.1. Consider the real vector space V := C
0(R,R)∩L

2(R,R) ⊆ RR

endowed with the topology T of pointwise convergence (this is nothning else than
the product topology, which is therefore Hausdorff), and let f : C := V −→ R be the
function defined by f (u) := ‖u‖2

2
.

On the one hand, f is strictly convex since for any u ∈ V its Hessian at u with
respect to the norm ‖·‖

2
on V is equal to 2〈· , ·〉 , and hence positive definite.

On the other hand, whereas (0,0) and (0,2) are in the epigraph of f , their mid-

point (0,1) does not belong to ri(Epi( f )) =
◦

˙Epi( f ) , that is, Epi( f ) is not a neighbor-
hood of (0,1) for the product topology on V×R as we can check with the sequence
(un)n�1 of V defined by

un(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
√

nx−n2+1/n for x ∈ [n−1/n2 , n] ,

2/
√

n for x ∈ [n , 2n] ,

2
√

2n2−nx+1/n for x ∈ [2n , 2n+1/n2] , and

0 for x � n−1/n2 or x � 2n+1/n2 ,

which converges to zero with respect to T but satisfies (un ,1) 
∈ Epi( f ) for any n � 1
since one has f (un) � f (un×1[n ,2n]) = 4 > 1. This proves that Epi( f ) ⊆V×R is not
strictly convex.

Moreover, even in the Hausdorff finite-dimensional case, things are not as simple
as they seem. Indeed, if we consider the open disc C := {(x,y) ∈ R2 | x2 + y2 < 1} , the
function f : C −→ R defined by f (x,y) := x2 + y2 is strictly convex but its epigraph
is not.

On the other hand, either in the non-Hausdorff finite dimensional case or in the
infinite dimensional case, convexity does not always implies continuity. In contrast and
among other things, we shall see that strict convexity of the epigraph does always insure
continuity of the function.

Passing by, it is to be mentionned that any n-dimensional topological real vector
space is isomorphic to the Cartesian product Rk×Rn−k for some integer 0 � k � n ,
where the first factor is equipped with the usual topology and the second one with the
trivial topology (see for instance [7, Chapter 1, Section 7, Problem A]).
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So, the question of finding a complete characterization of functions with domain
in a topological real vector space whose epigraph is strictly convex does deserve our
attention.

This characterization is described as follows, where rb stands for the relative
boundary (see Definition 2.4).

MAIN THEOREM. Let C be a subset of a topological real vector space and let
f : C −→ R be a function. Then we have the following equivalence:⎛
⎜⎝

C is convex and open in Aff(C) ,

f is strictly convex and continuous ,

∀z0 ∈ rb(C) ⊆C, f(z) −→ +∞ as z −→ z0

⎞
⎟⎠ ⇐⇒ Epi( f ) is strictly convex .

REMARK 1.1. It is to be noticed that this equivalence is still true if “continuous”
is changed into “locally bounded above”.

The proof, that we postpone until Section 3, splits into the direct implication and
its converse.

The direct implication is the consequence of three main facts. The first one is
the convexity of Epi( f ) given by the convexity of f . The second one is the closeness
of the epigraph of f in Aff(C)×R due to both the continuity of f and its behavior
near the boundary of C , which insures that any segment whose end points are in the
boundary of Epi( f ) is contained in Epi( f ) . The third one is the property that any open
segment whose endpoints are in the boundary of Epi( f ) actually lies inside the interior
of Epi( f ) in Aff(C)×R as a result of the strict convexity of f and the two previous
facts.

As for the converse implication, there are four main things to be used. The first
one is the convexity of both C and f given by the convexity of Epi( f ) . The second
one is the openness of C in Aff(C) as a consequence for the epigraph not to contain
vertical segments in its boundary. The third one is the fact that the interior of Epi( f ) in
Aff(C)×R lies inside the strict epigraph of f . The fourth one is the property for f to be
locally bounded on some non-empty open subset of C as a result of the non-emptyness
of the interior of Epi( f ) in Aff(C)×R . All these properties yield the continuity of f
and give the behavior of f near the boundary of C .

Before giving some consequences of this result, all of whose will also be proved
in Section 3, let us just show on a simple example how it may be usefull for checking
strict convexity of the epigraph of a function.

EXAMPLE 1.2. Consider the open convex subset C := (−1,1)×(−1,1) of the
topological real vector space V := R2, and let f : C −→ R be the smooth function
defined by f (x,y) := 1/[(1− x2)(1− y2)] .

For any (x,y) ∈ C , we then compute
∂ 2 f
∂x2 (x,y) =

2(1+3x2)
(1− x2)(1− y2)

> 0, and the

Hessian matrix of f at (x,y) has a determinant which is equal to

4(5x2y2 +3y2 +3x2 +1)/[(1− x2)(1− y2)]4 > 0 .
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The function f is therefore strictly convex and hence the Main Theorem insures
that its epigraph is strictly convex since we have Aff(C) = R2 and f (x,y) −→ +∞ as
(x,y) converges to any point (x0 ,y0) ∈ ∂C .

The first consequence of the Main Theorem is obtained by taking C := V .

PROPOSITION 1.2. Given a strictly convex function f : V −→ R defined on a
topological real vector space V , we have the equivalence

Epi( f ) is strictly convex ⇐⇒ Epi( f ) has a non-empty interior in V×R .

REMARK 1.2. This result is not true if C is not equal to V as we can see with the
strictly convex function f : (0,1) −→ R defined by f (x) := x2 .

Another use of the Main Theorem is related to the property for a subset C of a real
vector space V to be convex if and only if all its intersections with the straight lines of
V are convex.

Indeed, let us recall the following easy-to-prove result about convex functions.

PROPOSITION 1.3. For any subset C of a real vector space V and any function
f : C −→ R , we have (1) ⇐⇒ (2) ⇐⇒ (3) with

(1) Epi( f ) is convex,

(2) Epi
(
f|C∩G

)
is convex for any affine subspace G of V , and

(3) Epi
(
f|C∩L

)
is convex for any straight line L of V .

Then, a natural question is to know whether these equivalences are still true when
replacing convexity by strict convexity.

Here is the answer.

PROPOSITION 1.4. For any subset C of a topological real vector space V and
any function f : C −→ R , we have (1) ⇐⇒ (2) =⇒ (3) with

(1) Epi( f ) is strictly convex,

(2) Epi
(
f|C∩G

)
is strictly convex for any affine subspace G of V , and

(3) Epi
(
f|C∩L

)
is strictly convex for any straight line L in V .

It is to be noticed that the implication (3) =⇒ (1) in Proposition 1.4 is not true.
Indeed, the function f : V −→ R that we considered in Example 1.1 has an epigraph
which is not strictly convex whereas for any vectors u0,w ∈V with w 
= 0 the function
ϕ : R−→R defined by ϕ(t) := f (u0 + tw) = ‖w‖2

2
t2 +2〈u0,w〉 t +‖u0‖2

2
is obviously

strictly convex and continuous. Therefore, Epi
(
f|u0+Rw

)
is strictly convex according

to the Main Theorem and since the map γ : R −→ u0 +Rw defined by γ(t) := u0 + tw
is a homeomorphism. This last point is a consequence of Theorem 2 in [2, Chapitre I,
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page 14] since u0 +Rw is a finite dimensional affine space whose subspace topology
is Hausdorff (as is the topology on V ).

Nevertheless, in case V is equal to the canonical topological real vector space Rn,
this implication is true as a consequence of the Main Theorem.

PROPOSITION 1.5. Given a subset C of Rn and a function f : C −→ R , the two
following properties are equivalent:

(1) Epi( f ) is strictly convex,

(2) Epi
(
f|C∩L

)
is strictly convex for any straight line L in Rn.

As a straightforward consequence of Proposition 1.5, we obtain in particular the
following classical result.

COROLLARY 1.1. Any function f : Rn −→ R satisfies the equivalence

Epi( f ) is strictly convex ⇐⇒ f is strictly convex .

2. Preliminaries

In order to make precise the terms used in the previous section, and before proving
in Section 3 the Main Theorem and its consequences, we have to give here some defini-
tions and properties about the epigraph of a function and the notion of strict convexity.

2.1. Epigraphs

We begin by recalling the definitions of the epigraph and the strict epigraph for a
general function.

DEFINITION 2.1. Given a set X and a function f : X −→ R , the epigraph of f
is defined by

Epi( f ) := {(x,r) ∈ X×R | f (x) � r} ,

whereas its strict epigraph is defined by

Epis( f ) := {(x,r) ∈ X×R | f (x) < r} .

REMARK 2.1. It is straightforward that these two sets satisfy the relation

Epis( f ) = (X×R)�σ(Epi(− f )),

where σ denotes the involution of X×R defined by σ(x,r) := (x,−r) .

From now on, X will be a topological space and we shall give a list of useful
properties of the epigraph of a function with domain in X (Proposition 2.1 to Proposi-
tion 2.5) that we will need in the sequel (we may refer to [5, pages 34 and 123]).
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PROPOSITION 2.1. Given a subset S of a topological space X and a function
f : S −→ R such that Epi( f ) has a non-empty interior in X×R , there exists a non-
empty open subset U of X with U ⊆ S on which f is bounded above.

Proof. Given (x0 , t0) ∈
◦

˙Epi( f ) , there exists an open subset U of X such that one
has x0 ∈U and U×{t0} ⊆ Epi( f ) since Epi( f ) is a neighborhood of (x0 , t0) in X×R .
Therefore, for any x ∈U , we get f (x) � t0 . �

PROPOSITION 2.2. Given a function f : X −→ R defined on a topological space
X , a point x0 ∈ X and a number r0 ∈ R , the following properties are equivalent:

(1) (x0 , r0) ∈
◦

˙Epi( f ) .

(2) There exists r ∈ (−∞ , r0) which satisfies x0 ∈
◦

˛f−1(−∞ , r) .

(3) There exists s ∈ (−∞ , r0) which satisfies {x0}×[s , +∞) ⊆
◦

˙Epi( f ) .

This is a characterization of the interior of the epigraph of a function.

Proof. Point 1 =⇒ Point 2. Assume we have (x0 , r0) ∈
◦

˙Epi( f ) .
Then there exist a neighborhood V of x0 in X and a real number ε > 0 that satisfy

the inclusion V×[r0 − 2ε , r0 + 2ε] ⊆ Epi( f ) , from which we get f (x) � r0 − 2ε for
any x ∈V , or equivalently V ⊆ f−1(−∞ , r) with r := r0 − ε < r0 .

This proves that x0 belongs to the interior of f−1(−∞ , r) in R .

Point 2 =⇒ Point 3. Assume that we have x0 ∈
◦

˛f−1(−∞ , r) for some number
r ∈ (−∞ , r0) .

Therefore, there is a neighborhood V of x0 in X with V ⊆ f−1(−∞ , r) ⊆
f−1(−∞ , r] , which yields V×[r , +∞)⊆Epi( f ) , and hence the inclusion {x0}×[s , +∞)

⊆
◦

˙Epi( f ) holds with s := (r + r0)/2 since we have s ∈ (r , r0) and since [r , +∞) is a
neighborhood in R of any τ ∈ [s , +∞) .

Point 3 =⇒ Point 1. This is clear. �

PROPOSITION 2.3. Any function f : X −→ R defined on a topological space X
satisfies the following:

(1)
◦

˙Epi( f ) =
◦

˚Epis( f ) .

(2)
◦

˙Epi( f )∩ ({x}×R) ⊆ {x}×( f(x) , +∞) for any x ∈ X .

(3) Epi( f ) = (X×R)�σ(
◦

¸Epis(− f )) .

(4) Epi( f ) = Epis( f ) .
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This property gives a topological relationship between the epigraph and the strict
epigraph of a function.

Proof. Point 1. Given (x,r) ∈
◦

˙Epi( f ) , there exists a real number r0 < r that
satisfies the inclusion {x}×[r0 , +∞) ⊆ Epi( f ) , which yields in particular f (x) � r0 ,

and hence f (x) < r . This proves
◦

˙Epi( f ) ⊆ Epis( f ) , and hence
◦

˙Epi( f ) ⊆
◦

˚Epis( f ) by
taking the interiors in the product space X×R .

Conversely, the obvious inclusion Epis( f ) ⊆ Epi( f ) yields
◦

˚Epis( f ) ⊆
◦

˙Epi( f ) .

Point 2. By Point 1 above, we have
◦

˙Epi( f )⊆Epis( f ) , from which one can deduce
◦

˙Epi( f )∩ ({x}×R) ⊆ Epis( f )∩ ({x}×R) = {x}×( f(x) , +∞) for any x ∈ X .
Point 3. By Remark 2.1 applied to − f , we have Epi( f ) = (X×R)�σ(Epis(− f ))

since σ is an involution, and hence

Epi( f ) = (X×R)�σ(Epis(− f )) = (X×R)�σ(
◦

¸Epis(− f ))

since σ is a homeomorphism.
Now, Point 1 above gives the desired equality.
Point 4. The equality in Point 3 also writes Epi( f ) = (X×R)�σ(Epi(− f )) since

σ is a homeomorphism, which yields Epi( f ) = Epis( f ) since we have the relation
Epis( f ) = (X×R)�σ(Epi(− f )) by Remark 2.1. �

PROPOSITION 2.4. Given a function f : X −→ R defined on a topological space
X and a point x0 ∈ X , the two following properties are equivalent:

(1) f is upper semi-continuous at x0 .

(2) {x0}×( f(x0) , +∞) =
◦

˙Epi( f )∩ ({x0}×R) .

This is a geometric characterization of the upper semi-continuity of a function in
terms of its epigraph.

Proof. Point 1 =⇒ Point 2. Assume that Point 1 is satisfied.
Given an arbitrary real number ε > 0, there exists a neighborhood V of x0 in X

that satisfies f (x) � f (x0)+ ε/2 for any x ∈V .
Now, we have V× [ f(x0) + ε/2 , +∞) ⊆ Epi( f ) , and hence (x0 , f (x0) + ε) ∈

◦
˙Epi( f ) .

So we proved the direct inclusion ⊆ .
The reverse inclusion ⊇ is straightforward by Point 2 in Proposition 2.3.
This proves Point 2.
Point 2 =⇒ Point 1. Assume that Point 2 is satisfied.
Conversely, given an arbitrary real number ε > 0, one can write

(x0 , f (x0)+ ε) ∈ {x0}×( f(x0) , +∞) ⊆
◦

˙Epi( f ).
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Thus, there exists a neighborhood V of x0 in X satisfying V×{ f(x0) + ε} ⊆
Epi( f ) , which yields f (x) � f (x0)+ ε for any x ∈V .

This proves Point 1. �

PROPOSITION 2.5. Given a subset A of a topological space X , a point x0 ∈ A
and a function f : A −→ R , we have the equivalence(
f(x) −→ +∞ as x −→ x0

) ⇐⇒ (
(x0,r) 
∈ Epi( f ) for any r ∈R

)
.

This is a characterization of the closure of the epigraph of a function.

Proof. ∗ ( =⇒ ) Assume the left-hand side of ⇐⇒ holds.
Given r ∈R , there exists a neighborhood V of x0 in X such that we have f (V )⊆

[r+2 , +∞) .
Thus, we get (V×(−∞ , r+1])∩Epi( f ) = ∅ , which shows that (x0,r) does not

belong to Epi( f ) since V×(−∞ , r+1] is a neighborhood of (x0,r) in X×R .
∗ ( ⇐= ) Assume the right-hand side of ⇐⇒ holds.
Given r ∈ R , there exist a neighborhood V of x0 in X and a real number ε > 0

such that V×[r− ε , r+ ε] does not meet Epi( f ) .
Since we have r ∈ [r−ε , r+ε] , this yields f (V )∩(−∞ , r] = ∅ , which is equiv-

alent to the inclusion f (V ) ⊆ (r , +∞) .
So, we have proved f (x) −→ +∞ as x −→ x0 . �

2.2. Strict convexity

In this subsection, we first recall the definitions of the relative interior and the
relative closure of a subset of a topological real vector space since they underly strict
convexity, and then we establish a couple of useful properties needed in Section 3.

We begin with two basic notions in affine geometry: the affine hull and convex
sets (see for example [9] and [10]).

DEFINITION 2.2. The affine hull Aff(S) of a subset S of a real vector space V is
the smallest affine subspace of V which contains S .

Therefore, for any subsets A and B of V satisfying A ⊆ B , we obviously have
Aff(A) ⊆ Aff(B) .

PROPOSITION 2.6. Given real vector spaces V and W , any subsets A ⊆ V and
B ⊆W satisfy

Aff(A×B) = Aff(A)×Aff(B) .

Proof. For any x,y ∈ B with x 
= y , the straight line L passing through x and
y lies in Aff(B) , and hence for any a ∈ A the straight line {a}×L of V×W lies
in Aff(A×B) since it contains the points (a,x),(a,y) ∈ A×B . Therefore, we have
A×Aff(B) ⊆ Aff(A×B) .

On the other hand, we also get Aff(A)×B ⊆ Aff(A×B) by the same reasoning.



804 S. SIMON AND P. VEROVIC

These two inclusions yield

Aff(A)×Aff(B) ⊆ Aff(Aff(A)×B) ⊆ Aff(Aff(A×B)) = Aff(A×B) .

Conversely, since Aff(A)×Aff(B) is an affine subspace of V×W which contains A×B ,
we obviously have Aff(A×B) ⊆ Aff(A)×Aff(B) . �

DEFINITION 2.3. Given points x and y in a real vector space V , the set

[x,y] := {(1− t)x+ ty | t ∈ [0,1]}

is called the (closed) line segment between x and y , whereas the set

]x,y[ := [x,y]�{x,y}

is called the open line segment between x and y (the latter set is therefore empty in
case one has x = y).

A subset C of V is said to be convex if we have [x,y] ⊆C for all x,y ∈C .

In other words, C is convex if and only if its intersection with any straight line L
in V is an “interval” of L .

From now on and throughout the section, V will denote a topological real vector
space.

Before we go on, let us just point out some facts.

REMARK 2.2.

1) Given a neighborhood U of the origin in V , the following properties hold:

a) For any x ∈V , there exists a real number ε > 0 such that we have [−ε,ε]x ⊆U .

b) For any x ∈V , there exists a real number λ > 0 such that we have x ∈ λU (the
subset U of V is then said to be absorbing).

c) We have Vect(U) = V .

Indeed, Point a is easy to prove and the implications Point a =⇒ Point b =⇒ Point c
are straightforward.

2) Given a finite-dimensional real vector space W , there exists a unique topological
real vector space structure on W which is Hausdorff. Endowed with this structure,
W is then isomorphic to the canonical topological real vector space Rn, where n
denotes the dimension of W (see Theorem 2 in [2, Chapitre I, page 14]).

DEFINITION 2.4. Let S be a subset of a topological real vector space V .

(1) The relative interior ri(S) of S is the interior of S with respect to the relative
topology of Aff(S) in V .
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(2) The relative closure rc(S) of S is the closure of S with respect to the relative
topology of Aff(S) in V .

(3) The relative boundary rb(S) of S is the boundary of S with respect to the relative
topology of Aff(S) in V (so we have rb(S) = rc(S) � ri(S)).

We obviously have
◦
S ⊆ ri(S) and rc(S) ⊆ S , which yields rb(S)⊆ ∂S .

PROPOSITION 2.7. Let V be a topological real vector space.

(1) For any subsets A and B of V , we have the implication A⊆ B =⇒ rc(A)⊆ rc(B) .

(2) For any subset S of V , we have

(a) Aff(rc(S)) = Aff(S) , and

(b) ri(S) 
= ∅ ⇐⇒ (S 
= ∅ and Aff(ri(S)) = Aff(S)).

(3) For any subset S of V and any affine subspace W of V , we have

(a) ri(S)∩Aff(S∩W) ⊆ ri(S∩W ) , and

(b) rb(S∩W ) ⊆ rb(S)∩W .

Proof. Point 1. Given subsets A and B of V with A ⊆ B , we can write

rc(A) = A∩Aff(A) ⊆ B∩Aff(B) = rc(B)

since we have Aff(A) ⊆ Aff(B) and A ⊆ B .
Point 2.a. Using S⊆ rc(S) , we first get Aff(S)⊆Aff(rc(S)) . Conversely, we have

rc(S) ⊆ Aff(S) by definition of rc(S) , and hence Aff(rc(S)) ⊆ Aff(Aff(S)) = Aff(S) .
Point 2.b. If the open subset ri(S) of Aff(S) is not empty, then we can write

Aff(ri(S)) = Aff(S) by Point 1.c in Remark 2.2, and S is not empty since one has
ri(S) ⊆ S .

Conversely, if we have S 
= ∅ and Aff(ri(S)) = Aff(S) , then we get Aff(ri(S)) =
Aff(S) 
= ∅ , and hence ri(S) 
= ∅ by using the obvious equality Aff(∅) = ∅ .

Point 3.a. Since ri(S) is open in Aff(S) , the intersection ri(S)∩Aff(S∩W ) is
open in Aff(S∩W ) ⊆ Aff(S) .

On the other hand, we have ri(S) ⊆ S and Aff(S∩W ) ⊆ Aff(W ) = W , and hence
the inclusion ri(S)∩Aff(S∩W) ⊆ S∩W .

Therefore, we get ri(S)∩Aff(S∩W ) ⊆ ri(S∩W ) since ri(S∩W ) is the largest
open subset of Aff(S∩W ) which is contained in S∩W .
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Point 3.b. We first have Aff(S∩W) ⊆ Aff(W ) = W , and hence rb(S∩W) lies in
W . On the other hand, combining Point 1 and Point 3.a yields

rb(S∩W ) = rc(S∩W )�ri(S∩W )
⊆ rc(S∩W )�[ri(S)∩Aff(S∩W )]
= [rc(S∩W )�ri(S)]∪ [rc(S∩W )�Aff(S∩W )]
= rc(S∩W )�ri(S)

(use rc(S∩W ) ⊆ Aff(S∩W))
⊆ rc(S)�ri(S) = rb(S) . �

PROPOSITION 2.8. Let X be a subset of a topological real vector space V and
S a subset of X×R such that they satisfy Aff(S) = Aff(X)×R . Then we have the
following properties:

(1) The interior of S in X×R contains ri(S) .

(2) The closure of S in X×R lies in rc(S) .

Proof. Point 1. Given (x0,r0) ∈ ri(S) , there exist a neighborhood U of x0 in V
and a neighborhood W of r0 in R such that we have [U ∩Aff(X)]×W ⊆ S , which
implies

(U ∩X)×W = (X×R)∩ [U ∩Aff(X)]×W ⊆ (X×R)∩S = S.

Then, since U ∩X is a neighborhood of x0 in X , we get that (x0,r0) is in the interior
of S with respect to X×R .

Point 2. From X×R⊆ Aff(X)×R = Aff(S) , we deduce that the closure S
X×R

of
S in X×R satisfies

S
X×R = S∩ (X×R) ⊆ S∩Aff(S) = rc(S) . �

Now, here is the definition of a strictly convex set, which is the key notion of the
present work.

DEFINITION 2.5. A subset C of a topological real vector space V is said to be
strictly convex if for any two distinct points x,y ∈ rc(C) we have ]x,y[ ⊆ ri(C) .

REMARK 2.3.

1) This definition coincides with the usual one when V is the canonical topological real
vector space Rn since in this case the closeness of Aff(C) in V yields rc(C) = C .

2) It is to be noticed that strict convexity is a property of topological real vector spaces
whereas convexity is a mere affine property of real vector spaces.

3) A strictly convex subset of V is of course convex.
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4) According to the common geometric intuition, saying that a subset C of V is strictly
convex means that C is convex and that there is no non-trivial segment in the relative
boundary of C . Owing to Proposition 16 in [2, Chapitre II, page 15], this is an easy
consequence of the very definition of strict convexity.

PROPOSITION 2.9. For any strictly convex subset C of a topological real vector
space, we have the implication

C 
= ∅ =⇒ ri(C) 
= ∅ .

Proof. Assume that C is not empty. Two cases are then considered, depending on
whether rc(C) is a single point or not.

If we have rc(C) = {x} for some x ∈V , then C also reduces to {x} since one has
∅ 
= C ⊆ rc(C) . Therefore, we obtain Aff(C) = {x} , and hence ri(C) = {x} 
= ∅ .

On the other hand, if rc(C) contains two distinct points x,y∈V , then the inclusion
]x,y[ ⊆ ri(C) holds by strict convexity of C , and hence one has ri(C) 
= ∅ since ]x,y[
is not empty. �

REMARK 2.4. When dealing with a single strictly convex subset C of a general
topological real vector space V , we will always assume in the hypotheses that C has
a non-empty interior in V in order to insure Aff(C) = V , and this makes sense by
Proposition 2.9 and Point 2.b in Proposition 2.7.

We shall now prove that strict convexity is a two-dimensional (topological) notion
whereas convexity is – by its very definition – a one-dimensional (affine) notion.

PROPOSITION 2.10. Given a topological real vector space V with dim(V ) � 2 ,
any subset C of V whose interior is not empty satisfies the equivalence

C is strictly convex ⇐⇒ C∩P is strictly convex for any affine plane P in V .

Proof. ∗ ( =⇒ ) Assume the left-hand side of ⇐⇒ holds, and let x,y∈ rc(C∩P)
with x 
= y .

Then, we first have x,y ∈C since the inclusion rc(C∩P) ⊆C holds according to

Point 1 in Proposition 2.7, and this yields ]x,y[ ⊆ ◦
C by strict convexity of C .

On the other hand, we have x,y ∈ P from rc(C∩P) ⊆ Aff(C∩P) ⊆ Aff(P) = P ,

and hence we get ]x,y[ ⊆ ◦
C∩P by convexity of P .

In particular, the open subset
◦
C∩P of P is not empty, and hence Aff

( ◦
C∩P

)
= P

holds by Point 3 in Remark 2.2, which yields P ⊆ Aff(C∩P) since we have
◦
C ⊆C .

Therefore, we get
◦
C ∩P ⊆ ◦

C ∩Aff(C∩P) ⊆ ri(C∩P) by Point 3.a in Proposi-
tion 2.7, which implies ]x,y[ ⊆ ri(C∩P) .

This proves that C∩P is strictly convex.
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∗ ( ⇐= ) Assume the right-hand side of ⇐⇒ holds, and let x,y ∈C with x 
= y .
Since the dimension of V = Aff(C) is greater than one, C does not lie in a line,

and hence there exists a point z ∈ ◦
C such that x,y,z are not collinear. Therefore,

P := Aff({x,y,z}) is an affine plane in V .
Then, Proposition 16 in [2, Chapitre II, page 15] implies that the open segments

]z,x[ and ]z,y[ are in
◦
C∩P , and hence in C∩P . This insures that rc(]z,x[) and rc(]z,y[)

are in rc(C∩P) .
But we have x∈ rc(]z,x[) since any neighborhood U of x in V satisfies ]z,x[∩U 
=

∅ by Point 1.a in Remark 2.2. And the same argument yields y ∈ rc(]z,y[) .
So, we have obtained x,y ∈ rc(C∩P) , and hence ]x,y[ ⊆ ri(C∩P) since C∩P is

strictly convex.
Now, if we pick a point u ∈ ]x,y[ and define v := u− z , then there exists a real

number t > 0 that satisfies w := u+ tv∈C∩P since u+Rv is the straight line passing
through the points u and z of C∩P ⊆ Aff(C∩P) and since C∩P is a neighborhood
of u ∈ ri(C∩P) in Aff(C∩P) .

Therefore, the segment [z,w] lies in the convex set C∩P , and hence in C , which

yields [z,u] ⊆ [z,w]�{w} ⊆ ◦
C by Proposition 16 in [2, Chapitre II, page 15].

This proves that C is strictly convex. �

REMARK 2.5. In case V is one-dimensional but its topology is not Hausdorff, the
strictly convex subsets of V , unlike those of R (endowed with its usual topology), do
not coincide with its convex subsets. Indeed, if the topology of V is for example trivial,
then the only strictly convex subsets of V are the empty set and V itself.

PROPOSITION 2.11. Given a subset C of a topological real vector space and a
function f : C −→ R , we have the following equivalence

Epi( f ) is strictly convex ⇐⇒ Epis( f ) is strictly convex .

Proof. According to Lemma 3.1, we first have Aff(Epi( f )) = Aff(Epis( f )) .
Hence, Points 1 and 4 in Proposition 2.3 yield ri(Epi( f )) = ri(Epis( f )) and

rc(Epi( f )) = rc(Epis( f )) , and we are done. �
Finally, in order to be complete, let us recall the definition of a (strictly) convex

function.

DEFINITION 2.6. Given a convex subset C of a real vector space, a function
f : C −→ R is said to be

(1) convex if we have f ((1− t)x + ty) � (1− t) f(x) + t f(y) for any points x,y ∈ C
and any number t ∈ (0,1) .

(2) strictly convex if we have f ((1−t)x+ty)< (1−t) f(x)+t f(y) for any two distinct
points x,y ∈C and any number t ∈ (0,1) .
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REMARK 2.6.

1) It is to be noticed that both convexity and strict convexity of functions are mere
affine notions.

2) A strictly convex function is of course convex.

3) Given a convex subset C of a real vector space, a function f : C −→ R is convex if
and only if it satisfies

f

(
n

∑
i=1

λixi

)
�

n

∑
i=1

λi f(xi) (Jensen’s inequality)

for any integer n � 1, any points x1, . . . ,xn ∈C , and any numbers λ1, . . . ,λn ∈ [0,+∞)

with
n

∑
i=1

λi = 1.

This is obtained by induction on n � 1.

4) Given a convex subset C of a real vector space V , a convex function f : C −→ R ,
a subset S ⊆C and a real number M > 0, we have the following equivalence:(∀x ∈ S, f (x) � M

) ⇐⇒ (∀x ∈ Conv(S) , f (x) � M
)
,

where Conv(S) stands for the convex hull of S , i. e. , the smallest convex subset of
V which contains S .

Indeed, each x ∈ Conv(S) writes x =
n

∑
i=1

λixi for some integer n � 1, some points

x1, . . . ,xn ∈ S and some numbers λ1, . . . ,λn ∈ [0,+∞) which satisfy
n

∑
i=1

λi = 1.

Therefore, if the function f is bounded above by M on S , this implies f (x) �
n

∑
i=1

λi f (xi) �
n

∑
i=1

λiM = M according to Point 3 above.

3. Proofs

This section is devoted to the proofs of the Main Theorem and of all its conse-
quences that we mentionned in Section 1.

Let us begin with the following affine property.

LEMMA 3.1. For any function f : S −→R defined on a subset S of a real vector
space, we have Aff(Epi( f )) = Aff(S)×R = Aff(Epis( f )) .

Proof. First of all, we have Epis( f ) ⊆ Epi( f ) ⊆ S×R⊆Aff(S)×R , and hence we
immediately get Aff(Epis( f )) ⊆ Aff(Epi( f )) ⊆ Aff(S)×R .
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Conversely, given x∈ S , we have {x}×( f(x) , f(x)+1]⊆Epis( f ) by the very defi-
nition of Epis( f ) , which gives {x}×R = Aff({x}×( f(x) , f(x)+1])⊆Aff(Epis( f )) by
Proposition 2.6. Therefore, we get S×R ⊆ Aff(Epis( f )) , and this yields Aff(S)×R =
Aff(S×R) ⊆ Aff(Epis( f )) by Proposition 2.6 once again. �

REMARK 3.1. A straightforward consequence of the first equality in Lemma 3.1
is that any function f : S −→ R defined on a subset S of a real vector space satisfies
ri(Epi( f )) ⊆ ri(S)×R .

Then, let us establish two technical but useful topological properties.

LEMMA 3.2. Given a subset S of a topological real vector space V and a func-
tion f : S −→ R , we have the implication

⎛
⎜⎝

S is open in Aff(C) ,

f is lower semi-continuous ,

∀z0 ∈ rb(S) ⊆ S, f(z) −→ +∞ as z −→ z0

⎞
⎟⎠ =⇒ Epi( f ) is closed in Aff(S)×R .

Proof. Assume the left-hand side of =⇒ holds, and let (a,α) ∈ rc(Epi( f )) .
First of all, notice that a is in rc(S) since the projection of V×R onto V is

continuous and since we have Aff(Epi( f )) = Aff(S)×R by Lemma 3.1.
If we had a 
∈ S = ri(S) (remember that S is open in Aff(S)), then we would obtain

a∈ rb(S) , and hence f (z) −→ +∞ as z −→ z0 := a , which yields (a,α) 
∈ rc(Epi( f ))
by Proposition 2.5: contradiction.

Therefore, the point a is necessarily in S .
Now, assume that we have f (a) > α , and let ε := ( f(a)−α)/2 > 0.
Since f is lower semi-continuous at a , there exists a neighborhood U of a in S

which satisfies f (U) ⊆ [ f(a)− ε , +∞) = [α + ε , +∞) .
But S is a neighborhood of a in Aff(S) , and hence so is U .
Thus, combining (a,α) ∈ rc(Epi( f )) and Aff(Epi( f )) = Aff(S)×R , we can find

z ∈ U and θ ∈ (α − ε , α + ε) with f (z) � θ , which yields f (z) ∈ (−∞ , α + ε) ,
contradicting the previous point.

So, we necessarily have f (a) � α , or equivalently (a,α) ∈ Epi( f ) .
Conclusion: we proved rc(Epi( f )) ⊆ Epi( f ) , which means that Epi( f ) is closed

in Aff(Epi( f )) = Aff(S)×R . �

LEMMA 3.3. Given a subset S of a topological real vector space V and a func-
tion f : S −→ R , we have (1) =⇒ (2) =⇒ (3) =⇒ (4) with

(1) Epi( f ) is strictly convex,

(2) ∀s > 0, τs(rc(Epi( f ))) ⊆ ri(Epi( f )) ,

(3) rc(Epi( f )) ⊆ ri(S)×R , and

(4) S is open in Aff(S) ,
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where for each s ∈ R the map τs : V×R −→V×R is defined by τs(x,r) := (x,r+ s) .

Proof. Point 1 =⇒ Point 2. Assume that Epi( f ) is strictly convex.
Since for each s∈R the map τs is an affine homeomorphism,we have the equality

τs(rc(Epi( f ))) = rc(τs(Epi( f ))) , and hence τs(rc(Epi( f ))) ⊆ rc(Epi( f )) for s � 0.
Therefore, given a real number s > 0 and a point (x,r) ∈ rc(Epi( f )) , we can write

(x,r +2s) = τ2s(x,r) ∈ rc(Epi( f )) , which yields that the midpoint τs(x,r) = (x,r + s)
of (x,r) and (x,r + 2s) is in ri(Epi( f )) since Epi( f ) is strictly convex. This proves
Point 2.

Point 2 =⇒ Point 3. Assume that Point 2 is satisfied.
Then, by Remark 3.1, we get τs(rc(Epi( f )))⊆ ri(S)×R for any real number s > 0,

and hence rc(Epi( f )) ⊆ τ−s(ri(S)×R) = ri(S)×R . This proves Point 3.
Point 3 =⇒ Point 4. Assume we have rc(Epi( f )) ⊆ ri(S)×R .
Then, using Epi( f ) ⊆ rc(Epi( f )) , we get Epi( f ) ⊆ ri(S)×R , which gives S ⊆

ri(S) by applying the projection of V×R onto V . This proves Point 4. �
Combining Lemma 3.2 and Lemma 3.3 with all the properties established in Sec-

tion 2, we are now able to prove the Main Theorem.

Proof. [Proof of the Main Theorem] We may assume that C is not empty since
this equivalence is obviously true otherwise.

∗ ( =⇒ ) Assume the left-hand side of ⇐⇒ holds, let (x,r),(y,s) ∈ rc(Epi( f ))
with (x,r) 
= (y,s) , t ∈ (0,1) , and define the point (a,α) := (1− t)(x,r) + t(y,s) =
((1− t)x+ ty , (1− t)r+ ts) ∈V×R .

By Lemma 3.2, we already have (x,r),(y,s) ∈ Epi( f ) . Then, since C and f are
both convex, Epi( f ) is convex by Proposition 1.1, which implies (a,α) ∈ Epi( f ) .

There are now two cases to be considered.
• Case x = y and r < s .
Here we have a = x = y , which yields

f(a) = f (x) � r = (1− t)r+ tr < (1− t)r+ ts = α.

• Case x 
= y .
By strict convexity of f , one can write

f(a) < (1− t) f(x)+ t f(y) � (1− t)r+ ts = α.

In both cases, we get (a,α) ∈ ri(Epi( f )) by Point 2 in Proposition 2.4 since f is
upper semi-continuous at a .

This proves that Epi( f ) is strictly convex.
∗ ( ⇐= ) Assume the right-hand side of ⇐⇒ holds.
First of all, C is convex by Proposition 1.1. Moreover, C is open in Aff(C) by the

implication Point 1 =⇒ Point 4 in Lemma 3.3 with S := C .
On the other hand, given x,y ∈ C with x 
= y and t ∈ (0,1) , the points (x, f (x))

and (y, f (y)) are in Epi( f ) ⊆ rc(Epi( f )) , which yields

(a,α) := ((1− t)x+ ty , (1− t) f(x)+ t f(y)) ∈ ri(Epi( f ))
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since Epi( f ) is strictly convex.
Therefore, we get f ((1− t)x+ ty) = f (a) < α = (1− t) f(x)+ t f(y) by Point 1

in Proposition 2.8 with X := C and S := Epi( f ) by using Aff(Epi( f )) = Aff(C)×R
(see the first equality in Lemma 3.1) and by Point 1 in Proposition 2.3 with X := C .
This proves that the function f is strictly convex.

Now, since Epi( f ) is strictly convex and non-empty, we have ri(Epi( f )) 
= ∅ by
Proposition 2.9. On the other hand, since we have Aff(Epi( f )) = Aff(C)×R by the first
equality in Lemma 3.1, we can apply Proposition 2.1 with X := Aff(C) and S := C ,
and then obtain that f is bounded above on a subset of C which is non-empty and open
in Aff(C) . But this implies that the function f is continuous by Proposition 21 in [2,
Chapitre II, page 20].

Finally, given z0 ∈ rb(C) , we have ({z0}×R)∩ rc(Epi( f )) = ∅ by using the im-
plication Point 1 =⇒ Point 3 in Lemma 3.3 with S := C and z0 
∈ ri(C) . Hence, we
get f (z) −→ +∞ as z −→ z0 by Proposition 2.5. �

Proof of Proposition 1.2. ∗ ( =⇒ ) Assume that Epi( f ) is strictly convex.

Since Epi( f ) is not empty, the same holds for
◦

˙Epi( f ) by Proposition 2.9.

∗ ( ⇐= ) Assume that
◦

˙Epi( f ) is not empty.
By Proposition 2.1 with X := V and S := V , we get that f is bounded from

above on a non-empty open subset of V , and hence it is continuous by Proposition 21
in [2, Chapitre II, page 20]. Therefore, the Main Theorem with C := V implies that
Epi( f ) is strictly convex. �

Proof of Proposition 1.4. Point 1 =⇒ Point 2. Assume that Point 1 is satisfied.
Given an affine subspace G of V , the inclusion

Epi
(
f|C∩G

)
= Epi( f )∩ (G×R) ⊆ Epi( f )

yields

rc
(
Epi
(
f|C∩G

))
= Epi

(
f|C∩G

)∩ (Aff(C∩G)×R)

⊆ Epi
(
f|C∩G

)∩ (Aff(C)×R)

⊆ Epi( f )∩ (Aff(C)×R) = rc(Epi( f )) .

Therefore, for any two distinct points (x,r) and (y,s) in rc
(
Epi
(
f|C∩G

))
, we have

(x,r),(y,s) ∈ rc(Epi( f )) , which implies that each (z,t) ∈ ](x,r) , (y,s)[ is in ri(Epi( f ))
since Epi( f ) is strictly convex.

So, there exist a real number ε > 0 and a neighborhood Ω of z in V such that the
set (Ω∩Aff(C))×(t − ε , t + ε) is included in Epi( f ) , from which we deduce

[Ω∩Aff(C∩G)]×(t − ε , t + ε) ⊆ (Ω∩Aff(C)∩G)×(t− ε , t + ε)
= [(Ω∩Aff(C))×(t − ε , t + ε)]∩ (G×R)
⊆ Epi( f )∩ (G×R) = Epi

(
f|C∩G

)
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since one has Aff(C∩G) ⊆ Aff(C)∩G and Epi( f )∩ (G×R) = Epi
(
f|C∩G

)
, proving

that (z, t) is in rc
(
Epi
(
f|C∩G

))
.

This shows that Epi
(
f|C∩G

)
is strictly convex.

Point 2 =⇒ Point 1. This is clear.
Point 2 =⇒ Point 3. This is straightforward. �

Before proving Proposition 1.5, we need two key lemmas.

LEMMA 3.4. Given a convex subset C of a topological real vector space V and
a straight line L in V , we have the implication⎛
⎜⎝

C is open in Aff(C) ,

C∩L 
= ∅ ,

the subspace topology on L is Hausdorff

⎞
⎟⎠ =⇒ rb(C∩L) = rb(C)∩L .

Proof. Assume the left-hand side of =⇒ holds.
Using Point 3.b in Proposition 2.7 with S := C and W := L , we already have the

inclusion rb(C∩L) ⊆ rb(C)∩L .
Now, fix a point b∈C∩L⊆C = ri(C) and let a be an arbitrary point in rb(C)∩L .
Since we have a ∈ rc(C) , Proposition 16 in [2, Chapitre II, page 15] implies

]a,b[ ⊆ ri(C) = C , which yields ]a,b[ ⊆ C∩L since a and b both lie in the convex
set L .

The points a and b being distinct, we obtain L = Aff(]a,b[) ⊆ Aff(C∩L) ⊆
Aff(L) = L , and hence Aff(C∩L) = L .

Therefore, since we have L = Aff(C∩L)⊆Aff(C) and since C is open in Aff(C) ,
we then deduce that C∩L is open in L , which is equivalent to saying that C∩L is open
in Aff(C∩L) by using again Aff(C∩L) = L .

Conclusion: we get rb(C∩L) = rc(C∩L) �(C∩L) .
On the other hand, the inclusion ]a,b[⊆C∩L established above yields rc(]a,b[)⊆

rc(C∩L) by Point 1 in Proposition 2.7, which writes [a,b] ⊆ rc(C∩L) since we have
Aff(]a,b[) = L together with (0,1) = [0,1] and since the map γ : R −→ L defined
by γ(t) := a+ t(b− a) is a homeomorphism as a consequence of Theorem 2 in [2,
Chapitre I, page 14] and the fact that L is a finite dimensional affine space whose
topology is Hausdorff.

So, we obtain in particular a ∈ rc(C∩L) , and hence

a ∈ rb(C∩L) = rc(C∩L)�(C∩L)

since one has a ∈V �C ⊆V �(C∩L) . �

LEMMA 3.5. Given a convex subset C of Rn, a convex function f :C −→R , and
a point a ∈ rb(C) ⊆C, we have the equivalence

lim
x→a

f (x) = +∞ ⇐⇒
for any straight line L in Rn passing through a, lim

x→a
f (x) = +∞ with x ∈C∩L.
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Proof. ∗ ( =⇒ ) This implication is obvious.
∗ ( ⇐= ) Assume that we do not have f (x) −→ +∞ as x −→ a .
Since we can write rc(C) = rc(ri(C)) by Corollary 1 in [2, Chapitre II, bottom of

page 15] and since we have a ∈ rc(C) , this means that there exist a real number M > 0
and a sequence (xk)k�0 in ri(C) that converges to a with f (xk) � M for every k ∈ N .

Therefore, if we consider the set X := {xk | k ∈ N} , one obtains f (x) � M for
any x ∈ Conv(X) according to Point 4 in Remark 2.6.

Now, noticing that a lies in X , we get a ∈ rc(Conv(X)) = Conv(X)∩Aff(X)
since we have X ⊆ Conv(X) and since Aff(X) is closed in Rn.

On the other hand, since Conv(X) is not empty, the same holds for ri(Conv(X)) ,
which insures the existence of a point b ∈ ri(Conv(X)) .

Proposition 16 in [2, Chapitre II, page 15] then implies ]a,b[ ⊆ ri(Conv(X)) .
Moreover, since ri(C) is convex by Corollary 1 in [2, Chapitre II, bottom of

page 15], we have ri(Conv(X)) ⊆ Conv(X) ⊆ Conv(ri(C)) = ri(C) , and hence a does
not belong to ri(Conv(X)) since we have a 
∈ ri(C) , which yields b 
= a .

Finally, if L denotes the straight line in Rn passing through a and b , we do not
have f (x) −→+∞ as x −→ a with x ∈C∩L since the inequality f (x) � M holds for
any x ∈ ]a,b[⊆ ri(Conv(X))∩L ⊆ ri(C)∩L ⊆C∩L . �

Proof of Proposition 1.5. Since the equivalence is obvious when C is empty or
reduced to a single point, we may assume that C has at least two distinct points.

Point 1 =⇒ Point 2. This implication has already been proved in Proposition 1.4.
Point 2 =⇒ Point 1. Assume that Point 2 is satisfied.
First of all, the intersection of C with any straight line L in Rn is convex by

applying the converse part of the Main Theorem to the function f|C∩L . Hence, C is
convex.

Let us then show that C is open in Aff(C) .
Fix a point x0 ∈C , and consider the subset G := {x− x0 | x ∈C} of V .
Then the vector subspace W := {v− x0 | v ∈ Aff(C)} of V is generated by G

since C is a generating set of the affine space Aff(C) .
Hence, there exists a subset B of G which is a basis of W .
Denoting by d ∈ {1, . . . ,n} the dimension of the affine subspace Aff(C) of Rn,

we have dim(W ) = d , and hence there are points x1, . . . ,xd ∈C such that we can write
B = {xi− x0 | 1 � i � d} .

Now, for each index i ∈ {1, . . . ,d} , if Li denotes the straight line in Rn passing
through the points x0 and xi , then the strict convexity of Epi

(
f|C∩Li

)
implies that C∩Li

is open in Aff(C∩Li) = Li = Aff({x0 , xi}) by the implication Point 1 =⇒ Point 4 in
Lemma 3.3 with S := C∩Li , which insures the existence of a real number ri > 0 such
that the vector vi := ri(xi − x0) satisfies

{x0− vi , x0 + vi} ⊆ C∩Li ⊆ C.

Therefore, the convex hull U of
d⋃

i=1

{x0− vi , x0 + vi} lies in the convex set C .
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Since the map f : Rd −→ Rn defined by f (λ1, . . . ,λd) :=
d

∑
i=1

λivi is linear and

sends the canonical ordered basis (e1, . . . ,ed) of Rd to the family (v1, . . . ,vd) of Rn,
we can write U = x0 + f (Ω) , where Ω := {(λ1, . . . ,λd) ∈ Rd | |λ1|+ · · ·+ |λd| � 1}
is the convex hull of

d⋃
i=1

{−ei , ei} .

But (v1, . . . ,vd) is a basis of W since B is, which implies that f satisfies Im( f ) =
W and is a linear isomorphism onto its image. Therefore, x0 + f is a homeomorphism
from Rd (endowed with its usual topology) onto x0 +W = Aff(C) .

As a consequence, we then get that U is a neighbourhood of x0 in Aff(C) since
Ω is a neighborhood of the origin in Rd , and hence C is itself a neighborhood of x0 in
Aff(C) .

On the other hand, the function f is strictly convex since its restriction to any
straight line in Rn is strictly convex and since strict convexity is an affine notion.

Moreover, the convexity of f on the open convex subset C of the finite dimen-
sional affine space Aff(C) equipped with the topology induced from that of Rn implies
that the function f is continuous according to the corollary given in [2, Chapitre II,
page 20].

Finally, given any point a∈ rb(C) and any straight line L in Rn passing through a ,
we have either C∩L = ∅ , which obviously yields lim

x→a
f (x) = +∞ with x ∈C∩L , or

C∩L 
= ∅ , which first implies a∈ rb(C∩L) by Lemma 3.4, and then lim
x→a

f (x) = +∞

with x ∈C∩L by the Main Theorem since Epi
(
f|C∩L

)
is strictly convex.

In both cases, we obtain lim
x→a

f (x) = +∞ by Lemma 3.5. �
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e-mail: Stephane.Simon@univ-smb.fr

Patrick Verovic
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