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SHARP REDHEFFER–TYPE AND BECKER–STARK–TYPE

INEQUALITIES WITH AN APPLICATION

CHAO-PING CHEN AND NEVEN ELEZOVIĆ

(Communicated by I. Pinelis)

Abstract. In this paper, we give sharp Redheffer-type and Becker-Stark-type inequalities for
trigonometric functions. As an application of Redheffer-type inequality, we improve the well-
known Yang Le inequality.

1. Introduction

Redheffer [21] proposed, then Williams [25] proved that, for x ∈ R ,

1− x2

1+ x2 � sinπx
πx

, (1)

or alternatively
π2− x2

π2 + x2 � sinx
x

. (2)

In 2012, He and Huang [16] pointed out (without proof) that, for 0 < x < π ,

π2− x2

π2 + αx2 <
sinx
x

<
π2− x2

π2 + βx2 , (3)

with the best possible constants α = 1 and β = π2

6 −1. In 2013, Aharonov and Elias [2]
rediscovered and proved this inequality. In 2016, Bhayo and Sándor [8, Theorem 7]
proved the right-hand side of (3). We notice that the proof from [8] is more elegant.

Some Redheffer-type inequalities for trigonometric and hyperbolic functions were
established in [8, 11, 17, 22, 37, 41]. For example, Chen et al. [11] proved that, for
|x| � π/2,

π2−4x2

π2 +4x2 � cosx. (4)

Also in [16], He and Huang pointed out (without proof) that, for 0 < x < π/2,

π2−4x2

π2 +
(16

π −4
)
x2

< cosx <
π2−4x2

π2 +
(π2

2 −4
)
x2

, (5)
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where the constants 16
π − 4 and π2

2 − 4 are the best possible. Aharonov and Elias
[2], Bhayo and Sándor [8, Theorem 9] rediscovered and proved this inequality. The
inequality (5) can be written for 0 < x < π/2 as

π2− (2x)2

π2 +( 4
π −1)(2x)2

< cosx <
π2− (2x)2

π2 +(π2

8 −1)(2x)2
. (6)

It is known in the literature that

4/π
π −2x

<
tanx

x
<

π
π −2x

(7)

for 0 < x < π/2. The left-hand side inequality (7) was presented by Stečkin [23], while
the right-hand side inequality (7) was proved by Ge [14].

Becker and Stark [7] showed that for 0 < x < π/2,

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 . (8)

The Becker-Stark inequality (8) has attracted much interest of many mathematicians
and has motivated a large number of research papers (cf. [6, 9, 10, 12, 19, 24, 38, 39, 40]
and the references cited therein).

All results of the present paper are motivated by the papers [22] and [8]. In view
of the inequalities above, in this paper we give sharp Redheffer-type and Becker-Stark-
type inequalities. As an application of Redheffer-type inequality for sinx/x , we im-
prove the well-known Yang Le inequality.

The numerical values given have been calculated using the computer program
MAPLE 13.

2. Redheffer-type inequality

Theorem 1 gives a alternative proof of (3).

THEOREM 1. The inequalities (3) hold for 0 < x < π , where the constants α = 1
and β = π2

6 −1 = 0.644934 . . . are the best possible, in the sense that α = 1 can not be

replaced by a smaller number, and β = π2

6 −1 can not be replaced by a larger number.

Proof. Clearly, the left-hand side of (3) holds for α = 1. We now prove the right-
hand side of (3) with β = π2

6 −1, i.e.,

sinπx
πx

<
1− x2

1+ βx2 , 0 < x < 1. (9)

We consider two cases.
Case 1: 0 < x � 0.6.
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The following inequality is obtained by truncation of an alternating series,

sinπx
πx

< 1− (πx)2

6
+

(πx)4

120
(10)

for x ∈ R and x �= 0. We have, using (10),

1− x2

1+ βx2 =: 1− (πx)2

6
+

(πx)4

120
+ f (x) >

sinπx
πx

+ f (x)

and it is sufficient to prove that f (x) > 0. This can be written in the form

f (x) =
1

1+ βx2

[
1− x2−

(
1− (πx)2

6
+

(πx)4

120

)
(1+ βx2)

]

=
π2x4

6(1+ βx2)

(
7π2

60
−1+

β π2

20
x2
)

.

Thus, f (x) > 0 for x ∈ (0,0.6] .
Case 2: 0.6 < x < 1.
Replacing x by 1− x leads to equivalent inequality:

sinπx
π(1− x)

<
2x− x2

1+ β (1− x)2 , 0 < x < 0.4,

so it is sufficient to prove that

g(x) :=
2x− x2

1+ β (1− x)2 ·
1− x

x
−1+

(πx)2

6
− (πx)4

120
> 0

for 0 < x < 0.4. We can write

g(x) =
x

1+ β (1− x)2g1(x),

where

g1(x) = 2− π2

6
−5x+

π2x
3

+2x2− π2x2

6
+

π4x2

36

+
π2x3

3
− π4x3

18
− π2x4

6
+

π4x4

36
− π6x4

720
− π4x5

60
+

π6x5

360
+

π4x6

120
− π6x6

720
.

This can be written as

g1(x) =
(

2− π2

6
−5x+

π2x
3

+ x2− π2x2

6
+

π4x2

36

)

+
(

36+12π2x−2π4x−6π2x2 + π4x2− π6x2

20

)
x2

36

+
(
−12+2π2+6x−π2x

)
π4x5

720
.
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Each function in parenthesis is positive on (0,0.4) , so g1 and g are also positive on
this interval.

Hence, the right-hand side of (9) holds with β = π2

6 −1.
If we write (3) as

β <
1
x2

(
πx(1− x2)
sin(πx)

−1

)
< α, 0 < x < 1,

we find that

lim
x→0+

1
x2

(
πx(1− x2)
sin(πx)

−1

)
=

π2

6
−1 and lim

x→1−
1
x2

(
πx(1− x2)
sin(πx)

−1

)
= 1.

Hence, the inequalities (3) hold, and the constants α = 1 and β = π2

6 −1 are the best
possible. The proof is complete. �

REMARK 1. Following the same method as was used in the proof of Theorem 4
below, we can prove that the function

I(x) =
1
x2

(
πx(1− x2)
sin(πx)

−1

)

is strictly increasing for 0 < x < 1, and

lim
x→0+

I(x) =
π2

6
−1 and lim

x→1−
I(x) = 1

(we omit the proof). Thus, Theorem 1 is proved.

Theorem 2 gives another upper bound in (2).

THEOREM 2. The inequality

sinx
x

<
π3− x3

π3 + θx3 , 0 < x < π (11)

holds, where the constant θ = 2 is the best possible.

Proof. We first prove (11) with θ = 2, i.e.,

sin(πx)
πx

<
1− x3

1+ θx3 , 0 < x < 1 (12)

We consider two cases.
Case 1: 0 < x � 0.6.
Denote

1− x3

1+2x3 =: 1− π2x2

6
+

π4x4

120
+G(x).
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Because of (10), it is sufficient to prove that G is positive on (0,0.6] .

G(x) =
1

1+2x3

[
1− x3−

(
1− π2x2

6
+

π4x4

120

)
(1+2x3)

]

=
π2x2

6(1+2x3)

[
1− 18x

π2 − π2x2

20
+2x3− π2x5

10

]
=:

π2x2

6(1+2x3)
G1(x).

We shall prove that G1 is decreasing on [0,0.6] .

G′
1(x) = −18

π2 −
π2x
10

+6x2− π2x4

2
< −18

π2 +
(

6− π2

10

)
x2 − π2x4

2
< 0, ∀ x ∈ R.

Hence, G1 is decreasing on [0,0.6] . Since G1(0.6) ≈ 0.08333 > 0, we conclude that
G1 and therefore G are positive on (0,0.6] .

Case 2: 0.6 < x < 1.
Replacing x by 1− x leads to equivalent inequality:

sinπx
π(1− x)

<
1− (1− x)3

1+2(1− x)3 , 0 < x < 0.4.

We continue as in the first case. Because of (10), it is sufficient to prove

h(x) := (1− x)
1− (1− x)3

1+2(1− x)3 − x

[
1− π2x2

6
+

π4x4

120

]
> 0

for 0 < x < 0.4. Let us denote

h(x) =
x3

1+2(1− x)3h1(x),

where

h1(x) = −2+
π2

2
+ x−π2x+ π2x2 − π4x2

40
− π2x3

3
+

π4x3

20
− π4x4

20
+

π4x5

60
.

Now we have

h′1(x) = 1−π2 +2π2x− π4x
20

−π2x2 +
3π4x2

20
− π4x3

5
+

π4x4

12

< 1−π2 +2π2x−π2x2
[
1− π2

10
+

π2x
5

− π2x2

12

]
.

Noting that

1−π2 +2π2x < 0 and 1− π2

10
+

π2x
5

− π2x2

12
> 0

hold on [0,0.4] , we obtain that h′1(x) < 0 on [0,0.4] . Hence, h1(x) is decreasing on
[0,0.4] . Since h1(0.4)≈ 0.56956 > 0 it follows that h1 and therefore h are positive on
(0,0.4) .
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Hence, the inequality (12) holds with θ = 2.
If we write (11) as

1
x3

(
πx(1− x3)
sin(πx)

−1

)
> θ ,

we find that

lim
x→1−

1
x3

(
πx(1− x3)
sin(πx)

−1

)
= 2.

Hence, the inequality (11) holds, and the constant θ = 2 is the best possible. The proof
is complete. �

It follows from the left-hand side of (3) and inequality (11) that

π2− t2

π2 + αt2
<

sin t
t

<
π3− t3

π3 + θ t3
, 0 < t < π , (13)

or alternatively
1− x2

1+ αx2 <
sinπx

πx
<

1− x3

1+ θx3 , 0 < x < 1, (14)

where the constants α = 1 and θ = 2 are the best possible. In particular, we have

π2− x2

π2 + x2 <
sinx
x

<
π3− x3

π3 +2x3 , 0 < x < π . (15)

The choice α = 1 and β = π2

6 −1 in (3) yields

π2− x2

π2 + x2 <
sinx
x

<
π2− x2

π2 +
(π2

6 −1
)
x2

, 0 < x < π . (16)

Sándor and Bhayo [22] established the following inequalities:

sinx
x

< c1
π2− x2

π2 + x2 , 0 < x < π , (17)

where c1 = 1.07514, and

sinx
x

<
πa− xa

πa + xa , 0 < x < π , (18)

where a = 2.175.

Let x0 = −18π+π3+
√

324π2+36π4−3π6

2(18−π2) = 2.2302 . . .. By MAPLE 13, we find that,
for x < x0 , the upper bound in (16) is better than the one in (15). For x0 < x < π , the
upper bound in (15) is better than the one in (16).

Let x1 = 0.742276 . . . and x2 = 2.668968 . . .. By MAPLE 13, we find that, for
x1 < x < x2 , the upper bound in (17) is better than the one in (15). For x ∈ (0,x1)∪
(x2,π) , the upper bound in (15) is better than the one in (17).

Let x∗ = 2.602792 . . .. By MAPLE 13, we find that, for 0 < x < x∗ , the upper
bound in (18) is better than the one in (15). For x∗ < x < π , the upper bound in (15) is
better than the one in (18).
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REMARK 2. The gamma function has the following reflection formula (see [1, p.
256]):

Γ(z)Γ(1− z) =
π

sin(πz)
(19)

and recurrence formula
Γ(z+1) = zΓ(z).

For the representation of trigonometric functions in terms of gamma function, Bhayo
and Sándor [8] pointed out that, (19) can be written as

x
sinx

= Γ
(
1+

x
π

)
Γ
(
1− x

π

)
= B

(
1+

x
π

)
B
(
1− x

π

)
, 0 < x < π , (20)

where

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

denotes the beta function. The logarithmic differentiation to both sides of (19) gives the
following reflection formula:

ψ(1− t)−ψ(t) =
π

tan(πt)
, (21)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. Replacing z by t + 1/2 in (19)
yieds

x
cosx

=
x
π

Γ
(

1
2

+
x
π

)
Γ
(

1
2
− x

π

)
, 0 < x <

π
2

. (22)

Also in [8], Bhayo and Sándor established some inequalities for the gamma, digamma
and beta functions. For example, Bhayo and Sándor [8, Theorem 6] proved that, for
y ∈ (0,1) , the following inequality holds:

B(x,y) <
1
xy

x+ y
1+ xy

, 0 < x < 1. (23)

The inequality (23) is reversed for x > 1.
We obtain from (14) that

1− x2

1+ x2 <
1

Γ(1+ x)Γ(1− x)
=

sinπx
πx

<
1− x3

1+2x3 , 0 < x < 1. (24)

Theorem 3 presents a more general result that includes (15) as its special case.

THEOREM 3. Let p � 3 and q � 2 be real numbers. Then, we have

πq− xq

πq +(q−1)xq <
sinx
x

<
π p− xp

π p +(p−1)xp , 0 < x < π , (25)

where the constants q−1 and p−1 are he best possible.
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Proof. Replacing x by πx in (25) leads to equivalent inequality:

1− xq

1+(q−1)xq <
sinπx

πx
<

1− xp

1+(p−1)xp , 0 < x < 1. (26)

Denote for real p , real positive a and 0 < x < 1,

w(p) =

⎧⎪⎪⎨
⎪⎪⎩

1− xp

1+(ap−1)xp , p �= 0,

lnx
lnx−a

, p = 0.

(27)

Differentiation yields

w′(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

axp(xp − p lnx−1)
(1+(ap−1)xp)2 , p �= 0,

a
2

(
lnx

a− lnx

)2

, p = 0.

We have w′(p) > 0 for p ∈ R , because of the well known inequality t − 1 > ln t , for
all t > 0. Hence, the function w is strictly increasing for p ∈ R .

From (24) and the monotonicity of function w , we obtain

1− xq

1+(q−1)xq � 1− x2

1+ x2 <
sinπx

πx
<

1− x3

1+2x3 � 1− xp

1+(p−1)xp ,

where 0 < x < 1, p � 3 and q � 2.
For p � 3, the right-hand side of (26) can be written as

1
xp

(
πx(1− xp)
sin(πx)

−1

)
> p−1.

We find that

lim
x→1−

1
xp

(
πx(1− xp)
sin(πx)

−1

)
= p−1.

Hence, the constant p−1 in the upper bound is the best possible.
We note that

lim
q→0

1− xq

1+(q−1)xq =
lnx

lnx−1
<

sinπx
πx

, 0 < x < 1.

Hence, the left-hand side of (26) holds for q = 0.
For 0 < q � 2 and q < 0, the left-hand side of (26) can be written respectively as

1
xq

(
πx(1− xq)
sin(πx)

−1

)
< q−1 and

1
xq

(
πx(1− xq)
sin(πx)

−1

)
> q−1.

We find that

lim
x→1−

1
xq

(
πx(1− xq)
sin(πx)

−1

)
= q−1.

Hence, the constant q− 1 in the lower bound is the best possible. The proof is com-
plete. �
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REMARK 3. We thank a referee for suggesting the short argument given below.
For fixed 0 < x < 1, let

f (u) =

⎧⎪⎪⎨
⎪⎪⎩

1− xu

1+(u−1)xu , u �= 0,

lnx
lnx−1

, u = 0.

Differentiation yields

f ′(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xu(xu−u lnx−1)
(1+uxu− xu)2 , u �= 0,

1
2

(
lnx

1− lnx

)2

, u = 0.

We find by the well known inequality t−1 > ln t for t > 0 that

f ′(u) > 0, u ∈ (−∞,∞).

Hence, f (u) is strictly increasing for u ∈ R . This shows that f (q) � f (2) for q � 2,
so the left-hand side of (26) follows by Redheffer’s inequality; and f (3) � f (p) for
p � 3, so the right-hand side of (26) follows by Theorem 2. This shows also that, the
best results are obtained for q = 2 (the left-hand side of (26)) and p = 3 (the right-hand
side of (26)).

REMARK 4. For 2 < p < 3, the function

x �−→ sinπx
πx

− 1− xp

1+(p−1)xp

change its sign on (0,1) , hence Redheffer type inequality is not valid for such expo-
nents.

Theorem 4 presents a sharp Redheffer-type inequality for cosx .

THEOREM 4. Let p � 3 be a real number. Then, we have

cosx <
π p− (2x)p

π p + λ (2x)p , 0 < x <
π
2

, (28)

or alternatively

cos
(πt

2

)
<

1− t p

1+ λ t p , 0 < t < 1, (29)

with the best possible constant λ = 2
π p−1 .
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Proof. Because of the monotonicity of function w in (27) it is sufficient to prove
that

cos
(πt

2

)
<

1− t3

1+( 6
π −1)t3

, 0 < t < 1. (30)

To this end, we define the function u(t) by

u(t) =
1
t3

(
(1− t3)

cos(πt/2)
−1

)
, 0 < t < 1.

Differentiation yields

−2t4 cos2(πt/2)u′(t) =
(−πt + πt4

)
sin
(πt

2

)
+6cos

(πt
2

)(
1− cos

(πt
2

))
:= v(t).

We are in a position to prove v(t) > 0 for 0 < t < 1. Let

V (t) =

⎧⎪⎪⎨
⎪⎪⎩

μ , t = 0,
v(t)

t2(1− t)2 , 0 < t < 1,

ν, t = 1,

where μ and ν are constants determined with limits:

μ = lim
t→0+

v(t)
t2(1− t)2 =

π2

4
= 2.467401101 . . .,

ν = lim
t→1−

v(t)
t2(1− t)2 = 6π − 3

2
π2 = 4.045149316 . . ..

Using Maple we determine Taylor approximation for the function V (t) by the polyno-
mial of the fourth order:

Q(t) =
1
4

π2 +
1
2

π2t +
(

3
4

π2− 17
192

π4
)

t2 +
(

3
2

π2− 17
96

π4
)

t3

+
(

9
4

π2− 17
64

π4 +
29

7680
π6
)

t4,

which has a bound of absolute error

ε = 6π − 27
4

π2 +
17
32

π4− 29
7680

π6 = 0.348060174 . . .

for values 0 < t < 1. It is true that

V (t)− (Q(t)− ε) � 0

and

Q(t)− ε = −6π +7π2− 17
32

π4 +
29

7680
π6 +

1
2

π2t +
(

3
4

π2− 17
192

π4
)

t2

+
(

3
2

π2− 17
96

π4
)

t3 +
(

9
4

π2− 17
64

π4 +
29

7680
π6
)

t4 > 0
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for 0 < t < 1. Hence, for t ∈ [0,1] it is true that V (t) > 0 and therefore v(t) > 0 and
u′(t) < 0 for t ∈ (0,1) . Therefore, u(t) is strictly decreasing for 0 < t < 1, and we
have

u(t) =
1
t3

(
(1− t3)

cos(πt/2)
−1

)
> lim

x→1−
u(x) =

6
π
−1

for 0 < t < 1. This proves (30).
If we write (29) as

1
t p

(
(1− t p)

cos(πt/2)
−1

)
> λ ,

we find that

lim
t→1−

1
t p

(
(1− t p)

cos(πt/2)
−1

)
=

2
π

p−1.

Hence, the inequality (29) holds for 0 < t < 1 and p � 3, and the constant λ = 2
π p−1

is the best possible. The proof is complete. �

REMARK 5. In view of (28) and the left-hand side of (6), we find that the inequal-
ity

cosx <
π p− (2x)p

π p +( 2
π p−1)(2x)p

, 0 < x <
π
2

, (31)

is valid for p � 3, the inequality (31) is reversed for p = 2. In particular, we have

π2− (2x)2

π2 +( 4
π −1)(2x)2

< cosx <
π3− (2x)3

π3 +( 6
π −1)(2x)3

, 0 < x <
π
2

, (32)

or alternatively

1− x2

1+( 4
π −1)x2

< cos
(πx

2

)
<

1− x3

1+( 6
π −1)x3

, 0 < x < 1. (33)

The left-hand side of (32) is exactly the left-hand side of Theorem 9 of [8].
From (33) and the monotonicity of function w in (27), we obtain that

1− xq

1+( 2
π q−1)xq

< cos
(πx

2

)
<

1− xp

1+( 2
π p−1)xp

(34)

for 0 < x < 1, q � 2 and p � 3. For q = 0, the first inequality in (34) is understood as

lnx

lnx− 2
π

< cos
(πx

2

)
, 0 < x < 1. (35)

For 0 < q � 2 and q < 0, the left-hand side of (34) can be written respectively as

1
xq

(
1− xq

cos
(πx

2

) −1

)
<

2
π

q−1 and
1
xq

(
πx(1− xq)
sin(πx)

−1

)
>

2
π

q−1.
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We find that

lim
x→1−

1
xq

(
1− xq

cos
(πx

2

) −1

)
=

2
π

q−1.

Hence, the constant 2
π q−1 in the lower bound of (34) is the best possible.

REMARK 6. For 2 < p < 3, the function

x �−→ cos
(πx

2

)
− 1− xp

1+( 2
π p−1)xp

change its sign on (0,1) , hence the inequality (34) is not valid for such exponents.

3. Becker-Stark-type inequality

In view of (7) and (8), we establish a sharp Becker-Stark-type inequality (Theorem
5). The inequality (26) can be rewritten as

πq− (2x)q

πq +(q−1)(2x)q <
sin(2x)

2x
<

π p− (2x)p

π p +(p−1)(2x)p (36)

for 0 < x < π/2, q � 2 and p � 3.
The proof of Theorem 5 makes use of the inequality (36).

THEOREM 5. Let p > 0 be a given real number. Then, for p � 3 ,

a
π p− (2x)p <

tanx
x

<
b

π p− (2x)p , 0 < x <
π
2

, (37)

with the best possible constants

a = π p and b = 4pπ p−2. (38)

If 0 < p � 2 , then the inequalities (37) are reversed.

Proof. For 0 < x < π/2 and p > 0, let

F(x) =
(π p− (2x)p) tanx

x
.

Differentiation yields

xcos2 xF ′(x) =
(

π p +(p−1)(2x)p
)( π p− (2x)p

π p +(p−1)(2x)p −
sin(2x)

2x

)
.

For p � 3, we find by (36) that

F ′(x) > 0, 0 < x <
π
2

.
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Hence, for every p � 3, F(x) is strictly increasing for 0 < x < π/2, and we have

π p = lim
x→0+

F(x) < F(x) =
(π p− (2x)p) tanx

x
< lim

x→π/2−
F(x) = 4pπ p−2.

Therefore, the inequalities (37) hold, and the constants a = π p and b = 4pπ p−2 are the
best possible.

For 0 < p � 2, we find by (36) that

F ′(x) < 0, 0 < x <
π
2

.

Hence, for every p ∈ (0,2] , F(x) is strictly decreasing for 0 < x < π/2, and we have

π p = lim
x→0+

F(x) > F(x) =
(π p− (2x)p) tanx

x
> lim

x→π/2−
F(x) = 4pπ p−2.

Therefore, the inequalities (37) are reversed. The proof is complete. �

REMARK 7. The inequality (37) can be written as

1
1− t p <

tan(πt/2)
πt/2

<
(4/π2)p
1− t p (39)

for 0 < t < 1 and p � 3.
We note that, for every t ∈ (0,1) , the function p �→ p

1−t p is strictly increasing for

p ∈ R , and the function p �→ 1
1−t p is strictly decreasing on (0,∞) . In particular, the

choice p = 3 in (39) then yields

1
1− t3

<
tan(πt/2)

πt/2
<

12/π2

1− t3
, 0 < t < 1, (40)

or alternatively

π3

π3− (2x)3 <
tanx

x
<

12π
π3− (2x)3 , 0 < x <

π
2

. (41)

REMARK 8. In order to ensure that the lower bound of (37) is positive, we restrict
p > 0. In Theorem 5, we do not think about the case p = 0, since

lim
p→0+

a
π p− (2x)p = ∞.

Computing limit of the upper bound in (37) yields

lim
p→0

4pπ p−2

π p− (2x)p =
4/π2

ln
( π

2x

) . (42)

For p = 0, the second inequality in (37) is reversed, which is understood as

tanx
x

>
4/π2

ln
( π

2x

) , 0 < x <
π
2

. (43)

We omit the proof.
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Bhayo and Sándor [8, Corollary 3] proved that, for 0 < t < 1,

4
π

t
1− t2

< tan
(πt

2

)
<

π
2

t
1− t2

. (44)

Theorems 6 and 7 below are motivated by (44). Theorem 6 shows that, in fact, the left-
hand side of (39) is valid for p � π2/4 = 2.4674 . . .. The proof of Theorem 6 makes
use of the following lemma.

LEMMA 1. (see [3, 4, 5]) Let −∞ < a < b < ∞ , and let f , g : [a,b] → R be con-
tinuous on [a,b] , differentiable on (a,b) . Let g′ (x) �= 0 on (a,b) . If f ′ (x)/g′ (x) is
increasing (decreasing) on (a,b) , then so are

[ f (x)− f (a)]/ [g(x)−g(a)] and [ f (x)− f (b)]/ [g(x)−g(b)] .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

THEOREM 6. Let p > 0 be a real number. The inequality

1
1− t p <

tan(πt/2)
πt/2

(45)

holds for 0 < t < 1 if and only if p � π2/4 , while the reversed inequality holds if and
only if 0 < p � 2 .

Proof. The inequality (45) can be written for p > 0 as

ln
(
1− πt/2

tan(πt/2)

)
ln t

< p, 0 < t < 1.

For 0 < t < 1, let

f1(t) = ln

(
1− πt/2

tan(πt/2)

)
and f2(t) = lnt,

and let

J(t) =
f1(t)
f2(t)

=
ln
(
1− πt/2

tan(πt/2)

)
ln t

.

Then,

f ′1(t)
f ′2(t)

=
πt
(
2tan(πt

2 )−πt sec2(πt
2 )
)

2tan(πt
2 )
(

πt−2tan(π
2 )
) =: J1(t).
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Differentiating J1(t) , after some elementary computations we obtain

4
π

sin2
(πt

2

)(
2sin

(πt
2

)
−πt cos

(πt
2

))2

J′1(t)

= −(3π2t2 +2)sin(πt)+ (π3t3−6πt)cos(πt)+ sin(2πt)+6πt

=
∞

∑
n=4

(−1)nun(t) =
1

2160
(πt)9− 1

30240
(πt)11 + . . . , (46)

where

un(t) =
2(4n−4n3 +6n2−2n−4)

(2n+1)!
(πt)2n+1.

We find that, for 0 < t < 1,

un+1(t)
un(t)

=
t2(4n+1−4n3−6n2−2n−4)

2(n+1)(2n+3)(4n−4n3 +6n2−2n−4)

<
4n+1

2(n+1)(2n+3)(4n−4n3 +6n2−2n−4)

=
2

(n+1)(2n+3)
(
1− 4n3−6n2+2n+4

44

)

Noting that the sequence
{ 4n3−6n2+2n+4

44

}
is strictly decreasing for n � 4, we have,

n � 4,

4n3−6n2 +2n+4
44 �

[
4n3−6n2 +2n+4

44

]
n=4

=
43
64

.

We then obtain that for 0 < t < 1 and n � 4,

un+1(t)
un(t)

<
2

(n+1)(2n+3)
(
1− 43

64

) =
128

21(n+1)(2n+3)
< 1.

Therefore, for fixed t ∈ (0,1) , the sequence n �→ un(t) is strictly decreasing for n � 4.
We then obtain from (46) that, for 0 < t < 1,

4
π

sin2
(πt

2

)(
2sin

(πt
2

)
−πt cos

(πt
2

))2

J′1(t) > (πt)9
(

1
2160

− (πt)2

30240

)
> 0.

Therefore, the functions J1(t) and f ′1(t)/ f ′2(t) are strictly increasing on (0,1) . By
Lemma 1, the function

J(t) =
f1 (t)
f2 (t)

=
f1 (t)− f1(1)
f2 (t)− f2 (1)
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is strictly increasing on (0,1) . And hence,

2 = lim
u→0+

J(u) < J(t) =
ln
(
1− πt/2

tan(πt/2)

)
lnt

< lim
u→1−

J(u) = π2/4.

Hence, the inequality (45) holds for 0 < t < 1 if and only if p � π2/4, while the
reversed inequality holds if and only if 0 < p � 2. The proof is complete. �

In particular, we have, for 0 < t < 1,

1

1− tπ2/4
<

tan(πt/2)
πt/2

<
1

1− t2
, (47)

or alternatively
π
2

t

1− tπ2/4
< tan

(πt
2

)
<

π
2

t
1− t2

. (48)

We here point out that the lower bound in (48) is better than the one in (44).
Theorem 7 below considers the right-hand side of (39) and its reversed inequality.

The proof of Theorem 7 makes use of the left-hand side of (47).

THEOREM 7. The inequality

tan(πt/2)
πt/2

<
(4/π2)p
1− t p (49)

holds for 0 < t < 1 if and only if p � 3 , while the reversed inequality holds if and only
if p � π2/4 .

Proof. For p � 3, (49) has been shown.
As t approaches 1, with t < 1, we find that

tan(πt/2)
πt/2

− (4/π2)p
1− t p =

2(3− p)
π2 +

−π2 +13− p2

3π2 (1− t)+O
(
(1− t)2).

It then follows that it is necessary to have p � 3 for tan(πt/2)
πt/2 − (4/π2)p

1−t p to be negative
on (0,1) .

We now consider the reversed inequality of (49). From (47) and the monotonically
increasing property of function p �→ p

1−t p (for p ∈ R), we obtain that, for p � π2/4,

(4/π2)p
1− t p � 1

1− tπ2/4
<

tan(πt/2)
πt/2

. (50)

This shows that, for p � π2/4, the reversed inequality of (49) holds.
As t approaches 0, with t > 0, we find that

tan(πt/2)
πt/2

− (4/π2)p
1− t p =

π2−4p
π2 +

π2

12
t2− 4p

π2 t2p + . . . .
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It then follows that it is necessary to have p � π2/4 for tan(πt/2)
πt/2 − (4/π2)p

1−t p to be positive

on (0,1) .
Hence, the inequality (49) holds for 0 < t < 1 if and only if p � 3, while the

reversed inequality holds if and only if p � π2/4. The proof is complete. �

4. Application to the improvement of the Yang Le inequality

It is well-known that the Yang Le inequality plays an important role in the theory
of distribution of values of functions (see [31] for details). This inequality is stated
below:

If A1 > 0, A2 > 0, A1 +A2 � π and 0 � μ � 1, then,

cos2 μA1 + cos2 μA2−2cosμπ cosμA1 cosμA2 � sin2 μπ . (51)

The Yang Le inequality has been improved (see [13,15,20,26,27,28,29,30,32,34,
35, 36]), by using generalized and sharp versions of Jordan’s inequality. For example,
Debnath and Zhao [13, Theorem 1] obtained an improvement of the Yang Le inequality
and proved:

Let Ai > 0 (i = 1,2, . . . ,n) with
n

∑
i=1

Ai � π , 0 � λ � 1, and let n � 2 be a natural

number. Then

N1 (λ ) � (n−1)
n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj � M1 (λ ) , (52)

where

N1 (λ ) =
(

n
2

)(
3−λ 2)2(λ cos

λ π
2

)2

and M1 (λ ) =
(

n
2

)
λ 2π2.

By using Redheffer-type inequality (13), we here present an improvement of the
Yang Le inequality.

THEOREM 8. Let Ai > 0 (i = 1,2, . . . ,n) with
n

∑
i=1

Ai � π , 0 � λ � 1 , and let

n � 2 be a natural number. Then

N (λ ) � (n−1)
n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj � M (λ ) , (53)

where

N (λ ) =
(

n
2

)(
1− (λ

2 )2

1+(λ
2 )2

)2

π2
(

λ cos
λ π
2

)2
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and

M (λ ) =
(

n
2

)(
1− (λ

2 )3

1+2(λ
2 )3

)2

π2λ 2.

Proof. Let

Hi j = cos2 λAi + cos2 λAj −2cosλ π cosλAi cosλAj.

It follows from [33] that

sin2 λ π � Hi j � 4sin2 λ
2

π , 1 � i < j � n. (54)

By summing all of the inequalities in (54), we obtain

∑
1�i< j�n

sin2 λ π � ∑
1�i< j�n

Hi j � ∑
1�i< j�n

4sin2 λ
2

π ,

that is,

4

(
n
2

)
sin2 λ

2
π cos2 λ

2
π � (n−1)

n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj

� 4

(
n
2

)
sin2 λ

2
π . (55)

On the other hand, it follows from the inequality (13), by a direct calculation, that

1− (λ
2 )2

1+(λ
2 )2

(π
2

)
λ < sin

πλ
2

<
1− (λ

2 )3

1+2(λ
2 )3

(π
2

)
λ , 0 < λ < 2. (56)

Applying the inequality (56) to (55) leads to the desired inequality (53). The proof is
complete. �

REMARK 9. The upper bound in inequality (53) is sharper than the one in inequal-
ity (52). There is no strict comparison between the two lower bounds in inequalities (52)
and (53).
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ties, Results Math. 67 (2015), 207–215.

[13] L. DEBNATH AND C. J. ZHAO, New strengthened Jordan’s inequality and its applications, Appl.
Math. Lett. 16 (2003), 557–560.

[14] H.-F. GE, New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities,
J. Inequal. Appl. 2012, Article ID 137507, 7 pages.

[15] W. D. JIANG AND H. YUN, Sharpening of Jordan’s inequality and its applications, J. Inequal. Pure
Appl. Math. 7, 3 (2006), Article 102.

[16] D. HE AND Y.-Z. HUANG, The extension of Redheffer inequalities in trigonometric functions, J.
Foshan Univ. 30, 6 (2012), 37–44 (in Chinese).

[17] J.-L. LI AND Y.-L. LI, On the Strengthened Jordan’s Inequality, J. Inequal. Appl. 2007, Article. ID
74328, 8 pages.

[18] B. J. MALEŠEVIĆ, One method for proving inequalities by computer, J. Inequal. Appl. 2007, Article
ID 78691.

[19] Y. NISHIZAWA, Sharp Becker–Stark’s type inequalities with power exponential functions, J. Inequal.
Appl. 2015 (2015) 402, http://rd.springer.com/article/10.1186/s13660-015-0932-9/
fulltext.html.
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