
Mathematical
Inequalities

& Applications

Volume 21, Number 4 (2018), 967–983 doi:10.7153/mia-2018-21-66

NEW CARLSON–BELLMAN AND

HARDY–LITTLEWOOD DYNAMIC INEQUALITIES

S. H. SAKER, C. TUNÇ AND R. R. MAHMOUD
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Abstract. In this paper, we will prove some new dynamic inequalities of Carlson and Hardy-
Littlewood types on an arbitrary time scale T . These inequalities as special cases contain the
classical continuous and discrete Carlson-Bellman and Hardy-Littlewood type inequalities. The
results will be proved by employing the time scales Hölder inequality, some algebraic inequali-
ties and some basic lemmas designed and proved for this purpose.

1. Introduction

The first type of inequalities that we shall discuss in this paper is Carlson-type
inequalities. This type of inequalities had its inception eighty years ago by Carlson
[10], who proved that the following discrete inequality
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∞

∑
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)(
∞

∑
n=1

n2a2
n

)
, (1)

holds for any nonnegative sequence {an} . In the same paper Carlson proved that the
integral form of this inequality also holds. In particular, he proved the validity of the
following continuous inequality

(∫ ∞

0
f (x)dx

)4

� π2
(∫ ∞

0
f 2(x)dx

)(∫ ∞

0
x2 f 2(x)dx

)
, (2)

where f (x) is a Lebesgue measurable nonnegative function on [0,∞) . It should be
mentioned that both (1) and (2) are sharp, in the sense that the constant π2 cannot be
replaced by a smaller constant without violating the inequality. Hardy [17] published
two elementary proofs of Carlson’s inequality (1), one of Hardy’s proofs shows that
only the Schwarz inequality is needed to prove (1), provided that a clever trick is used.
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Bellman [4] employed one of Hardy’s original ideas and a genuinely new idea of
proving a multiplicative inequality by going via an additive inequality to extend the
inequality (1). He proved two versions of (1). The first one is(
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, (3)

where p, q > 1, λ , μ > 0 and the second one is(
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, (4)

where α, β > 1. Bellman also proved that the corresponding continuous inequalities
are also hold as follows(∫ ∞

0
f (x)dx

)qλ+pμ
< C3

(∫ ∞

0
xq+μ−1 f q(x)dx

)λ (∫ ∞

0
xp−λ−1 f p(x)dx

)μ
, (5)

and (∫ ∞

0
f (x)dx

)αβ+α−β
< C4

(∫ ∞

0
f α(x)dx

)(∫ ∞

0
xβ f β (x)dx

)α−1

. (6)

The constants C1 , C2 , C3 and C4 are positive constants depend only on the exponents.
The sharp constant in the general case was found later by Levin [21]. For more details
concerning Carlson type inequalities and their variants and extensions, we refer the
reader to the papers [11, 14, 18, 22], the book [20] and the references cited therein.

As an application for the general discrete Bellman’s inequality (3), using the sim-
ple substitution p = q and λ = μ , we could obtain the following inequality due to
Gabriel [14]

∞

∑
n=1
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(
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np−1−λap
n

) 1
2p

, (7)

where p > 1 and λ > 0. Also, the same substitutions in (5), leads directly to the con-
tinuous analogue of (7) as follows

∫ ∞

0
f (x)dx < G(p,λ )

(∫ ∞

0
xp−1+λ f p(x)dx

) 1
2p
(∫ ∞

0
xp−1−λ f p(x)dx

) 1
2p

, (8)

which can be found in [23].
The second type of inequalities that we will consider in this paper is Hardy-

Littlewood type inequalities which have been proved first by Hardy and Littlewood
[15]. In particular, they have used the calculus of variations technique to establish some
interesting integral inequalities which contain the function, its first and second deriva-
tives. One of their results in that celebrated paper, reads as(∫ ∞

0

(
y
′)2

dx

)2

� 4
∫ ∞

0
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0
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′′)2

dx. (9)
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The constant 4 is the best possible; moreover equality holds in (9) only when

y = Ae−
x
2 sin

(√
3

2
x− π

3

)
,

see also [16, Theorem 259]. In the same paper, they also proved a simpler and quite
different inequality. In particular, they proved that the following inequality

(∫ ∞

−∞

(
y
′)2

dx

)2

�
∫ ∞

−∞
y2dx

∫ ∞

−∞

(
y
′′)2

dx, (10)

holds. The constant 1 is the best possible, see also [16, Theorem 261]. More than forty
years later, Copson [12] employed a different approach to investigate Hardy-Littlewood
inequality (9).

In [13] Copson used the same approach used in [12] and proved that the discrete
analogues of (9) and (10) are also hold. Particularly, he established the following dis-
crete inequalities (
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(Δan)2
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where {an} is a non-negative sequence. Since the discovery of these inequalities, they
received a lot of attentions, we refer the interested reader to the books [16, Chapter
7][23, Chapter 1], the papers [3, 7, 19] and the references cited therein. Also, Weyl
[32] employed the classical Cauchy-Schwarz inequality for sums to prove the following
Hardy-Littlewood type inequality

(∫ ∞

−∞
y2dx

)2

� 4
∫ ∞

−∞
x2y2dx

∫ ∞

−∞

(
y
′)2

dx, (13)

in order to show the inverse relationship between the uncertainty of the mean value

Δx =
∫ ∞

−∞
x2y2dx,

of a co-ordinate x and the uncertainty of the mean value of its associate momentum

Δp =
∫ ∞

−∞

(
y
′)2

dx.

In recent years the study of dynamic inequalities on time scales has received a lot of
attention. The general idea is to prove a result for a dynamic inequality where the
domain of the unknown function is a so-called time scale T , which may be an arbitrary
closed subset of the real numbers R . The cases when the time scale is equal to the reals
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or to the integers represent the classical theories of integral and of discrete inequalities.
The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus, i.e., when T = R, T = N and T = qN0 =
{qt : t ∈ N0} where q > 1. For more details of Hardy’s type inequalities, we refer to
the papers [24, 25, 26, 27, 28, 29, 30, 31] and the recent book [1].

The question now arises: Is it possible to apply the calculus on time scales to prove
some new dynamic inequalities on which as special cases contain the inequalities (5),
(6), (9), (10) and (13)?

The main aim of this paper is to give an affirmative answer to this question. The
setup of the rest of the paper is as follows. In Section 2, we present some preliminaries
about the theory of time scales and some basic lemmas that will be used to prove our
main results of this paper. In Section 3, we state and prove the time scales version of
Carlson-Bellman type inequalities (5) and (6). In Section 4, we state and prove the time
scales versions of Hardy-Littlewood type inequalities (9), (10) and (13).

REMARK 1.1. It is worth to mention here that, for the proof of Hardy-Littlewood
inequality, we actually followed the technique of Hardy and Littlewood [15]. Further-
more, the generalization of Copson’s approach to an arbitrary time scales is still an open
problem.

2. Preliminaries on time scales

For completeness, we recall the following concepts related to the notion of time
scales. For more details of time scale analysis we refer the reader to the two books by
Bohner and Peterson [5], [6] which summarize and organize much of the time scale
calculus.

A time scale T is an arbitrary nonempty closed subset of the real numbers R . We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward jump operator and the backward jump operator
are defined by: σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}, respectively.
A point t ∈ T, is said to be left–dense if ρ(t) = t, is right–dense if σ(t) = t, is left–
scattered if ρ(t) < t and right–scattered if σ(t) > t. A function g : T → R is said to be
right–dense continuous (rd–continuous) provided g is continuous at right–dense points
and at left–dense points in T, left hand limits exist and are finite. The set of all such
rd–continuous functions is denoted by Crd(T).

The graininess function μ for a time scale T is defined by μ(t) := σ(t)− t �
0, and for any function f : T → R the notation f σ (t) denotes f (σ(t)). The three
most popular examples of calculus on time scales are differential calculus, difference
calculus, and quantum calculus, i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0}
where q > 1. The derivative of the product f g and the quotient f/g (where ggσ �= 0)
of two differentiable functions f and g are given by

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ , (14)(
f
g

)Δ
=

f Δg− f gΔ

ggσ . (15)
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In this paper, we will refer to the (delta) integral which is defined as follows. If GΔ(t) =
g(t) , then ∫ t

a
g(s)Δs := G(t)−G(a).

It can be shown (see [5]) that if g∈Crd(T), then the Cauchy integral G(t) :=
∫ t
t0

g(s)Δs

exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T. An improper integral is defined by

∫ ∞

a
g(t)Δt = lim

b→∞

∫ b

a
g(t)Δt,

and the integration by parts formula on time scales is given by

∫ b

a
u(t)vΔ(t)Δt = [u(t)v(t)]ba−

∫ b

a
uΔ(t)vσ (t)Δt. (16)

The time scales chain rule (see [5, Theorem 1.87]) is given by

(g ◦ δ )Δ(t) = g
′
(δ (d))δ Δ (t) , where d ∈ [t,σ (t)] , (17)

where it is assumed that g : R → R is continuously differentiable and δ : T → R is
delta differentiable. A simple consequence of Keller’s chain rule [5, Theorem 1.90] is
given by

(xγ (t))Δ = γ
1∫

0

[hxσ (t)+ (1−h)x(t)]γ−1 dh xΔ(t). (18)

The Hölder inequality, see [5, Theorem 6.13], on time scales is given by

∫ b

a
| f (t)g(t)|Δt �

[∫ b

a
| f (t)|γ Δt

] 1
γ
[∫ b

a
|g(t)|νΔt

] 1
ν
, (19)

where a, b ∈ T , f , g ∈ Crd(I,R), γ > 1 and 1/γ + 1/ν = 1. The special case γ =
ν = 2 in (19) yields the time scales Cauchy-Schwarz inequality.

Throughout this paper, we will assume that the functions in the statements of the
theorems are positive and rd-continuous functions and the integrals considered are as-
sumed to exist. We define the time scale interval [a,b]T by [a,b]T := [a,b]∩T and u∗
is the conjugate of u (in the sense that 1/u+1/u∗ = 1).

3. Dynamic inequalities of Carlson-Bellman’s type

In this section, we will state and prove some generalizations of Carlson-Bellman’s
type inequality (5) on time scales. To prove the main results, we need the following
inequality.

LEMMA 3.1. If Bxu � C+Axv , v > u > 0 , A, B, C > 0 for all positive x , then

Cv−uAu � K (u,v)Bv. (20)
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Proof. By assuming that x = (Bu/Av)
1

v−u , and substituting in Bxu �C+Axv and
follows a direct simplification we get the desired inequality (20). The proof is com-
plete. �

REMARK 3.1. This lemma may be considered as an extension of the well-known
fact that b2 � 4ac if bx � c+ax2 for all x � 0 and a, b, c � 0.

Now, we are ready to state and prove the main results of this section.

THEOREM 3.1. Let T be a time scale. If p, q > 1 , λ , η > 0 and f (x) is a
real-valued nonnegative function on (0,∞)

T
such that xq+η−1 f q(x) , xp−λ−1 f p(x) are

Δ-integrable functions on (0,∞)
T
, then

(∫ ∞

0
f (x)Δx

)qλ+pη
< K (p,q)

(∫ ∞

0
xq+η−1 f q(x)Δx

)λ (∫ ∞

0
xp−λ−1 f p(x)Δx

)η
,

(21)
where

K (p,q) :=

(
(pη +qλ )pη+qλ

(pη)pη (qλ )qλ

) 1
pq

2
(pq−1)(pη+qλ)

pq LpηMqλ ,

L :=

⎛
⎝∫ ∞

0

x−
p−λ−1

p−1 Δx

(1+ x)p∗

⎞
⎠

1
p∗

, and M :=

⎛
⎝∫ ∞

0

x−
q+η−1

q−1 Δx(
1+ 1

x

)q∗

⎞
⎠

1
q∗

.

Proof. Let 0 < r+1 < p and q < s+1 < 2q , then we can write that

∫ ∞

0
f (x)Δx =

∫ ∞

0

x
r
p f (x)

x
r
p (1+ x)

Δx+
∫ ∞

0

x
s
q f (x)

x
s
q
(
1+ 1

x

)Δx.

Applying Hölder’s inequality (19) on the first integral of the right hand side with index
p and on the the second integral with index q , we get that

∫ ∞

0
f (x)Δx �

(∫ ∞

0
xr f p(x)Δx

) 1
p
(∫ ∞

0

Δx

x
r

p−1 (1+ x)p∗

) 1
p∗

(22)

+
(∫ ∞

0
xs f q(x)Δx

) 1
q
(∫ ∞

0

Δx

x
s

q−1
(
1+ 1

x

)q∗

) 1
q∗

= L

(∫ ∞

0
xr f p(x)Δx

) 1
p

+M

(∫ ∞

0
xs f q(x)Δx

) 1
q

.

By raising the two sides to the power pq , we get that

(∫ ∞

0
f (x)Δx

)pq

�
[
L

(∫ ∞

0
xr f p(x)Δx

) 1
p

+M

(∫ ∞

0
xs f q(x)Δx

) 1
q
]pq

. (23)
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Applying the well-known inequality (see [23, page 500])

(a+b)r � 2r−1(ar +br), for r � 1, (24)

to the right-hand side of inequality (23) with r = pq , we have that(∫ ∞

0
f (x)Δx

)pq

� 2pq−1
[
Lpq

(∫ ∞

0
xr f p(x)Δx

)q

+Mpq
(∫ ∞

0
xs f q(x)Δx

)p]
.

Multiplying both sides by 1 and observing that sp+ p > pq > qr+q , we obtain that

1pq−qr−q ·
(∫ ∞

0
f (x)Δx

)pq

� 2pq−1
[
1 ·Lpq

(∫ ∞

0
xr f p(x)Δx

)q

+1sp+p−qr−q ·Mpq
(∫ ∞

0
xs f q(x)Δx

)p]
. (25)

Now, since Lemma 3.1 is valid for all positive x , we will apply it with the following
arguments

x = 1, u = pq−qr−q, v = sp+ p−qr−q,

A = 2pq−1Mpq
(∫ ∞

0
xs f q(x)Δx

)p

,

B =
(∫ ∞

0
f (x)Δx

)pq

,

C = 2pq−1Lpq
(∫ ∞

0
xr f p(x)Δx

)q

,

to get from (25) that(∫ ∞

0
f (x)Δx

)pq(sp+p−qr−q)

� K1 (p,q,r,s)
(∫ ∞

0
xs f q(x)Δx

)p(pq−qr−q)

×
(∫ ∞

0
xr f p(x)Δx

)q(sp−qp+p)

.

Taking (pq)th root of each side, we get that(∫ ∞

0
f (x)Δx

)sp+p−qr−q

� K2 (p,q,r,s)
(∫ ∞

0
xs f q(x)Δx

)p−r−1

×
(∫ ∞

0
xr f p(x)Δx

)s−q+1

.

By setting λ = p− r−1 and η = s−q+1, we get finally that(∫ ∞

0
f (x)Δx

)qλ+pη
� K (p,q)

(∫ ∞

0
xq+η−1 f q(x)Δx

)λ

×
(∫ ∞

0
xp−λ−1 f p(x)Δx

)η
,

which is the required inequality (21). The proof is complete. �
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REMARK 3.2. If T = R , then (21) reduces to the following continuous inequality

(∫ ∞

0
f (x)dx

)qλ+pη
< C

(∫ ∞

0
xq+η−1 f q(x)dx

)λ (∫ ∞

0
xp−λ−1 f p(x)dx

)η
, (26)

due to Bellman [4], where

C := 2
(pq−1)(pη+qλ)

pq

(
(pη +qλ )pη+qλ

(pη)pη (qλ )qλ

) 1
pq

×β
(

λ
p−1

,
p−λ
p−1

) p−1
η

×β
(

η
q−1

,
q−η
q−1

) q−1
λ

,

and β (·, ·) is the normal beta function. It is worth to mention here that the exact value
of the constant C was not stated in the original paper of Bellman.

REMARK 3.3. As a special case of (26), for p = q = 2 and λ = η = 1, we get
the following consequence of the original Carlson’s inequality

(∫ ∞

0
f (x)dx

)4

� 16

(∫ ∞

0
f 2(x)dx

)(∫ ∞

0
x2 f 2(x)dx

)
, (27)

with the constant π2 replaced by 16, which means that the constant in Theorem 3.1
can be improved to give the best one due to Carlson.

REMARK 3.4. If T = N , then (21) reduces to the discrete inequality (3) due to
Bellman.

In the following, we will state and prove the time scales version of (6).

THEOREM 3.2. Let T be a time scale. If α, β > 1 and f (x) is a real-valued
nonnegative function on (0,∞)

T
such that f α (x) , xβ f β (x) are Δ-integrable functions

on (0,∞)
T
, then

(∫ ∞

0
f (x)Δx

)αβ+α−β
< K (α,β )

∫ ∞

0
f α (x)Δx

(∫ ∞

0
xβ f β (x)Δx

)α−1

, (28)

where

K (α,β ) :=

(
(α + β )α+β

(α)α (β )β

) 1
αβ

2
(αβ−1)(α+β)

αβ Lα
1 Mβ

1 ,

L1 :=

(∫ ∞

0

Δx

(1+ x2)
1

α∗

) 1
α∗

, and M1 :=

(∫ ∞

0

(
x

1+ x2

)β ∗

Δx

) 1
β∗

.
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Proof. Let f (x) � 0 and α, β > 1, then we can write that∫ ∞

0
f (x)Δx =

∫ ∞

0

f (x)
1+ x2 Δx+

∫ ∞

0

x2 f (x)
1+ x2 Δx.

Applying the time scales Hölder’s inequality (19) to the two integrals on the right-hand
side, the first integral with index α and the second integral with index β , we get that

∫ ∞

0
f (x)Δx �

(∫ ∞

0
f α(x)Δx

) 1
α
(∫ ∞

0

Δx

(1+ x2)
1

α∗

) 1
α∗

+
(∫ ∞

0
xβ f β (x)Δx

) 1
β
(∫ ∞

0

(
x

1+ x2

)β ∗

Δx

) 1
β∗

= L1

(∫ ∞

0
f α (x)Δx

) 1
α

+M1

(∫ ∞

0
xβ f β (x)Δx

) 1
β

.

The rest of the proof is similar to the proof of Theorem 3.1 and will be omitted. The
proof is complete. �

REMARK 3.5. If T = R , then (28) reduces to the continuous inequality (6) due
to Bellman.

REMARK 3.6. If T = N , then (28) reduces to the discrete inequality (4) due to
Bellman.

4. Dynamic inequalities of Hardy-Littlewood’s type

In this section, we will state and prove some new dynamic inequalities of Hardy-
Littlewood’s type which as special cases contain the inequalities (9), (10) and (13).
Before we begin, we present the definition of Δ-measurable functions on time scales
and we set out the method used in [6, Chapter 5] by Bohner and Guseinov to define the
Lebesgue Δ-measure on T . First, by defining the measure m1 which assigns to each
interval [a,b)∩T its length, that is m1 ([a,b)) = b− a. Using m1 , they generate the
outer measure m∗

1 , defined for each subset E of T as

m∗
1 (E) =

{
infŔ

{
∑i∈IŔ

(bi−ai)
}
∈ R

+, if b /∈ E,

+∞, if b ∈ E,

with

Ŕ=

⎧⎨
⎩{[ai,bi)∩T}i∈IŔ

: IŔ ⊂ N, E ⊂
⋃
i∈I

Ŕ

([ai,bi)∩T)

⎫⎬
⎭ .

A set A ⊂ T is said to be Δ-measurable if the following equality

m∗
1 (E) = m∗

1 (E ∩A)+m∗
1 (E ∩ (T\A)) ,

holds for all subset E ⊂ T .
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DEFINITION 4.1. We say that f : T → R is Δ-measurable if for every α ∈ R , the
set

f−1([−∞,α)) = {t ∈ T : f (t) < α},
is Δ-measurable.

DEFINITION 4.2. Let E ⊂T be a Δ-measurable set and let p � 1 and let f : E →
R be a Δ-measurable function. We say that f belongs to Lp

Δ(E) provided that either

∫
E | f |pΔs < ∞, if 1 � p < ∞,

or there exists a constant C ∈ R such that

| f | � C, if p = +∞,

where f is Δ-almost every where on E.

Now, we use the above definitions to prove some lemmas that will be needed in
the proofs of the main results for this section.

LEMMA 4.1. Let T be a time scale and f : [t0,∞)T → [0,∞) be Δ-differentiable
such that

f ∈ L2
Δ[t0,∞)T, and f Δ ∈ L2

Δ[t0,∞)T.

Then
lim
t→∞

f (t) = 0.

Proof. Since f Δ ∈ L2
Δ[t0,∞), for every ε > 0, there exist t2 > t1 � t0 such that

∫ ∞

t1

∣∣∣ f�(t)
∣∣∣2 Δt < ε/2,

∫ ∞

t2

∣∣∣ f�(t)
∣∣∣2 Δt < ε/2.

From this, we see that

| f (t2)− f (t1)|2 =
∣∣∣∣
∫ t2

t1
f Δ(t)Δt

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

t1
f Δ(t)Δt−

∫ ∞

t2
f Δ(t)Δt

∣∣∣∣
2

�
∫ ∞

t1

(∣∣∣ f Δ(t)
∣∣∣)2

Δt +
∫ ∞

t1

(∣∣∣ f Δ(t)
∣∣∣)2

Δt < ε.

It follows that limt→∞ f (t) exists. We only prove that limt→∞ f 2(t) = 0. To show this,
argue by contradiction: Suppose that f 2 (t) � 0 as t → ∞ . This means that, we may
find a positive constant ε and a positive value of t > t0 for which

| f (t)|2 > ε, (29)

and which is so large that ∫ ∞

t

∣∣∣ f�(x)
∣∣∣2 Δx � 1

4
. (30)
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The time scales Hölder inequality (19) gives us for some 0 � t < y < t + ε that

∣∣∣∣
∫ y

t
f�(x)Δx

∣∣∣∣
2

� (y− t)
∫ y

t

∣∣∣ f�(x)
∣∣∣2 Δx,

which leads us directly after using (30) to the following

| f (y)− f (t)|2 � 1
4

ε, whence f (y) � f (t)− 1
2

√
ε >

1
2

√
ε. (31)

Thus ∫ y

t
| f (x)|2 Δx >

ε
4

ε =
ε2

4
.

This implies that
∫ ∞
t0
| f (t)|2 Δt diverges which asserts that f is not L2

Δ− integrable
which is a contradiction. Then limt→∞ f (t) = 0. The proof is complete. �

The proof of the following lemma is similar to the proof of Lemma 4.1 and hence
it is omitted.

LEMMA 4.2. Let T be a time scale and f : [t0,∞)T → [0,∞) be �2−differentiable
such that

f Δ ∈ L2
Δ[t0,∞)T, and f ΔΔ ∈ L2

Δ[t0,∞)T.

Then

lim
t→∞

f Δ(t) = 0.

By combining the above two lemmas, we get the following result.

LEMMA 4.3. Let T be a time scale f : [t0,∞)T → [0,∞) . If f , f� , f�� ∈
L2
�[t0,∞)T , then

lim
x→∞

[
f (x)+ f�(x)

]2
= 0. (32)

The following lemma plays an important role in proving our main results and its
proof depends on the application of the result given in Lemma 4.3.

LEMMA 4.4. Let T be a time scale. If f� ∈ Crd [0,∞)T and f , f� , f�� ∈
L2
�[0,∞)T , then

∫ ∞

0

(
f�(x)

)2
Δx <

∫ ∞

0
f 2(x)Δx+

∫ ∞

0

(
f��(x)

)2
Δx. (33)
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Proof. Note that for all t > 0, we have

∫ ∞

0

[
( f )2 −

(
f�

)2
+
(

f��
)2− ( f + f� + f��)2

]
(x)Δx (34)

= lim
t→∞

∫ t

0

[
( f )2−

(
f�

)2
+
(

f��
)2− ( f + f� + f��)2

]
(x)Δx

= −2 lim
t→∞

∫ t

0

[(
f�

)2
+ f f� + f f��+ f� f��

]
(x)Δx

= −2 lim
t→∞

∫ t

0

[(
f + f�

)(
f� + f��

)]
(x)Δx.

Using the time scales chain rule (18) with γ = 2 and g = f + f� , we get that

(
g2)Δ

= 2

1∫
0

[hgσ +(1−h)g]dhgΔ (35)

� 2

1∫
0

[hg+(1−h)g]dhgΔ = 2ggΔ.

Substituting (35) into (34), we have that

∫ ∞

0

[
( f )2−

(
f�

)2
+
(

f��
)2 − ( f + f� + f��)2

]
(x)Δx

> − lim
X→∞

∫ X

0

[(
f (x)+ f�(x)

)2
]�

Δx

= lim
X→∞

([
f (0)+ f�(0)

]2 −
[
f (X)+ f�(X)

]2
)

=
[
f (0)+ f�(0)

]2 − lim
X→∞

[
f 2(X)+2 f (X) f�(X)+

(
f�(X)

)2
]
. (36)

Applying Lemma 4.3, we find that all limits on the right-hand side of (36) should tend
to zero and hence (36) reduces to

∫ ∞

0

[
( f )2 −

(
f�

)2
+
(

f��
)2

]
(x)Δx (37)

>
[
f (0)+ f�(0)

]2
+

∫ ∞

0
( f + f� + f��)2(x)Δx,

which can be written as[
f (0)+ f�(0)

]2
+

∫ ∞

0
( f + f� + f��)2(x)Δx+

∫ ∞

0

(
f�

)2
(x)Δx (38)

<
∫ ∞

0

[
( f )2 +

(
f��

)2
]
(x)Δx.
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The inequality (33) follows from (38), with strict inequality unless f satisfies

f (0)+ f�(0) = 0 and f + f� + f�� = 0.

This completes the proof. �

Now, we are ready to state and prove our main results for this section. We begin
with the time scales version of Hardy-Littlewood’s inequality (9).

THEOREM 4.1. Let T be a time scale. If f , f� , f�� ∈ L2
�(0,∞)T , then

(∫ ∞

0

(
f�(x)

)2
Δx

)2

< 4
∫ ∞

0
( f (x))2 Δx

∫ ∞

0

(
f��(x)

)2
Δx. (39)

Proof. From Lemma 4.4 we see that (33) holds, and then setting y = βx for β > 0,
we have

β 2
∫ ∞

0

(
f�(y)

)2
Δy �

∫ ∞

0
( f (y))2 Δy+ β 4

∫ ∞

0

(
f��(y)

)2
Δy. (40)

Dividing (40) by β 2, we get

∫ ∞

0

(
f�(y)

)2
Δy � β−2

∫ ∞

0
( f (y))2 Δy+ β 2

∫ ∞

0

(
f��(y)

)2
Δy. (41)

Using the substitution

β 2 =

( ∫ ∞
0 ( f (y))2 Δy∫ ∞

0 ( f��(y))2 Δy

) 1
2

,

in inequality (41), we can find easily that this reduces to (39). This completes the
proof. �

REMARK 4.1. If we choose T = N , then (39) reduces to the discrete inequality
(11) due to Copson.

REMARK 4.2. If we choose T = R , then (39) reduces to the continuous inequal-
ity (9) due to Hardy and Littlewood.

Next, we get the time scales version of Hardy-Littlewood’s inequality (10).

THEOREM 4.2. Let T be a time scale. If f , f� , f�� ∈ L2
�(−∞,∞)T, then

(∫ ∞

−∞

(
f�(x)

)2
Δx

)2

<

∫ ∞

−∞
( f σ (x))2 Δx

∫ ∞

−∞

(
f��(x)

)2
Δx. (42)
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Proof. From Lemma 4.3, we have that

lim
t→±∞

[
f (t)+ f�(t)

]2
= 0.

Integrating the left hand side of (42) by parts and then applying the time scales Hölder’s
inequality (19), we have that

(∫ ∞

−∞

(
f�(x)

)2
Δx

)2

=
(
−

∫ ∞

−∞
f σ (x) f��(x)Δx

)2

�
∫ ∞

−∞
( f σ (x))2 Δx

∫ ∞

−∞

(
f��(x)

)2
Δx,

which is the desired inequality (42). The proof is complete. �

REMARK 4.3. If we choose T = N , then (42) reduces to the discrete inequality
(12) due to Copson.

REMARK 4.4. If we choose T = R , then (42) reduces to the continuous inequal-
ity (10) due to Hardy and Littlewood.

Finally, we are ready to state and prove the time scales version of (13) as follows.

THEOREM 4.3. Let T be a time scale. If f , f� , f�� ∈ L2
�(−∞,∞)T, then

(∫ ∞

−∞
( f σ )2 (x)Δx

)2

� 2
∫ ∞

−∞
x2 ( f + f σ )2 (x)Δx

∫ ∞

−∞

(
f�

)2
(x)Δx. (43)

Proof. From (14), we may write that

x( f 2)Δ = x f f� + x f σ f�. (44)

Applying the classical Hölder’s inequality for sums with n = 2, a1 = x f , b1 = f�,
a2 = x f σ and b2 = f�, we get that

x( f 2)Δ = x f f� + x f σ f�

�
√

2
√

(x f )2 +(x f σ )2 f�.

Hence(∫ ∞

−∞
x( f 2)Δ(x)Δx

)2

� 2

(∫ ∞

−∞

√
(x f )2 +(x f σ )2 f�Δx

)2

� 2

(∫ ∞

−∞
x2( f 2 +( f σ )2)(x)Δx

)(∫ ∞

−∞

(
f�

)2
(x)Δx

)
, (45)
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where we have used the time scales Hölder’s inequality (19). Using integration by parts
(16) on the left hand-side of (45), we obtain that

∫ ∞

−∞
x( f 2)Δ(x)Δx = x f 2(x)

∣∣∞−∞ −
∫ ∞

−∞
( f σ )2 (x)Δx.

Applying the same ideas of Lemma 4.3, we can get that

lim
t→±∞

[t f (t)]2 = 0,

which leads to ∫ ∞

−∞
x( f 2)Δ(x)Δx = −

∫ ∞

−∞
( f σ )2 (x)Δx.

Squaring both sides gives us that

(∫ ∞

−∞
x( f 2)Δ(x)Δx

)2

=
(∫ ∞

−∞
( f σ )2 (x)Δx

)2

. (46)

Combining (45) and (46), we obtain that

(∫ ∞

−∞
( f σ )2 (x)Δx

)2

� 2
∫ ∞

−∞
x2 ( f + f σ )2 (x)Δx

∫ ∞

−∞

(
f�

)2
(x)Δx,

which is the desired inequality (43). The proof is complete. �

REMARK 4.5. If we choose T = N , then (43) reduces to the following discrete
inequality (

∞

∑
−∞

a2
n+1

)2

�
∞

∑
−∞

n2 (an +an+1)
2

∞

∑
−∞

(Δan)2 ,

which is essentially new.

REMARK 4.6. If T = R , then f = f σ and (43) reduces to the continuous inequal-
ity (13) due to Weyl.
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