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PHILOS’ INEQUALITY ON TIME SCALES AND ITS APPLICATION

IN THE OSCILLATION THEORY

BAŞAK KARPUZ

(Communicated by M. Bohner)

Abstract. In [Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 7-8, 367–370], Philos
proved the following result: Let f : [t0,∞)R →R be an n -times differentiable function such that

f (n)(t) � 0 ( �≡ 0) and f (t) > 0 for all t � t0 . If f is unbounded, then f (t) � λ tn−1

(n−1)! f (n−1)(t) for

all sufficiently large t , where λ ∈ (0,1)R . In this work, we first present time scales unification
of this result. Then, by using it, we provide sufficient conditions for oscillation and asymptotic
behaviour of solutions to higher-order neutral dynamic equations.

1. Introduction

In this paper, we will study oscillation of solutions to the higher-order delay dy-
namic equations of the form

[
x(t)+A(t)x

(
α(t)

)]Δn

+B(t)x
(
β (t)

)
= 0 for t ∈ [t0,∞)T, (1)

where n ∈ N , T is a time scale unbounded above, t0 ∈ T , A ∈ Crd([t0,∞)T,R) and
B ∈ Crd([t0,∞)T,R+

0 ) , and α,β ∈ Crd([t0,∞)T,T) are unbounded nondecreasing func-
tions such that α(t),β (t) � t for all t ∈ [t0,∞)T . We will confine our attention to the
following ranges of the coefficient A .

(R1) A ∈ Crd([t0,∞)T, [0,1]R) with limsupt→∞ A(t) < 1.

(R2) A ∈ Crd([t0,∞)T, [−1,0]R) with liminft→∞ A(t) > −1.

The qualitative theory of dynamic equations has been developing faster for second-
order and first-order equations when compared to higher-order equations. Although
the theory of dynamic equations unifies the theories of differential and of difference
equations, one can see that there is not much accomplished for higher-order dynamic
equations. This is caused by the technical obstacles in the computations in the proofs
and the absence of the dynamic generalizations of the basic inequalities one of which is
the so-called Philos’ inequality which we will prove its time scales generalization here.

Philos’ inequality reads as follows.
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PHILOS’ INEQUALITY. [[27, Lemma 2]] Assume that n∈N and f ∈Cn([t0,∞),R+)
with f Δn � 0 (�≡ 0) on [t0,∞) . If f is unbounded, then we have

f (t) � (t − s)n−1

(n−1)!
f (n−1)(t) for all t � s,

where s � t0 is sufficiently large.

A discrete counterpart of Philos’ inequality is given in [1], which reads as follows.

DISCRETE PHILOS’ INEQUALITY. [[1, Corollary 1.8.12]] Let { f (t)} be a se-
quence defined for t = t0,t0 + 1, · · · , and f (t) > 0 and Δn f (t) � 0 (�≡ 0) for t =
t0,t0 +1, · · · . Then, there exists a large integer s � t0 such that

f (t) � (t − s)(n−1)

(n−1)!
Δn−1 f (2n−m−1t) for all t = s,s+1, · · · ,

where (·) denotes the falling factorial function and m is the key number in discrete
Kiguradze’s lemma ([1, Theorem 1.8.11]).

Philos’ inequality and its consequences, which have been reference for a large
number of papers, can be regarded as one of the corner stones in the oscillation theory
of higher-order delay differential equations. A result similar to this is attended to be
proved in [28, Lemma 5], however there are some inconsistencies in its proof. We will
state and prove the dynamic generalization of Philos’ inequality, which covers the one
for continuous case and improves the one for discrete case. After proving the dynamic
generalization of Philos’ inequality, we will provide easily verifiable and efficient com-
parison tests for the oscillation and asymptotic behaviour of solutions to higher-order
dynamic equations depending on the order and the two ranges of the neutral coefficient
given above.

Some results for the asymptotic behaviour of solutions of higher-order dynamic
equations can also be found in [2, 11, 12, 14, 15, 16, 17, 20, 21, 22, 25, 28]. As we will
be making comparison with first-order dynamic equations, we find useful to redirect the
readers to the papers [4, 5, 7, 9, 10, 19, 23, 26], where they can find the most important
oscillation tests for first-order dynamic equations.

To give an exact definition of a solution for the delay dynamic equation (1), we
need to define t−1 := min{α(t0),β (t0)} .

DEFINITION 1. (Solution) A function x : [t−1,∞)T → R , which is rd-continuous
on [t−1, t0]T and x+A ·x◦α is n times Δ-differentiable on [t0,∞) , is called a solution
of (1) provided that it satisfies the functional delay equation (1) identically on [t0,∞) .

It can be shown as in [18] that (1) admits a unique solution, which exists on the
entire interval [t−1,∞)T , when an rd-continuous initial function ϕ : [t−1,t0]T → R is
prescribed. More precisely, we mean in the equation that x(t) = ϕ(t) for t ∈ [t−1,t0]T .

DEFINITION 2. (Oscillation) A solution x of (1) is called nonoscillatory if there
exists s ∈ [t0,∞)T such that x is either positive or negative on [s,∞) . Otherwise, the
solution is said to oscillate (or is called oscillatory).
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The outline of the paper is organized as follows. § 2 contains some fundamental
results on qualitative properties of functions on time scales, and we prove Philos’ in-
equality in its subsection § 2.1. In the subsection § 2.2, we quote some recent results
on the oscillation/nonoscillation of dynamic equations, which will be required in the
sequel. § 3 consists of two subsections. In the first subsection § 3.1, we give some com-
parison theorems on the qualitative behaviour of higher-order delay dynamic equations
without a neutral term, and in the second subsection § 3.2, we extend these results to
higher-order delay dynamic equations with a neutral term. In the appendix section § 4,
we present a brief introduction to the time scales calculus and supply some important
results concerning the properties of the polynomials on time scales.

2. Technical lemmas

In this section, we will form the basic facilities for the proof of our main result.

LEMMA 1. [Kiguradze’s lemma [2, Theorem 5]] Assume that supT = ∞ , n ∈ N

and f ∈ Cn
rd([t0,∞)T,R+

0 ) . Suppose that either f Δn � 0 (�≡ 0) or f Δn � 0 (�≡ 0) on
[t0,∞)T . Then, there exist s ∈ [t0,∞)T and m ∈ [0,n)Z such that (−1)n−m f Δn

(t) � 0
for all t ∈ [s,∞)T . Moreover, the following assertions hold.

(i) f Δk
(t) > 0 holds for all t ∈ [s,∞)T and all k ∈ [0,m)Z .

(ii) (−1)m+k f Δk
(t) > 0 holds for all t ∈ [s,∞)T and all k ∈ [m,n)Z .

LEMMA 2. [[2, Lemma 7]] If supT = ∞ , n ∈ N and f ∈ Cn
rd([t0,∞)T,R) , then

the following conditions are true.

(i) liminft→∞ f Δn
(t) > 0 implies limt→∞ f Δk

(t) = ∞ for all k ∈ [0,n)Z .

(ii) limsupt→∞ f Δn
(t) < 0 implies limt→∞ f Δk

(t) = −∞ for all k ∈ [0,n)Z .

COROLLARY 1. [[12, Corollary 2.10]] If supT = ∞ and f ∈ Cn
rd([t0,∞)T,R+

0 ) ,
n ∈ N , then

lim
t→∞

f Δk
(t) = 0 for all k ∈ (m,n)Z,

where m ∈ [0,n)Z is the key number in Kiguradze’s lemma.

2.1. Philos’ inequality

In this section, we present and prove the dynamic generalization of the well-known
inequality [27, Lemma 2].

THEOREM 1. [Dynamic Philos’ inequality] Assume that supT = ∞ , n ∈ [2,∞)Z

and f ∈ Cn
rd([t0,∞)T,R+

0 ) with f Δn � 0 (�≡ 0) on [t0,∞)T . Then, we have

f (t) � hn−1(t,s) f Δn−1
(t) for all t ∈ [s,∞)T, (2)

where s ∈ [t0,∞)T is defined as in Kiguradze’s lemma.
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To prove the dynamic generalization of Philos’ inequality, we need a series of
lemmas.

REMARK 1. Let T be a time scale with a linear forward jump, i.e., σ(t) := qt +h
for t ∈ T , where q ∈ [1,∞)R and h ∈ R

+
0 . By induction, one can prove the following

two properties.

(P1) hn(t,s) = 1
Γq(n) ∏n−1

i=0

(
t −σ i(s)

)
for s,t ∈ T and n ∈ N0 , where Γq is the q -

Gamma function defined by Γq(n) := limλ→q ∏n−1
i=1

λ i−1
λ−1 for n ∈ N .

(P2) hn(t,s) = (−1)nq
n(n−1)

2 hn
(
s,ρn−1(t)

)
for s,t ∈ T and n ∈ N0 .

It follows from (P1) and (P2) that

lim
t→∞

hn(t,s)
tn

=
1

Γq(n)
and lim

s→∞

hn(t,s)
sn = (−1)n q

n(n−1)
2

Γq(n)
for s,t ∈ T and n ∈ N0.

REMARK 2. First, for the case T = R , (2) reads as

f (t) � (t − s)n−1

(n−1)!
f (n−1)(t) for all t ∈ [s,∞)R.

Next, for the case T = Z , (2) reduces to

f (t) � (t − s)(n−1)

(n−1)!
Δn−1 f (t) for all t ∈ [s,∞)Z,

where (·) denotes the falling factorial function and Δ is the difference operator. As
Δn−1 f is nonincreasing on [s,∞)Z , we have Δn−1 f (t) � Δn−1 f (2n−m−1t) for all t ∈
[s,∞)Z . Therefore, dynamic Philos’ inequality improves [1, Corollary 1.8.12] even in
the particular case T = Z . Finally, for the case T = qZ ∪{0} , (2) becomes

f (t) �
n−1

∏
i=0

t −qis

∑i
j=0 q j

Dn−1
q f (t) for all t ∈ [s,∞)T,

where Dq is the q -difference operator (see Table 2 and Table 4).

LEMMA 3. If k ∈ N0 and s ∈ T , then

(−1)khk(s,t) � hk(t,s) for all t ∈ [s,∞)T.

Proof. The proof is trivial if k = 0. Assume that the claim is true for some k∈N0 .
By Property 1, we have

(−1)k+1hk+1(s,t) = (−1)k+1
∫ s

t
hk

(
s,σ(η)

)
Δη = (−1)k

∫ t

s
hk

(
s,σ(η)

)
Δη

�
∫ t

s
hk

(
σ(η),s

)
Δη �

∫ t

s
hk(η ,s)Δη = hk+1(t,s)
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for all t ∈ [s,∞)T . This shows that the inequality is also true when k is replaced with
(k + 1) . By mathematical induction, we justify the validity of the inequality for all
k ∈ N0 . �

LEMMA 4. If k, � ∈ N0 and s ∈ T , then

hk(t,s)h�(t,s) � hk+�(t,s) for all t ∈ [s,∞)T.

Proof. The proof is obvious if k = 0 or � = 0. Hence, we let k, � ∈ N below. By
Lemma 7, we have

hk+�(t,s) =
∫ t

s
hk−1

(
t,σ(η)

)
h�(η ,s)Δη for all t ∈ [s,∞)T.

It follows from Property 1 that h�(·,s) is increasing on [s,∞)T , which yields

hk+�(t,s) �
(∫ t

s
hk−1

(
t,σ(η)

)
Δη

)
h�(t,s) = hk(t,s)h�(t,s) for all t ∈ [s,∞)T,

where we have used (28) in the last step. �

LEMMA 5. If k ∈ N , � ∈ N0 and s ∈ T , then

(−1)�
∫ t

s
hk−1

(
t,σ(η)

)
h�(η ,t)Δη � hk+�(t,s) for t ∈ [s,∞)T.

Proof. The claim holds with equality for � = 0 by (28). Below, we will consider
the case where � ∈ N . Let k, � ∈ N , then we have

(−1)�
∫ t

s
hk−1

(
t,σ(η)

)
h�(η ,t)Δη

= (−1)�
∫ t

s
hk

(
t,σ(η)

)(∫ η

t
h�−1(ζ ,t)Δζ

)
Δη

= (−1)�
∫ t

s
hk

(
t,σ(η)

)(∫ s

t
h�−1(ζ ,t)Δζ −

∫ η

s
h�−1(ζ ,t)Δζ

)
Δη

= (−1)�
∫ t

s
hk

(
t,σ(η)

)(
h�(s,t)−

∫ η

s
h�−1(ζ ,t)Δζ

)
Δη

= (−1)�hk+1(t,s)h�(s,t)+ (−1)�−1
∫ t

s
hk

(
t,σ(η)

)∫ η

s
h�−1(ζ , t)ΔζΔη

for all t ∈ [s,∞)T . Considering Property 1, we learn that the last term above is nonneg-
ative. Thus, we have

(−1)�
∫ t

s
hk

(
t,σ(η)

)
h�(η ,t)Δη � (−1)�hk+1(t,s)h�(s,t) � hk+1(t,s)h�(t,s)

� hk+�+1(t,s)
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for all t ∈ [s,∞)T . Note that we have applied Lemma 3 and Lemma 4 in the first and
the second steps above, respectively. Thus, this completes the proof. �

Now, we have prepared all tools required for the proof of Theorem 1.

Proof of dynamic Philos’ inequality. Using Taylor’s formula, Lemma 1 (i) and
Property 1, we have

f (t) =
m−1

∑
k=0

hk(t,s) f Δk
(s)+

∫ t

s
hm−1

(
t,σ(η)

)
f Δm

(η)Δη

�
∫ t

s
hm−1

(
t,σ(η)

)
f Δm

(η)Δη (3)

for all t ∈ [s,∞)T . Noting that (n−m−1) is even, we obtain by Lemma 1 (ii) that

f Δm
(s) =

n−m−1

∑
k=0

hk(s,t) f Δm+k
(t)+

∫ s

t
hn−m−1

(
s,σ(η)

)
f Δn

(η)Δη

=
n−m−1

∑
k=0

(−1)khk(s,t)(−1)k f Δm+k
(t)+

∫ t

s
hn−m−1

(
s,σ(η)

)(− f Δn
(η)

)
Δη

� hn−m−1(s,t) f Δn−1
(t) (4)

for all t ∈ [s,∞)T . Substituting (4) into (3) gives us

f (t) �
(∫ t

s
hm−1

(
t,σ(η))hn−m−1(η ,t)Δη

)
f Δn−1

(t) for t ∈ [s,∞)T,

which completes the proof by an application of Lemma 5. �

Now, we have the following corollary of dynamic Philos’ inequality.

COROLLARY 2. Assume that supT = ∞ , n ∈ N and f ∈ Cn
rd([t0,∞)T,R+

0 ) with
f Δn � 0 on [t0,∞)T . If limt→∞ f (t) �= 0 , then for every λ ∈ (0,1)R there exists r ∈
[s,∞)T such that

f (t) � λhn−1(t,t0) f Δn−1
(t) for all t ∈ [r,∞)T,

where s ∈ [t0,∞)T is defined as in Kiguradze’s lemma.

Proof. If m ∈ [1,n)Z , then the proof follows from dynamic Philos’ inequality

since hn−1(·, t0) ∼ hn−1(·,s) , i.e., limt→∞
hn−1(t,t0)
hn−1(t,s)

= 1. To complete the proof, we
consider the case where m = 0. This case is possible only when n ∈ N is odd. Let
L := limt→∞ f (t) . Since L > 0 by the assumption, for any λ ∈ (0,1)R (if and only if√

λ ∈ (0,1)R ), we may find r ∈ [s,∞)T such that f (r) � L√
λ

and hn−1(t,t0)
hn−1(t,r)

� 1√
λ

for

all t ∈ [r,∞)T . Then, we have

f (r) � f (t) � L �
√

λ f (r) for all t ∈ [r,∞)T (5)
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and
hn−1(t,r) �

√
λhn−1(t,t0) for all t ∈ [r,∞)T. (6)

Since (n−1) is even, it follows from (4) and Lemma 3 that

f (r) � hn−1(r,t) f Δn−1
(t) � hn−1(t,r) f Δn−1

(t) for all t ∈ [r,∞)T,

which yields by combining with (5) and (6) that

f (t) �
√

λ f (r) �
√

λhn−1(t,r) f Δn−1
(t)

� λhn−1(t,t0) f Δn−1
(t)

for all t ∈ [r,∞)T . This completes the proof. �

2.2. Recent results

In this subsection, we give some recent results on delay dynamic equations of
higher order. Consider the delay dynamic inequality

xΔn
(t)+B(t)x

(
β (t)

)
� 0 for t ∈ [t0,∞)T (7)

and the corresponding equation

xΔn
(t)+B(t)x

(
β (t)

)
= 0 for t ∈ [t0,∞)T. (8)

To be able to extract the next corollary from the following theorem quoted from
[20], we will give it below with a corrected proof.

THEOREM 2. [[20, Theorem 1]] The following statements are equivalent.

(i) The inequality (7) has an eventually positive solution.

(ii) The equation (8) is nonoscillatory.

Proof. The proof will be completed if we can show that (i)⇒(ii) since the impli-
cation (ii)⇒(i) is obvious. Let x be an eventually positive solution of (7), then there
exists t1 ∈ [t0,∞)T such that x(t) , x

(
β (t)

)
> 0 for all t ∈ [t1,∞)T . An application of

Kiguradze’s lemma ensures existence of m ∈ [0,n)Z with (n+m) odd and t2 ∈ [t1,∞)T

such that t ∈ [t2,∞)T implies xΔk
(t) > 0 for all k ∈ [0,m)Z and (−1)m+kxΔk

(t) > 0 for
all k ∈ [m,n)Z . Integrating (7) over [t,∞)T ⊂ [t2,∞)T for a total of (n−m−1) times,
we get

xΔm+1
(t) �

∫ ∞

t
hn−m−2

(
t,σ(η)

)
B(η)x

(
β (η)

)
Δη for all t ∈ [t2,∞)T

by using Corollary 1 (see [16, Theorem 3.1]). Integrating this over [t,∞)T ⊂ [t2,∞)T ,
we get

xΔm
(t) � L+

∫ ∞

t
hn−m−1

(
t,σ(η)

)
B(η)x

(
β (η)

)
Δη for all t ∈ [t2,∞)T,
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where
L := lim

t→∞
xΔm

(t).

By Taylor’s formula, for all t ∈ [t2,∞)T , we have

x(t) =
m−1

∑
k=0

hk(t,t2)xΔk
(t2)+

∫ t

t2
hm−1

(
t,σ(η)

)
xΔm

(η)Δη

�
m−1

∑
k=0

hk(t,t2)xΔk
(t2)+

∫ t

t2
hm−1

(
t,σ(η)

)
xΔm

(η)Δη

�
m−1

∑
k=0

hk(t,t2)xΔk
(t2)

+
∫ t

t2
hm−1

(
t,σ(η)

)[
L+

∫ ∞

η
hn−m−1

(
η ,σ(ζ )

)
B(ζ )x

(
β (ζ )

)
Δζ

]
Δη

= z(t)+
∫ t

t2
hm−1

(
t,σ(η)

)∫ ∞

η
hn−m−1

(
η ,σ(ζ )

)
B(ζ )x

(
β (ζ )

)
ΔζΔη ,

where

z(t) :=
m−1

∑
k=0

hk(t,t2)xΔk
(t2)+Lhm(t,t2) for t ∈ [t2,∞)T.

Define
Ω := {y ∈ C([t2,∞)T,R+

0 ) : x � y � z on [t2,∞)T}
and

(Γy)(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Γy)(t3), t ∈ [t2, t3)T

z(t)+
∫ t

t2
hm−1

(
t,σ(η)

)
×

∫ ∞

η
hn−m−1

(
η ,σ(ζ )

)
B(ζ )y

(
β (ζ )

)
ΔζΔη , t ∈ [t3,∞)T,

where t3 ∈ [t2,∞)T satisfies β (t3) � t2 . Define a sequence of functions {yk}k∈N0 ⊂ Ω
by yk := Γyk−1 for k ∈ N and y0 := z . It is clear that {yk}k∈N0 is a nondecreasing
sequence of functions bounded above by x . Define y := limk→∞ yk , then we see that
y = Γy on [t2,∞)T , which is a nonoscillatory solution of (8). Note that y satisfies

yΔk
(t)> 0 for all k∈ [0,m)Z and (−1)m+kyΔk

(t)> 0 for all k∈ [m,n)Z . This completes
the proof. �

COROLLARY 3. [[20, Corollary 1]] The following statements are equivalent.

(i) The inequality (7) has an eventually positive solution, which does not tend to zero
asymptotically.

(ii) The equation (8) has a nonoscillatory solution, which does not tend to zero
asymptotically.
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THEOREM 3. [[20, Theorem 2]] Assume that (R1) holds.

(i) If n ∈ N is even and (1) has a nonoscillatory solution, then so does

xΔn
(t)+

[
1−A

(
β (t)

)]
B(t)x

(
β (t)

)
= 0 for t ∈ [t0,∞)T. (9)

(ii) If n∈ N is odd and (1) has a nonoscillatory solution, which does not tend to zero
at infinity, then so does (9).

THEOREM 4. [[20, Theorem 3]] Assume that n ∈ N and (R2) holds. If (1) has a
nonoscillatory solution, which does not tend to zero at infinity, then so does (8).

3. Main results

3.1. Nonneutral equations

We continue our discussion with nonneutral differential equations. We first con-
sider even-order dynamic equations.

THEOREM 5. Assume that n ∈ N is even. If there exists λ ∈ (0,1)R such that the
first-order delay dynamic equation

xΔ(t)+ λB(t)hn−1
(
β (t),t0

)
x
(
β (t)

)
= 0 for t ∈ [t0,∞)T (10)

is oscillatory, then (8) is also oscillatory.

Proof. Assume, on the contrary, that x is an eventually positive solution of (8).
Then, there exists t1 ∈ [t0,∞)T such that x(t) , x

(
β (t)

)
> 0 for all t ∈ [t1,∞)T . By

Kiguradze’s lemma, we learn that there exist t2 ∈ [t1,∞)T and m ∈ [0,n)2Z−1 such that
for all t ∈ [t2,∞)T , we have xΔk

(t)> 0 for all k∈ [0,m)Z and (−1)m+kxΔk
(t) > 0 for all

k ∈ [m,n)Z . In particular, x is positive and increasing on [t2,∞)T . Using Corollary 2,
we get for λ ∈ (0,1)R that

x(t) � λhn−1(t,t0)xΔn−1
(t) for all t ∈ [t3,∞)T (11)

for some t3 ∈ [t2,∞)T . Substituting (11) into (8), and using the nondecreasing nature
of x(β (·)) (x is increasing and β is nondecreasing), we obtain

xΔn
(t)+ λB(t)hn−1

(
β (t),t0

)
xΔn−1(

β (t)
)

� 0 for all t ∈ [t4,∞)T, (12)

where t4 ∈ [t3,∞)T satisfies β (t4) � t3 . Note that xΔn−1
is positive on [t4,∞)T and

satisfies

yΔ(t)+ λB(t)hn−1
(
β (t),t0

)
y
(
β (t)

)
� 0 for all t ∈ [t4,∞)T,

which is a contradiction since (10) also has an eventually positive solution by Theo-
rem 2 (see also [10, Theorem 3.1 and Corollary 4.2]). This completes the proof. �

Combining Theorem 5 with [9] and [23] yields the following corollary.
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COROLLARY 4. Assume that n ∈ N is even. If

liminf
t→∞

inf
−λBhn−1(β (·),t0)∈R+([β (t),t)T)

λ>0

{
1

λe−λBhn−1(β (·),t0)
(
t,β (t)

)}
> 1, (13)

or

liminf
t→∞

∫ t

β (t)
B(η)hn−1

(
β (η),t0

)
Δη > γ (14)

and

limsup
t→∞

∫ σ(t)

β (t)
B(η)hn−1

(
β (η),t0

)
Δη > 1−

(
1−

√
1− γ

)2
, (15)

then every solution of (1) oscillates.

We next consider odd-order dynamic equations.

THEOREM 6. Assume that n ∈ N is odd and∫ ∞

t0
B(η)hn−1

(
t0,σ(η)

)
Δη = ∞. (16)

If there exists λ ∈ (0,1)R such that the first-order delay dynamic equation (10) is os-
cillatory, then every solution of (8) is oscillatory or tends to zero asymptotically.

Proof. Assume, on the contrary, that x is an eventually positive solution of (8),
which asymptotically does not tend to zero. Then, there exists t1 ∈ [t0,∞)T such that
x(t) , x

(
β (t)

)
> 0 for all t ∈ [t1,∞)T . By Kiguradze’s lemma, we learn that there exist

t2 ∈ [t1,∞)T and m ∈ [0,n)2Z such that for all t ∈ [t2,∞)T , we have xΔk
(t) > 0 for all

k ∈ [0,m)Z and (−1)m+kxΔk
(t) > 0 for all k ∈ [m,n)Z . We have the following two

possible cases.

(C1) If m ∈ [2,n)2Z , then we proceed as in the proof of Theorem 5 and arrive at a
contradiction.

(C2) If m = 0, then we learn that x is bounded, thus it follows from [16, Theorem 3.1]
that (16) implies limt→∞ x(t) = 0, which is also a contradiction.

The proof is therefore complete. �
Combining Theorem 6 with [9] and [23] yields the following corollary.

COROLLARY 5. Assume that n ∈ N is odd and (16) holds. If (13), or (14) and
(15), then every solution of (1) oscillates or tends to zero asymptotically.

EXAMPLE 1. Let T = qZ∪{0} , where q∈ (1,∞)R , and consider the q -difference
equation

Dn
qx(t)+

b0

tn
x(t/qβ0) = 0 for t ∈ qN, (17)
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where n ∈ N , b0 ∈ R
+ and β0 ∈ N . Remark 1 and

∫ ∞

1

b0

η
Δη = ∞,

readily imply (16). We compute

∫ t

t/qβ0

b0

ηn hn−1
(
η/qβ0 ,1

)
Δη =

∫ t

t/qβ0

b0

ηn

hn−1
(
η/qβ0 ,1

)
(η/qβ0)n−1

(
η
qβ0

)n−1

Δη

∼ 1

qβ0(n−1)Γq(n−1)

∫ t

t/qβ0

b0

η
Δη

=
(q−1)b0β0

qβ0(n−1)Γq(n−1)

for t ∈ qN . In view of [9, Example 3.3], (13) reduces to

(q−1)b0β0

qβ0(n−1)Γq(n−1)
>

(
β0

β0 +1

)β0+1

. (18)

Hence, if (18) holds, then every solution of (17) oscillates when n is even while oscil-
lates or tends to zero asymptotically when n is odd.

3.2. Neutral equations

In this subsection, we extend our results to higher-order neutral dynamic equa-
tions. First two theorems here consider the first range (R1).

THEOREM 7. Assume that n ∈ N is even and (R1) hold. Moreover, assume that
there exists λ ∈ (0,1)R such that the first-order delay dynamic equation

xΔ(t)+ λ
[
1−A

(
β (t)

)]
B(t)hn−1

(
β (t),t0

)
x
(
β (t)

)
= 0 for t ∈ [t0,∞)T (19)

is oscillatory. Then, (1) is also oscillatory.

Proof. Assume, on the contrary, that (1) has a nonoscillatory solution. Then, by
Theorem 3 (i), (9) also has a nonoscillatory solution. Without loss of generality, assume
that x is an eventually positive solution of (9). There exists t1 ∈ [t0,∞)T such that
x(t) , x(α(t)) , x(β (t)) > 0 for all t ∈ [t1,∞)T . It follows from Kiguradze’s lemma
that there exist t2 ∈ [t1,∞)T and m ∈ [0,n)2Z−1 such that for all t ∈ [t2,∞)T , we have

xΔk
(t) > 0 for all k ∈ [0,m)Z and (−1)m+kxΔk

(t) > 0 for all k ∈ [m,n)Z . In particular,
x is positive and increasing on [t2,∞)T . By Corollary 2, (11) holds for all t ∈ [t3,∞)T ,
where t3 ∈ [t2,∞)T . Substituting (11) into (1), and using the nondecreasing nature of
x(β (·)) , we obtain

xΔn
(t)+ λ

[
1−A

(
β (t)

)]
B(t)hn−1

(
β (t),t0

)
xΔn−1(

β (t)
)

� 0 for all t ∈ [t4,∞)T,
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where t4 ∈ [t3,∞)T satisfies β (t4) � t3 . Note that xΔn−1
is positive on [t4,∞)T and

satisfies

yΔ(t)+ λ
[
1−A

(
β (t)

)]
B(t)hn−1

(
β (t),t0

)
y
(
β (t)

)
� 0 for all t ∈ [t4,∞)T.

By Theorem 2 (see also [10, Theorem 3.1 and Corollary 4.2]), this implies that (10)
also has an eventually positive solution. This is a contradiction and the proof is com-
plete. �

COROLLARY 6. Assume that n ∈ N is even and (R1) hold. If

liminf
t→∞

inf
−λ [1−A(β (·))]Bhn−1(β (·),t0)∈R+

λ>0

{
1

λe−λ [1−A(β (·))]Bhn−1(β (·),t0)
(
t,β (t)

)}
> 1, (20)

or

liminf
t→∞

∫ t

β (t)

[
1−A

(
β (η)

)]
B(η)hn−1

(
β (η),t0

)
Δη > γ (21)

and

limsup
t→∞

∫ σ(t)

β (t)

[
1−A

(
β (η)

)]
B(η)hn−1

(
β (η),t0

)
Δη > 1−

(
1−√

1− γ
)2

, (22)

then every solution of (1) oscillates.

We would like to mention that Theorem 7 includes [29, Theorem 1].

EXAMPLE 2. Let T = Z and consider the difference equation

Δn[x(t)+a0x(t−α0)]+
b0

t p x(t−β0) = 0 for t ∈ N0, (23)

where n ∈ N is even, a0 ∈ (0,1)R , b0 ∈ R
+ , p ∈ R

+
0 , α0,β0 ∈ N . By [24, Theo-

rem 3 (i)], (23) is oscillatory if p � 1. By [3, Theorem 1 (a)], (23) is oscillatory if
p < n−1, or

p = n−1 and b0(1−a0) >
(2n−1)(n−1)

(n−1)!
β β0

0

(β0 +1)β0+1
,

where (·) denotes the falling factorial function. Applying Corollary 6 to (23) drops the
factor (2n−1)(n−1) above (see Remark 2), i.e., p < n−1, or

p = n−1 and b0(1−a0) >
1

(n−1)!
β β0

0

(β0 +1)β0+1

implies oscillation of all solutions of (23).
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Before we proceed to the next theorem, we would like to remark that (R1) estab-
lishes equivalence between divergence of the integrals

∫ ∞

t0
B(η)hn−1

(
t0,σ(η)

)
Δη and

∫ ∞

t0

[
1−A

(
β (t)

)]
B(η)hn−1

(
t0,σ(η)

)
Δη .

THEOREM 8. Assume that n ∈ N is odd, (R1) and (16) hold. Moreover, assume
that there exists λ ∈ (0,1)R such that the first-order delay dynamic equation (19) is
oscillatory. Then, every solution of (1) oscillates or tends to zero asymptotically.

Proof. Assume the contrary that (1) admits a nonoscillatory solution, which asymp-
totically does not tend to zero. By Theorem 3 (ii), (9) also has a solution of the same
kind. Without loss of generality, assume that x is an eventually positive solution of
(9), which does not tend to zero at infinity. Then, x(t) , x(α(t)) , x(β (t)) > 0 for all
t ∈ [t1,∞)T , where t1 ∈ [t0,∞)T . It follows from Kiguradze’s lemma that there exist

t2 ∈ [t1,∞)T and m ∈ [0,n)2Z such that for all t ∈ [t2,∞)T , we have xΔk
(t) > 0 for all

k ∈ [0,m)Z and (−1)m+kxΔk
(t) > 0 for all k ∈ [m,n)Z . We have the following two

possible cases.

(C1) If m ∈ [2,n)2Z , then we proceed as in the proof of Theorem 7 and arrive at a
contradiction.

(C2) If m = 0, then x is positive and decreasing, i.e., x is bounded. By virtue of [16,
Theorem 3.1], limt→∞ x(t) = 0. This is a contradiction.

The proof is therefore complete. �

COROLLARY 7. Assume that n ∈ N is odd, (R1) and (16) hold. If (20), or (21)
and (22), then every solution of (1) oscillates or tends to zero asymptotically.

The following remark can be extracted from the first part of the proof of the above
theorem.

REMARK 3. Under the conditions of Theorem 8 except (16), we can prove that
every unbounded solution of (1) oscillates.

The final result of this section focuses on the latter range (R2).

THEOREM 9. Assume that n ∈ N , (R2) and (16) hold. Moreover, assume that
there exists λ ∈ (0,1)R such that the first-order delay dynamic equation (10) is oscil-
latory. Then, every solution of (1) oscillates or tends to zero asymptotically.

Proof. The proof follows by using similar arguments to that in the proofs of The-
orem 7 and Theorem 8 but in that case Theorem 4 should be applied instead of Theo-
rem 3. Thus, the details of the proof are omitted. �
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COROLLARY 8. Assume that n∈N , (R2) and (16) hold. If (13), or (14) and (15),
then every solution of (1) oscillates or tends to zero asymptotically.

EXAMPLE 3. [See [13, Example 3]] Let T = R , and n ∈ N be even. Consider[
x(t)− 1− sin(t)

3
x(t/α0)

](n)

+
b0

tn
x(t/β0) = 0 for t ∈ [1,∞)R, (24)

where α0 ∈ (1,∞)R , β0 ∈ [1,∞)R and b0 ∈ R
+ . If we apply Theorem 9, the corre-

sponding first-order differential equation is

x′(t)+ λ
b0

β n−1
0 (n−1)!t

x(t/β0) = 0 for t ∈ [1,∞)R, (25)

where λ ∈ (0,1)R , which is oscillatory if

b0 ln(β0)
β n−1

0 (n−1)!
>

1
e
.

By [13, Theorem 2, Corollary 5], all solutions to (24) oscillate if

b0

β n−1
0 (n−1)!(n−1)

>
1
4
.

Thus, Theorem 9 gives a better result when β n−1
0 > exp

{
4
e

}
or equivalently β0 >

exp
{

4
e(n−1)

}
. For instance, when n = 4, we have β0 > 1.63314.

4. Appendix

4.1. Appendix A: Time scales essentials

A time scale, which inherits the standard topology on R , is a nonempty closed
subset of reals. Here, and later throughout this paper, a time scale will be denoted by
the symbol T , and the intervals with a subscript T are used to denote the intersection of
the usual interval with T . For t ∈T , we define the forward jump operator σ : T→T by
σ(t) := inf(t,∞)T while the backward jump operator ρ : T → T is defined by ρ(t) :=
sup(−∞, t)T , and the graininess function μ : T →R

+
0 is defined to be μ(t) := σ(t)− t .

T R hZ, h ∈ R
+ qN0 , q ∈ (1,∞)R

σ(t) t t +h qt
ρ(t) t t−h t/q
μ(t) 0 h (q−1)t

Table 1: The explicit forms of the forward jump, the backward jump and the graininess on some
time scales.

A point t ∈T is called right-dense if σ(t) = t and/or equivalently μ(t) = 0 holds;
otherwise, it is called right-scattered, and similarly left-dense and left-scattered points
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are defined with respect to the backward jump operator. For f : T → R and t ∈ T , the
Δ-derivative f Δ(t) of f at the point t is defined to be the number, provided it exists,
with the property that, for any ε > 0, there is a neighborhood U of t such that

|[ f σ (t)− f (s)]− f Δ(t)[σ(t)− s]| � ε|σ(t)− s| for all s ∈U,

where f σ := f ◦σ on T . We mean the Δ-derivative of a function when we only say
derivative unless otherwise is specified.

T R hZ, h ∈ R
+ qN0 , q ∈ (1,∞)R

f Δ(t) f ′(t)
f (t +h)− f (t)

h
f (qt)− f (t)

(q−1)t

Table 2: The explicit forms of the delta derivative on some time scales.

A function f is called rd-continuous provided that it is continuous at right-dense
points in T , and has a finite limit at left-dense points, and the set of rd-continuous func-
tions is denoted by Crd(T,R) . The set of functions C1

rd(T,R) includes the functions
whose derivative is in Crd(T,R) too. For a function f ∈C1

rd(T,R) , the so-called simple
useful formula holds

f σ (t) = f (t)+ μ(t) f Δ(t) for all t ∈ T
κ ,

where T
κ := T\{supT} if supT < ∞ and satisfies ρ(supT)< supT ; otherwise, T

κ :=
T . For s, t ∈ T and a function f ∈ Crd(T,R) , the Δ-integral of f is defined by

∫ t

s
f (η)Δη = F(t)−F(s) for s,t ∈ T,

where F ∈ C1
rd(T,R) is an antiderivative of f , i.e., FΔ = f on T

κ .

T R hZ, h ∈ R
+ qN0 , q ∈ (1,∞)R∫ t

s
f (η)Δη

∫ t

s
f (η)dη h

t/q−1

∑
η=s/q

f (hη) (q−1)
logq(t/q)

∑
η=logq(s)

f (qη )qη

Table 3: The explicit forms of the delta integral on some time scales.

4.2. Appendix B: Time scales polynomials

The generalized polynomials on time scales (see [2, Lemma 5] and/or [6, § 1.6])
hk ∈ C(T×T,R) are defined by

hk(t,s) :=

⎧⎨
⎩

1, k = 0∫ t

s
hk−1(η ,s)Δη , k ∈ N

for s, t ∈ T. (26)
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T R hZ, h ∈ R
+ qN0 , q ∈ (1,∞)R

hn(t,s)
(t− s)n

n!
1
n!

n−1

∏
i=0

(t− ih− s)
n−1

∏
i=0

t−qis

∑i
j=0 q j

Table 4: The explicit forms of the monomials on some time scales.

Note that, for all s,t ∈ T and all k ∈ N0 , the function hk satisfies

hΔ1
k (t,s) =

{
0, k = 0

hk−1(t,s), k ∈ N.
(27)

PROPERTY 1. [[17, Property 1]] By using induction and (26), it is easy to see for
all k ∈ N0 that hk(·,s) � 0 on [s,∞)T and (−1)khk(·,s) � 0 on (−∞,s]T . In view of
(27), for all k ∈ N , hk(·,s) is increasing on [s,∞)T , and (−1)khk(·,s) is decreasing on
(−∞,s]T .

LEMMA 6. [Taylor’s formula [6, Theorem 1.113]] If n ∈ N , s ∈ T and f ∈
Cn

rd(T,R) , then

f (t) =
n−1

∑
k=0

hk(t,s) f Δk
(s)+

∫ t

s
hn−1

(
t,σ(η)

)
f Δn

(η)Δη for t ∈ T.

LEMMA 7. [[8, Theorem 4.1]] If k ∈ N , � ∈ N0 and s ∈ T , then

hk+�(t,s) =
∫ t

s
hk−1

(
t,σ(η)

)
h�(η ,s)Δη for t ∈ T.

As an immediate consequence of Lemma 7, we can give the following alternative
definition of the generalized polynomials:

hk(t,s) :=

⎧⎨
⎩

1, k = 0∫ t

s
hk−1

(
t,σ(η)

)
Δη , k ∈ N

for s,t ∈ T. (28)

REMARK 4. Using [6, Theorem 1.112] in Lemma 3 yields the inequality

gk(t,s) � hk(t,s) for t ∈ [s,∞)T and k ∈ N0,

where gk ∈ C(T×T,R) is defined by

gk(t,s) :=

⎧⎨
⎩

1, k = 0∫ t

s
gk−1

(
σ(η),s

)
Δη , k ∈ N

for s,t ∈ T.
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