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TRACE AND EXTENSION THEOREMS RELATING BESOV

SPACES TO WEIGHTED AVERAGED SOBOLEV SPACES

ARIEL BARTON

Abstract. There are known trace and extension theorems relating functions in a weighted Sobo-
lev space in a domain Ω to functions in a Besov space on the boundary ∂Ω . We extend these
theorems to the case where the Sobolev exponent p is less than one by modifying our Sobolev
spaces to consider averages of functions in Whitney balls. Averaged Sobolev spaces are also of
interest in the applications in the case where p > 1 , and so we also provide trace and exten-
sion results in that case. Finally, we provide some comparable results for Neumann traces and
extensions.
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[35] S. M. NIKOL’SKIĬ, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya [Approximation
of functions of several variables and imbedding theorems]. “Nauka”, Moscow, 1977. Second edition,
revised and supplemented.
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