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SHARP REDHEFFER-TYPE AND BECKER-STARK-TYPE
INEQUALITIES WITH AN APPLICATION

CHAO-PING CHEN AND NEVEN ELEZOVIC

(Communicated by I. Pinelis)

Abstract. In this paper, we give sharp Redheffer-type and Becker-Stark-type inequalities for
trigonometric functions. As an application of Redheffer-type inequality, we improve the well-
known Yang Le inequality.

1. Introduction

Redheffer [21] proposed, then Williams [25] proved that, for x € R,

1—x? - sinx

< ) 1
1 +x2 X M
or alternatively

n?—x%  sinx @

m24+x2 T x

In 2012, He and Huang [16] pointed out (without proof) that, for 0 <x < 7,
2_ 2 : 2_ 2
e —X sinx e —X
(3)

2+ ox? X w2+ Bx?’

with the best possible constants o =1 and 8 = %2 —1.In2013, Aharonov and Elias [2]
rediscovered and proved this inequality. In 2016, Bhayo and Sandor [8, Theorem 7]
proved the right-hand side of (3). We notice that the proof from [8] is more elegant.
Some Redheffer-type inequalities for trigonometric and hyperbolic functions were
established in [8, 11, 17,22,37,41]. For example, Chen et al. [11] proved that, for
x| < /2,
n? —4x? <
m244x2

Also in [16], He and Huang pointed out (without proof) that, for 0 < x < /2,

COSX. 4)

n? —4x? - - n? —4x? 5)
— =~ COSXx - e—
24 (16 _ 4),2 2 (=2 2’
w2+ (2 —4)x 2+ (5 —4)x
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where the constants % —4 and %2 — 4 are the best possible. Aharonov and Elias
[2], Bhayo and Sandor [8, Theorem 9] rediscovered and proved this inequality. The
inequality (5) can be written for 0 < x < /2 as

2 2 2 2
T — (2 e — (2
STa (2%) 5 <cosx < T (2x) . (6)
2+ (2 —1)(2x) 22+ (2 1)(2x)
It is known in the literature that

4/ tanx T
A/m_ tanx o
T—2x X T—2x

for 0 < x < /2. The left-hand side inequality (7) was presented by Steckin [23], while
the right-hand side inequality (7) was proved by Ge [14].
Becker and Stark [7] showed that for 0 < x < /2,

8 tanx 2

T e L
2 — 452 X w2 — 452

®)

The Becker-Stark inequality (8) has attracted much interest of many mathematicians
and has motivated a large number of research papers (cf. [6,9, 10, 12, 19,24,38,39,40]
and the references cited therein).

All results of the present paper are motivated by the papers [22] and [8]. In view
of the inequalities above, in this paper we give sharp Redheffer-type and Becker-Stark-
type inequalities. As an application of Redheffer-type inequality for sinx/x, we im-
prove the well-known Yang Le inequality.

The numerical values given have been calculated using the computer program
MAPLE 13.

2. Redheffer-type inequality

Theorem 1 gives a alternative proof of (3).

THEOREM 1. The inequalities (3) hold for 0 < x < &, where the constants o0 = 1
and B = %2 —1=0.644934... are the best possible, in the sense that & = 1 can not be

replaced by a smaller number, and B = %2 — 1 can not be replaced by a larger number.

Proof. Clearly, the left-hand side of (3) holds for &« = 1. We now prove the right-
hand side of (3) with B = Z — 1, i.e.,

sintx 1 —x2

— < —, 0<x<1. 9
X 1+ Bx? * ©)

‘We consider two cases.
Case 1: 0 <x<0.6.
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The following inequality is obtained by truncation of an alternating series,

sinnx<1 (mx)>  (mx)*

X 6 120
for x € R and x # 0. We have, using (10),

1—x? (mx)?  (mx)* sin7mx
1+B2 5 T20 /W

+f(x)

and it is sufficient to prove that f(x) > 0. This can be written in the form

fx) ! [1 2 <1 . (”g)z + %)(1 +Bx2)}

Ry
2.4 2 2
__mx (17 BT e
6(1+ Bx2) \ 60 20

Thus, f(x) > 0 for x € (0,0.6].
Case2: 0.6 <x<1.
Replacing x by 1 —x leads to equivalent inequality:

sinmx 2x — x>

< , 0<x<04,
(l—x) ~1+B(1—x) x
so it is sufficient to prove that
2x — x? 1—x (mx)?  (mx)*
= . —1 — >0
SO =R T 6 120
for 0 < x < 0.4. We can write
X
g(‘x>_ 1+B(1_x)2gl(x)a
where
2 2 2.2 4.2
b3 X ), WX X
=2—— —5x+—+2"——+—
g1(x) 3 X+ 3 +2x G + 36
23 e it ot %t ' % a%x® b«

1061

(10)

3 18 6 * 36 720 60 * 360 * 120  720°

This can be written as

2 2 2.2 4.2
/4 T°x  , Tmx~  7whx
=(2———5x+— -t
g1(x) < ¢ Tt Ay ¢ T 36)
6.2\ .2
364+ 1272x — 27 — 67242 42 TX7\ X7
—l—( + 12n°x X X"+ mx 20 )36

4)65

T
12+ 27+ 6x — x| =——.
+< +21° 4 6x nx>720
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Each function in parenthesis is positive on (0,0.4), so g; and g are also positive on
this interval.

Hence, the right-hand side of (9) holds with 3 = %2 —1.

If we write (3) as

1 1—x?
B < (M—l)<(x, 0<x<1,

X2\ sin(7x)
we find that
2 2 2
im L (PO ) S (P )
x—0+ x2 \_ sin(7x) 6 x—1-x% \_ sin(7x)

Hence, the inequalities (3) hold, and the constants oz =1 and 3 = %2 — 1 are the best
possible. The proof is complete. [

REMARK 1. Following the same method as was used in the proof of Theorem 4
below, we can prove that the function

1 [ 7x(1—x%)
IX)=5 | ———=—1
() X2 ( sin(7x)
is strictly increasing for 0 < x < 1, and

2
T
lim I(x) =——1 d limI(x)=1
Il =g -1 md i 1)
(we omit the proof). Thus, Theorem 1 is proved.

Theorem 2 gives another upper bound in (2).

THEOREM 2. The inequality

sinx  m—x3

—_— <= 0 11
P <7t3+0x3’ <x<Tm (11)

holds, where the constant 6 =2 is the best possible.

Proof. We first prove (11) with 8 =2, i.e.,

sin(zx)  1—x°

< , 0<x<1 12
X 1+ 6x3 . 12)
‘We consider two cases.
Case 1: 0 <x<0.6.
Denote
1—x3 22 ot
+—4+G(x).

1+20 6 120
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Because of (10), it is sufficient to prove that G is positive on (0,0.6].

G(x L[ (122 2 (o0
® e JERES]

T 1420 6 120
_ w2 [ 18x ﬁ+2x3_ il I G1(x).
6(1+2x3) > 20 10 6(1+42x3)
We shall prove that G| is decreasing on [0,0.6].
18 7mx mxt 18 n? mxt
Gix)=—— -2y 26— )25 <0, vxeR
1(x) p= 10+ X 7 < rc2+< lo)x 5 <0, Vxe

Hence, G is decreasing on [0,0.6]. Since G;(0.6) =~ 0.08333 > 0, we conclude that
G, and therefore G are positive on (0,0.6].

Case2: 0.6 <x<1.

Replacing x by 1 —x leads to equivalent inequality:

sin7mx 1—(1—x)3

0<x<0.4
xS Tr2(l—xp 5T

We continue as in the first case. Because of (10), it is sufficient to prove

1—(1-x)>3 [1 ittt

T2l —xp ‘—+—]>°

h(x):=(1—x) 5 120

for 0 < x < 0.4. Let us denote

¥

h(x) = mhl(x),

where

2 B e I = I L B U

T
M) =2 b - T T S e e

Now we have
4.2 4.3 4.4

4
X 3n*x X X
W) =1 —m2aomie— 5 _ 2,2 .
1(x) o4 2n°x 20 x4 20 5 + B
2 2 2.2
1_222_221_”_ E_TC_X
< TT+2nx—1 0 5 D
Noting that
2 2 2.2
b3 X WX
1-m>+27°% <0 and 1-—=+—"—-""">0
T+ 2n°x an 10+ 3 B

hold on [0,0.4], we obtain that /] (x) <0 on [0,0.4]. Hence, h(x) is decreasing on
[0,0.4]. Since £ (0.4) ~ 0.56956 > 0 it follows that & and therefore & are positive on
(0,0.4).
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Hence, the inequality (12) holds with 8 = 2.

If we write (11) as
1 [ 7x(1—x)
= ——-1 ?]
x3 ( sin(7x) >> ’

i L (nx(l—x3) _1> N

sin(7x)

we find that

Hence, the inequality (11) holds, and the constant 6 = 2 is the best possible. The proof
is complete. [l

It follows from the left-hand side of (3) and inequality (11) that

2 0 . 3.3
nr—t sint mw—¢

—_— < — < 0<t<m 13
2+ ar? t w3+ 013’ ’ (13)

or alternatively
1—x*>  singx  1-x°
1—|—ch2< X 14 0x3"
where the constants o« = 1 and 8 = 2 are the best possible. In particular, we have

0<x<1, (14)

2_ .2 : 3,3
T —x sinx  @w—x
TS~ 0<x<nm 15
w2+ x2 X 73+ 2x3 * (15)
The choice ox =1 andﬁ:%z—l in (3) yields
2_ .2 : 2_ 2
T —x°  sinx e —x O<x<nm (16)

m+x2 T x 7r2+(%2—1)x27

Sandor and Bhayo [22] established the following inequalities:

. 2 2
sinx - —x
—_— 171:2—-|-x2’ 0<x<ﬂ:, (17)
where ¢; = 1.07514, and
i 4 — x4
smx 0O<x<m, (18)

< )

X T4 x4
where a = 2.175.
*18”*”3+2V(1§2j‘;§)+36”4*3”5 —2.2302.... By MAPLE 13, we find that,
for x < xg, the upper bound in (16) is better than the one in (15). For xp < x < 7, the
upper bound in (15) is better than the one in (16).

Let x; = 0.742276... and x, = 2.668968.... By MAPLE 13, we find that, for
X} < x < x, the upper bound in (17) is better than the one in (15). For x € (0,x;) U
(x2, ), the upper bound in (15) is better than the one in (17).

Let x* =2.602792.... By MAPLE 13, we find that, for 0 < x < x*, the upper
bound in (18) is better than the one in (15). For x* < x < &, the upper bound in (15) is
better than the one in (18).

Let xg =
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REMARK 2. The gamma function has the following reflection formula (see [, p.

256]): a
MM - = s (19)

and recurrence formula
[(z+1) =2zI(2).

For the representation of trigonometric functions in terms of gamma function, Bhayo
and Séandor [8] pointed out that, (19) can be written as

_Lzr<1+f)r(1—f>:B(1+f>3<1—f), O<x<m (20
sinx T T T T

where W)
I'(x)'(y
B(x,y) = ——+—
®) Flx+y)
denotes the beta function. The logarithmic differentiation to both sides of (19) gives the
following reflection formula:

T
tan(rz)

y(l—1)—y()= ) Qn

where y(x) = T"(x)/T(x) is the digamma function. Replacing z by ¢+ 1/2 in (19)

yieds
1 1
SIS ENES PN T . (22)
cosx m® \2 =& 2 n 2

Also in [8], Bhayo and Sandor established some inequalities for the gamma, digamma
and beta functions. For example, Bhayo and Sandor [8, Theorem 6] proved that, for
y € (0,1), the following inequality holds:

I x+y

B(x,y) < — , O0<x<1. 23
)< STs x (23)
The inequality (23) is reversed for x > 1.
We obtain from (14) that
1—x% 1 i 11—
al _ s X 0<x<l. 24)

< )
1+x2 " T(1+x)T(1—x) X 14253

Theorem 3 presents a more general result that includes (15) as its special case.

THEOREM 3. Let p > 3 and q < 2 be real numbers. Then, we have

w9 — x4 sinx P —xP

_— 0<x<m, 25
wd+ (g —1)x4 X P+ (p—1)xP . (25)

where the constants g — 1 and p — 1 are he best possible.
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Proof. Replacing x by mx in (25) leads to equivalent inequality:

1—x4 in 1 —xP
A A (26)
14+ (g—1)x4 X I+ (p—1)xr
Denote for real p, real positive @ and 0 <x < 1,
1 —xP
—F———, P#0,
14 (ap—1)xP
wp) =4 =1 @7
Inx
; p=0.
Inx—a
Differentiation yields
axP(xP — plnx—1)
0
, T+ (ap—nwp P70
w'(p) =

a Inx \2
= =0.
2 (a—lnx) ’ P

We have w'(p) > 0 for p € R, because of the well known inequality / — 1 > Inz, for
all # > 0. Hence, the function w is strictly increasing for p € R.
From (24) and the monotonicity of function w, we obtain
1—x9 - l—x2<sin77:x< 1—x3 P 1—xP
T+(g—Dx1 ~14x2 ~ ax 1428 1+ (p—Da?’
where 0 <x <1, p>3and g <2.
For p > 3, the right-hand side of (26) can be written as

1 (nx(l—xp) —l) —

xP \_ sin(mx)
We find that | L
im L (U=
x—1-xP \_ sin(7x)

Hence, the constant p — 1 in the upper bound is the best possible.
We note that

. 1—x9 Inx sin Tx
lim = <
=01+ (g—1)x2 Inx—1 X
Hence, the left-hand side of (26) holds for g = 0.
For 0 < g <2 and ¢g < 0, the left-hand side of (26) can be written respectively as

%(%—l)<q—l and %(%—1>>q—1.

1 1—x4
Jim _<M_1):q_1.

x—1- x4 \_ sin(mx)
Hence, the constant g — 1 in the lower bound is the best possible. The proof is com-
plete. U

, 0<x<1.

We find that
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REMARK 3. We thank a referee for suggesting the short argument given below.
For fixed 0 < x < 1, let

1—x"
T o 4 7é Oa
1+ (u—1)x*
flwy=4 0
Inx 0
— u=0.
Inx—1’
Differentiation yields
X" —ulnx—1)
e A 0
. (14 uxtt —x4)2 7 u70,
f(u) =

1 Inx 2
- —0.
2 <l—lnx> !

We find by the well known inequality t — 1 > Inz for # > O that
f/(u> >0’ ue(_oo7°°)'

Hence, f(u) is strictly increasing for u € R. This shows that f(g) < f(2) for g <2,
so the left-hand side of (26) follows by Redheffer’s inequality; and f(3) < f(p) for
p = 3, so the right-hand side of (26) follows by Theorem 2. This shows also that, the
best results are obtained for ¢ = 2 (the left-hand side of (26)) and p = 3 (the right-hand
side of (26)).

REMARK 4. For 2 < p < 3, the function

sin x 1 —xP
nx 14+ (p—1)xP

change its sign on (0, 1), hence Redheffer type inequality is not valid for such expo-
nents.

Theorem 4 presents a sharp Redheffer-type inequality for cosx.

THEOREM 4. Let p > 3 be a real number. Then, we have

P — (2x)P T
_ 0 = 28
cosx<71:l’+/l(2x)1” <x<27 (28)
or alternatively
mt 1—¢?
— —_— 0<r<1 29
COS<2><1+MP’ <r<l, (29)

with the best possible constant A = % p—1.
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Proof. Because of the monotonicity of function w in (27) it is sufficient to prove
that 3
wt -1
cos(—><67, 0<r<l. (30)
2 1+ (E — l)t3
To this end, we define the function u(z) by
1/ (1-1)
H=—=|—-—=2—--1), 0<t<l.
=5 (ks

cos(mt /2

Differentiation yields
1 1 1
—2t*cos?(mt /2)ud (t) = (—mt + mt*) sin (%) +6c0s <%> (1 —cos (%)) =(t).

We are in a position to prove v(¢) >0 for 0 <7 < 1. Let

u, t=0,
v(t)
Vit) =< 5———, 0<t<l1
(t) ai—nr 0<'<b
Vv, t=1,

where ( and v are constants determined with limits:

. v(t) n?
= lim —+— = — =2.467401101...
=15 ?(1—-1)? 4 ’

. v(t) 3,
= lim ——— =6 — =" =4.045149316....
v 1412171‘2(1—[)2 T

Using Maple we determine Taylor approximation for the function V (¢) by the polyno-
mial of the fourth order:
t)=— —TTt - — — t —n— — t
o(r) i +2n +<4n 03" + 57 56"
9 » 17 4, 29 4\ 4
= —T |t
+ (4 64 * 7680 ’
which has a bound of absolute error
27 17 29
=6 — —n’+ —nt— ——n°=10.348060174...
R K T

for values 0 < ¢ < 1. Itis true that

V(t)—(Q(t)—€) =0
and
17 4 29 6.1,

Q(t)—8:—67f+7ﬂ2—§75 +WTC +§7Tl+<—7f ——7T4)t2

3, 17 0\ s (9, 17, 29 ¢\,
-t )Pt (st - =t =)t >0
+<2” 96”) +<4” 64" T7630" )1 7
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for 0 <t < 1. Hence, for # € [0,1] it is true that V(¢) > 0 and therefore v(r) > 0 and
u'(t) <0 for 7 € (0,1). Therefore, u(t) is strictly decreasing for 0 <7 < 1, and we

have | (1) ‘
—t .
u(t) = 3 (cos(m/Z) a 1) >x1il}1u(x) T !

for 0 <t < 1. This proves (30).

If we write (29) as
L/ (1—1¢P)
P (cos(m/Z) a 1) >4,

1 1—¢? 2
im = (U0 V22,
t—1- tP \ cos(mt /2) T
Hence, the inequality (29) holds for 0 <z < 1 and p > 3, and the constant A = % p—1
is the best possible. The proof is complete. [J

we find that

REMARK 5. In view of (28) and the left-hand side of (6), we find that the inequal-
ity

P _ (2x)P
. . 31)
7+ (o )20 2

cosx <

is valid for p > 3, the inequality (31) is reversed for p = 2. In particular, we have

2 2 3 3
) )
2”4(x) S < cosx < né(x) L 0<x<Z 32
T +(E—l)(2x) TC3+(E—1)(2.X)3 2
or alternatively
1— 2 1— 3
o i o 0<x<l. 33)

—_— <cos<—> < —F,
1+ (2 —1)x2 2 1+ (& —1)ad

The left-hand side of (32) is exactly the left-hand side of Theorem 9 of [8].
From (33) and the monotonicity of function w in (27), we obtain that

1—x4

1+ (2g—1)xa (34

<COS<ﬂ:x> < =7
2 1+ (2p—1)xP

for 0 <x<1,g<2and p>3.For g=0, the first inequality in (34) is understood as

I
Lzmos(%), 0<x<l. (35)

lnx—E

For 0 < g <2 and g < 0, the left-hand side of (34) can be written respectively as

1 1—x1 2 1 1—x4 2
L= ) e 2 e L (PUE )2,
x4\ cos (&) T x4\ sin(7x) T
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. 1 1 —x4 2
lim — [ — X 1) =Z4-1.
x—1- x4\ cos (&) T

Hence, the constant %q — 1 in the lower bound of (34) is the best possible.

We find that

REMARK 6. For 2 < p < 3, the function

X 1—xP
X —— COS (—) T
2 L+ (zp—1)xP

change its sign on (0, 1), hence the inequality (34) is not valid for such exponents.

3. Becker-Stark-type inequality

In view of (7) and (8), we establish a sharp Becker-Stark-type inequality (Theorem
5). The inequality (26) can be rewritten as

nd — (2x)1 - sin(2x) - P — (2x)P (36)
md+ (g —1)(2x)4 2x P+ (p—1)(2x)P
for0<x<m/2,g<2and p>3.
The proof of Theorem 5 makes use of the inequality (36).
THEOREM 5. Let p > 0 be a given real number. Then, for p > 3,
a tanx b T
— < T — 0<x< =, 37
o) < x (o Y= 7
with the best possible constants
a=n" and b=4prP > (38)

If 0 < p <2, then the inequalities (37) are reversed.

Proof. For 0 <x < m/2 and p >0, let

(7P — (2x)P) tanx

F(x)= T

Differentiation yields

m’—(2x)P sin(2x)> .

xcos? xF' (x) = <7Tp+ (p— 1)(2x)p> (mq_ (p—1)(2x)P 2x

For p > 3, we find by (36) that

F'(x) >0, 0<x<g.
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Hence, for every p > 3, F(x) is strictly increasing for 0 < x < /2, and we have

P — (2x)P)t
7 = lim F(x) < F(x) = (L ZOD@Y ) — dprr2,
x—0+t X x—m/2”

Therefore, the inequalities (37) hold, and the constants ¢ = n” and b = 4p71:1”2 are the
best possible.
For 0 < p < 2, we find by (36) that

F'(x) <0, 0<x<g.

Hence, for every p € (0,2], F(x) is strictly decreasing for 0 < x < 7/2, and we have
P (2x)P)t
P = lim F(x) > F(x) = (L2 ZODEY o Pl = dpri2,

x—0F X x—m/2~

Therefore, the inequalities (37) are reversed. The proof is complete. [

REMARK 7. The inequality (37) can be written as

1 t 2
_tan(m/2) _ (4/m%)p
-z mt/2 1—tr

(39)

for 0 <t <1and p>3.
We note that, for every ¢ € (0, 1), the function p — £ is strictly increasing for
p € R, and the function p — ﬁ is strictly decreasing on (0,c). In particular, the

choice p =3 in (39) then yields
1 tan(nmt/2)  12/m?

0<r<l1 40
1-23 mt/2 I sr=h (40)
or alternatively
3
T tanx 121 T
—_— < — < 0<x<=. 41
B2} x () ) @1

REMARK 8. In order to ensure that the lower bound of (37) is positive, we restrict
p > 0. In Theorem 5, we do not think about the case p = 0, since

lim — =

p—0+t TP — (Z.X)p
Computing limit of the upper bound in (37) yields
4pmP—2? 4/m?

li = . 42
o P —(2x)P  In(f) (42)

For p = 0, the second inequality in (37) is reversed, which is understood as

t 4/m?
anx 4T gex< (43)
X ln(ﬁ) 2

We omit the proof.
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Bhayo and Sandor [8, Corollary 3] proved that, for 0 <¢ < 1,

4
nl—1¢2

Tt Tt
<tan(7> <§1—l‘2. (44)

Theorems 6 and 7 below are motivated by (44). Theorem 6 shows that, in fact, the left-
hand side of (39) is valid for p > n? /4 =2.4674.... The proof of Theorem 6 makes
use of the following lemma.

LEMMA 1. (see [3,4,5]) Let — < a<b <, andlet f, g:[a,b] — R be con-
tinuous on |a,b|, differentiable on (a,b). Let g'(x) #0 on (a,b). If f'(x)/g (x) is
increasing (decreasing) on (a,b), then so are

[f (x) = f(a)]/ g (x) —g(a)] and [f (x) = f (B)] / [g (x) — & (b)].
If f'(x)/g (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

THEOREM 6. Let p > 0 be a real number. The inequality

1 tan(mz/2)
1—¢P mt/2

(45)

holds for 0 <t < 1 if and only if p > w* /4, while the reversed inequality holds if and
onlyif 0 < p <2.

Proof. The inequality (45) can be written for p > 0 as

1n<l—%) .

7 D, 0<tr<l1.
For 0 <t < 1,let
mt/2
=In(1-—"L=_ =1
A = (1 25 ) =
and let
mt/2
J(0) = h) _ In (1 - tan(nt/2)>
fz(l‘) Int '
Then,

sy m(2un(®) - mse (%))

2
() 2tan(%’)<m—2tan(%)>

lel(l).
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Differentiating J; (¢), after some elementary computations we obtain

%sin2 (%) <2sin <%t> — Tt cos <%t> )2110)

= —(3n%* 4-2)sin(nt) + (73> — 67t) cos(mt) + sin(27t) + 67t

=

— _ 1\ _L 9_ 1 11
_n;( 'tn(t) = 57e5(m) = 3oas (@) 4 (46)

where

2(4" —4n® +6n*> —2n—4)
(2n+1)!

u(t) = (me)> L,

We find that, for 0 <t < 1,

U1 (1) 24 —4n® —6n® —2n—4)

un(t)  2(n+1)(2n+3)(4"—4n? +6n2 —2n—4)
4n+1
S 2 D)2n 1 3) (@ P 6 —2n )
2
(n+l)(2n+3)(l—4”3*62#>

. 3_6n2 . . .
Noting that the sequence {4"6’:‘#} is strictly decreasing for n > 4, we have,
n=4,

64

4’ —6on’+2n+4 _[4n’—6n’+2nt4] 43
44 b 44 n=4

‘We then obtain that for 0 <r <1 and n > 4,

1 (1) 2 128

nlt) e a3 (1-8) A D@3

Therefore, for fixed # € (0,1), the sequence n — u,(r) is strictly decreasing for n > 4.
‘We then obtain from (46) that, for 0 <7 < 1,

4  H/mt . (Tt it : / 9 1 (nt)2
- Sin (7> (251n<7>—mcos<7>> Ji(t) > (mr) 2160~ 30240 > 0.

Therefore, the functions J;(¢) and f](¢)/f5(¢) are strictly increasing on (0,1) . By
Lemma 1, the function

_ A0 A@-A0)
L) L)1)

J(1)
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is strictly increasing on (0, 1). And hence,

In (1 - 1—77/:2/2)>

. . an(7 . )
2= uli%lJ(M) <J(t)= — < uliI}lﬁ](u) /4.
Hence, the inequality (45) holds for 0 <t < 1 if and only if p > 2 /4, while the
reversed inequality holds if and only if O < p < 2. The proof is complete. [l

In particular, we have, for 0 <t < 1,

1 tan(7z/2) 1
< < , 47
1 —¢m/4 mt)2 1—12 “7)
or alternatively
T t Tt Tt
———— <tan|( — - 48
21—t”2/4<an<2><21—t2 (48)

We here point out that the lower bound in (48) is better than the one in (44).
Theorem 7 below considers the right-hand side of (39) and its reversed inequality.
The proof of Theorem 7 makes use of the left-hand side of (47).

THEOREM 7. The inequality

tan(mz/2)  (4/7%)p
mt)2 1—1tp

(49)

holds for O <t < 1 if and only if p > 3, while the reversed inequality holds if and only
if p<m/4.

Proof. For p > 3, (49) has been shown.
As t approaches 1, with # < 1, we find that
tan(nt/2) (4/n®)p  23-p)  —m*+13-p?

a2 1—w 2 + 32 (1-1)+0((1—1)%).

tan(nmr/2) 4/7*)p
t

It then follows that it is necessary to have p > 3 for — 7 =

on (0,1).
‘We now consider the reversed inequality of (49). From (47) and the monotonically
increasing property of function p — # (for p € R), we obtain that, for p < 2 /4,

to be negative

(4/m)p _ 1 _tan(m)2)
L—tP = | —gm?/4 mt/2

(50)

This shows that, for p < 2 /4, the reversed inequality of (49) holds.
As t approaches 0, with # > 0, we find that

tan(rt/2)  (4/n)p wr—4p N L
mt /2 11—z n2 12

4
t2——l2?t2p+....
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2/4 for tan(mz/2) (4/7t p

It then follows that it is necessary to have p < Ry =

n (0,1).
Hence, the inequality (49) holds for 0 < ¢ < 1 if and only if p > 3, while the
reversed inequality holds if and only if p < w2 /4. The proof is complete. [

to be positive

4. Application to the improvement of the Yang Le inequality

It is well-known that the Yang Le inequality plays an important role in the theory
of distribution of values of functions (see [31] for details). This inequality is stated
below:

IfA; >0,A,>0,A+A, <mand 0 < u <1, then,

cos® LA | + cos® LAy — 2cos (LTt cos A cos A, > sin® Ut (6)))

The Yang Le inequality has been improved (see [13,15,20,26,27,28,29,30,32,34,
35,36]), by using generalized and sharp versions of Jordan’s inequality. For example,
Debnath and Zhao [13, Theorem 1] obtained an improvement of the Yang Le inequality
and proved:

n
Let A;>0 (i=1,2,...,n) with Y A; <7, 0< A <1,andlet n>2 be anatural

i=1
number. Then

N1(7L)g(n—l)Ecos27LAk—2c0s7Ln Y, cosAAjcosAA; <My (X)), (52)

k=1 1<i< j<n

N (A) = (;) (3—&2)2<lc0s2—n>2 and M (1) = @A%ﬂ.

By using Redheffer-type inequality (13), we here present an improvement of the
Yang Le inequality.

where

THEOREM 8. Let A; >0 (i =1,2,...,n) with Y A; <7, 0< A <1, and let
i=1
n =2 be a natural number. Then

N(/l)<(n—l)Zcosz/lAk—ZcosMr 2 cosAAjcosAA; <M (L), (53)

k=1 1<i< j<n

where
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and

Proof. Let
H;j = cos? AA; + cos’ AAj—2cosAmcosAA;cosAA;.

It follows from [33] that
.2 .2 A . .
sin“Am < H;j < 4sin 571:, 1<i<j<n. (54)

By summing all of the inequalities in (54), we obtain
.2 .2 A
Y, sin®An < 2 H;; < 2 4sin® =,
1<i<j<n 1<i<j<n 1<i< j<n 2
that is,

A A 2
4<g>sin25ncos257r<(n—l)Zcosz/lAk—Zcoskn: Y, cosAAicosAA;

k=1 1<i<j<n

n\ ., A
< —Tr.
< 4<2> sin > T (55)

On the other hand, it follows from the inequality (13), by a direct calculation, that

1-(3) (= _mr 1-(3P
1+ )2(§>A<Sm7<@<§>l’ 0<A<2.  (56)

Applying the inequality (56) to (55) leads to the desired inequality (53). The proof is
complete. [l

o[> |0 >

REMARK 9. The upper bound in inequality (53) is sharper than the one in inequal-
ity (52). There is no strict comparison between the two lower bounds in inequalities (52)
and (53).
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