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FACTORIZATION OF LIPSCHITZ OPERATORS

ON BANACH FUNCTION SPACES

D. ACHOUR, E. DAHIA, P. RUEDA, E. A. SÁNCHEZ PÉREZ AND R. YAHI

(Communicated by C. P. Niculescu)

Abstract. Let (X ,d) be a pointed metric space. Let T : X → Y1(μ) and S : X → Y2(μ) be two
Lipschitz operators into two Banach function spaces Y1 and Y2 over the same finite measure
μ . We show which are the vector norm inequalities that characterize those T and S for which
T = Mg ◦ S , for some multiplication operator Mg : Y2 → Y1 . Our ideas give rise to Maurey-
Rosenthal type factorization results for Lipschitz operators. We provide some applications on
the Lipschitz structure of metric subsets of Banach function spaces.

1. Introduction

Let (X ,d) be a pointed metric space. Let (Ω,Σ,μ) be a finite measure space and
consider two Lipschitz operators T : X →Y1 and S : X →Y2 on Banach function spaces
Y1 and Y2 over μ . In this paper we analyze when T factors through S as T = Mg ◦ S
by means of vector norm inequalities, where Mg : Y2 → Y1 is a multiplication operator
defined by a measurable function g .

In the case of linear operators, this kind of factorization is called strong factoriza-
tion for T through S . A recent study of this problem for the case of linear operators can
be found in [8]. We show how these ideas can be adapted to the case of Lipschitz oper-
ators. Thus, we characterize the strong factorization of a Lipschitz operator T through
a given Lipschitz operator S by using inequalities among these maps.

There are many classical results relating inequalities for linear operators and fac-
torizations. Probably, the ones that have found more applications are the nowadays
called Maurey-Rosenthal theorems, that give concavity and convexity conditions on a
linear operator to get a strong factorization via Lp spaces (see for instance [15, Propo-
sition III.H.10] and [4, 5, 6]). The direct application of these factorization theorems is
the characterization of subspaces and sublattices of Banach function spaces that can be
identified isomorphically with an Lp -space for a certain 1� p < ∞. The last part of the
present paper is devoted to show how to deal with these arguments when moving to the
Lipschitz setting, by extending the main factorization results of the Maurey-Rosenthal
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theory to this non-linear case. In particular, as a consequence of Theorem 4 and Corol-
lary 1 we will find results as the following one. Let 1 < q < p < ∞ and consider a set
of measurable functions A ⊆ Lq(μ) . Take the standard metrics d‖·‖Lq(μ)

and d‖·‖Lp(μ)

provided by the norms in Lq(μ) and Lp(μ) , respectively. We give sufficient conditions
for assuring that there is a Lipschitz isomorphism from the metric space (A,d‖·‖Lq(μ)

) to

a subset of the metric space (Lp(μ),d‖·‖Lp(μ)
) . We will show that it is possible to char-

acterize when the identity map in A is a Lipschitz isomorphism between these spaces
by means of domination inequalities.

2. Preliminaries

We use standard Banach space and Banach lattice notation. If X is a Banach space,
we write X∗ for its dual space. Let (Ω,Σ,μ) be a finite measure space. Let L0(μ) be
the space of classes of measurable real functions on Ω that are equal μ -a.e. A Banach
function space over μ is a Banach space X(μ) of elements of L0(μ) with a norm
‖ · ‖X(μ) satisfying that if f ∈ L0(μ) , g ∈ X(μ) and | f | � |g| μ -a.e. then f ∈ X(μ)
and ‖ f‖X(μ) � ‖g‖X(μ) . In this case, X(μ) is a Banach lattice with the pointwise μ -
a.e. order. Sometimes we will write X instead of X(μ) for the aim of simplicity if the
measure is clearly fixed in the context.

The Köthe dual X ′ of X is the Banach subspace of X∗ formed by those elements
that can be represented by means of an integral, that is, for each x′ ∈ X ′ there is a
function h ∈ L0(μ) such that 〈x,x′〉 =

∫
Ω xhdμ for all x ∈ X (see [10, p. 29 ff] for

issues related to the notion of the Köthe dual). The Banach function space X is order
continuous if for every f , fn ∈ X such that 0 � fn ↑ f μ -a.e., fn → f in norm. It is
well known that X is order continuous if and only if X∗ = X ′. It has the Fatou property
if for every sequence ( fn) ⊂ X such that 0 � fn ↑ f μ -a.e. and supn ‖ fn‖X < ∞ , it
follows that f ∈ X and ‖ fn‖X ↑ ‖ f‖X . The reader can find more information about it
in [13, Ch.2], [10, p. 28ff] and [16, Ch. 15].

If X and Y are Banach function spaces over the same measure μ , the space of
multiplication operators from X to Y is

Mult(X ;Y ) =
{
h ∈ L0(μ) : h f ∈Y for each f ∈ X

}
.

The function ‖h‖Mult(X ;Y ) := sup f∈BX
‖h f‖Y for all h ∈ Mult(X ;Y ) is clearly a semi-

norm on Mult(X ;Y ) . It is also a norm only if X is saturated, i.e. there is no A ∈ Σ
with μ(A) > 0 such that f χA = 0 μ -a.e. for all f ∈ X . In this case, Mult(X ;Y ) is a
Banach function space. If h∈ Mult(X ;Y ) , we write Mh : X →Y for the corresponding
multiplication operator f � f h . See [2, 12] for more information on these spaces.

If X and Y are Banach function spaces, the product space XπY is the linear set
of functions f ∈ L0(μ) such that | f |�∑i�1 |xiyi| μ -a.e. for some sequences (xi) ⊂ X
and (yi) ⊂ Y with ∑i�1 ‖xi‖X‖yi‖Y < ∞ . The natural norm for this space is

‖ f‖XπY = inf
{

∑
i�1

‖xi‖X‖yi‖Y

}
, f ∈ XπY,



FACTORIZATION OF LIPSCHITZ OPERATORS 1093

where the infimum is computed over all sequences (xi) ⊂ X and (yi) ⊂ Y such that
| f | � ∑i�1 |xiyi| μ -a.e. and ∑i�1 ‖xi‖X‖yi‖Y < ∞ . For instance, if 1/r = 1/p+ 1/q ,
then Lp(μ)πLq(μ) = Lr(μ) . If X , Y and Mult(X ;Y ′) are saturated then XπY is a
saturated Banach function space with norm ‖ · ‖XπY (see for example [7]).

Recall that a Banach lattice L – in particular, a Banach function space – is p -
convex (resp. p -concave) for 1 � p < ∞ if there is a positive constant K (resp. Q)
such that for every finite set of elements x1, . . . ,xn ∈ L ,

∥∥∥
( n

∑
i=1

|xi|p
)1/p∥∥∥

L
� K

( n

∑
i=1

∥∥xi
∥∥p

L

)1/p

(and ( n

∑
i=1

∥∥xi
∥∥p

L

)1/p
� Q

∥∥∥
( n

∑
i=1

|xi|p
)1/p∥∥∥

L

for the case of p -concavity.)
Regarding Lipschitz operators, a map from a metric space (X ,d) on a Banach

space Z is called a Lipschitz operator if there is a constant K > 0 such that for any pair
of points x1,x2 ∈ X , we have

‖T (x1)−T (x2)‖� Kd(x1,x2).

We will work with pointed metric spaces X with base point 0 that is, 0 is any arbitrary
fixed point of X . The notation of such a distinguished point indicates that this is actually
the null vector when the metric space X is indeed a normed linear space. We will
consider Lipschitz operators that map 0 to 0, and then the infimum of all constants
K > 0 as above determines a (complete) norm on the space Lip0(X ,Z) of all such maps.
The space M (X) of molecules associated to a pointed metric space (X ,d) is given by
the linear span of all functions mx1,x2 : X → R that are differences of characteristic
functions,

mx1,x2(w) := χ{x1}(w)− χ{x2}(w), w,x1,x2 ∈ X .

The completion of M (X) , when endowed with the norm

‖m‖ := inf{
n

∑
j=1

|a j|d(x1
j ,x

2
j)},

where the infimum is taken over all finite representations of the molecule

m =
N

∑
j=1

a jmx1
j ,x

2
j
,

is denoted Æ(X) and called the Arens-Eells space associated to X (see [1]).
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3. Factoring Lipschitz operators

Let X be a pointed metric space and Y be a Banach function space (or just a
Banach space). If we consider the canonical Lipschitz isometry δX : X → Æ(X) given
by δX(x) := mx,0 , x ∈ X , then a Lipschitz map T ∈ Lip0(X ,Y ) always factors through
the corresponding Arens-Eells space as

X
T ��

δX ����
��

��
��

Y

Æ(X)
TL

����������

where TL is the unique continuous linear map such that TL ◦ δX = T . The operator TL

is referred to as the linearization of T (see [14, Theorem 2.2.4 (b)].

As δX takes values in M (X) we can take the restriction of TL to M (X) , that
we still denote TL , and then we can consider the following alternative commutative
diagram

X
T ��

δX ������
���� Y.

M (X)
TL

����������

For instance, in [9] it is proved that Æ(�1) and Æ(X) , over any finite-dimensional
Banach space X , are isomorphic to L1(R) .

3.1. Strong factorizations between couples of Lipschitz operators

Let (X ,d) be a metric space and let Y1 and Y2 be two Banach function spaces over
a finite measure μ , such that Y1 and Y2πY ′

1 are order continuous and that Y1 has the
Fatou property. Under these conditions, the product space Y2πY ′

1 is a saturated Banach
function space, as a consequence of [7, Proposition 2.2]. For the sake of clarity, let
us explain some topological aspects concerning these Banach function spaces. Since
Y2πY ′

1 is order continuous, by [10, p. 29] the topological dual (Y2πY ′
1)

∗ and the Köthe
dual (Y2πY ′

1)
′ coincide. The Fatou property of Y1 provides the isometry Y1 = Y ′′

1 ([10,
p. 30]), and by [7, Proposition 2.2] we obtain the isometric equalities (Y2πY ′

1)
′ =

Mult(Y2;Y ′′
1 ) = Mult(Y2;Y1) . Then for each ξ ∈ Y2πY ′

1 there exists ξ ′ ∈ BMult(Y2;Y1)
such that ‖ξ‖Y2πY ′

1
= 〈ξ ′,ξ 〉 =

∫
ξ ξ ′ dμ . Conditions under which the product space of

two Banach function spaces is order continuous – which is a requirement in the results
above – can be found in Section 5 of [8].

Consider two Lipschitz operators T ∈ Lip0(X ,Y1) and S ∈ Lip0(X ,Y2) . In this
section we characterize when T factors strongly through S , that is, when there is a



FACTORIZATION OF LIPSCHITZ OPERATORS 1095

function g ∈ Mult(Y2;Y1) so that the following diagram commutes

X
T ��

S
��������������� Y1

Y2

Mg

�� . (1)

This factorization is inspired in the following result regarding linear operators be-
tween Banach function spaces:

THEOREM 1. ([8, Theorem 4.1]) Let X1,X2,Y1,Y2 be Banach function spaces
and let T : X1 → Y1 and S : X2 → Y2 be continuous linear operators. Assume that Y1

and Y2πY ′
1 are order continuous and that Y1 has the Fatou property. The following

statements are equivalent.

(i) There exists a function h ∈ Mult(X1;X2) such that

n

∑
i=1

∫
T (xi)y′i dμ �

∥∥∥ n

∑
i=1

S(hxi)y′i
∥∥∥

Y2πY ′
1

for each n ∈ N , every x1, . . . ,xn ∈ X1 and y′1, . . . ,y
′
n ∈Y ′

1 .

(ii) There exist functions f ∈ Mult(X1;X2) and g ∈ Mult(Y2;Y1) such that T (x) =
g(S( f x)) for all x ∈ X1 .

It must be mentioned that if we take X0 := X1 = X2 in the above theorem, the
Banach lattice structure on X0 does not play any relevant role in its proof. The reader
can easily check that the theorem remains valid for any normed linear space X as
domain of both linear operators T and S . Now, we are going to see that we can use
such a variant of Theorem 1 for metric domains in order to prove a strong factorization
theorem for Lipschitz operators. Recall that in the next result X is a pointed metric
space.

THEOREM 2. Let T ∈ Lip0(X ,Y1(μ)) and S ∈ Lip0(X ,Y2(μ)) be Lipschitz oper-
ators. Suppose that Y1(μ) and Y2(μ)πY1(μ)′ are order continuous and that Y1 has the
Fatou property. The following statements are equivalent.

(i) The inequality
∫ n

∑
i=1

(
T (x1

i )−T(x2
i )

)
y′i dμ �

∥∥∥ n

∑
i=1

(
S(x1

i )−S(x2
i )

)
y′i

∥∥∥
Y2(μ)πY1(μ)′

holds for each n ∈ N and each finite sets x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ X and y′1, . . . ,y

′
n ∈

Y1(μ)′ .

(ii) There exists a function g ∈ Mult(Y2(μ);Y1(μ)) such that

T (x1)−T(x2) = g(S(x1)−S(x2))

for all x1,x2 ∈ X .
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(iii) There is a function g ∈ Mult(Y2(μ);Y1(μ)) such that T (x) = gS(x) for all x ∈ X ,
i.e. T factors through S as

X
T ��

S ��������������� Y1(μ).

Y2(μ)

Mg

��

(iv) TL factors through SL as

Æ(X)
TL ��

SL

�������������� Y1(μ)

Y2(μ)

Mg

��

for a certain function g ∈ Mult(Y2(μ);Y1(μ)).

In that case, the g’s in (ii), (iii) and (iv) coincide.

Proof. We will write Y1 and Y2 instead of Y1(μ) and Y2(μ) for the aim of clarity
in the proof. If we assume (i), we can rewrite the inequality as

n

∑
i=1

∫
TL(mx1

i ,x2
i
)y′i dμ �

∥∥∥ n

∑
i=1

(
SL(mx1

i ,x2
i
)
)
y′i

∥∥∥
Y2πY ′

1

for every finite sets x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ X and y′1, . . . ,y

′
n ∈Y ′

1 . It is clear then that the
inequality

n

∑
i=1

∫
TL(mi)y′i dμ �

∥∥∥ n

∑
i=1

(
SL(mi)

)
y′i

∥∥∥
Y2πY ′

1

holds for every m1, . . . ,mn ∈ M (X) . Note that, when considering molecules as linear
combinations of mx1

i ,x
2
i
, the scalar coefficients can be absorbed by the y′i. By The-

orem 1, there exists a function g ∈ Mult(Y2;Y1) such that TL(m) = gSL(m) for all
m ∈ M (X) . In particular, TL(mx1,x2) = gSL(mx1,x2) for all x1,x2 ∈ X . Therefore,
T (x1)− T (x2) = g(S(x1)− S(x2)) for all x1,x2 ∈ X , and (ii) is proved. The impli-
cation (ii) ⇒ (iii) is obvious. If we assume (iii), the linearization of S fulfills T (x) =
gSL(mx,0) for all x ∈ X . Therefore, TL(m) = gSL(m) for all m ∈ M (X) and (iv) fol-
lows. That (iv) implies (i) follows easily from Theorem 1. �
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3.2. Maurey-Rosenthal type Theorems on factorization of Lipschitz maps through
Lp -spaces

Chávez-Domı́nguez [3] has found several results concerning the factorization of
Lipschitz operators through Lp -spaces, including some variants of the Maurey-Rosent-
hal Theorem. In this section we will show a different way of proving similar results
on factorization. However, it must be noted that unlike what happens in the results of
[3], the measure μ over which Y (μ) is defined as a Banach function space is the same
that appears in the factorization space Lp(μ) . Also the fact that the closing operator is
a multiplication map Lp(μ) → Y (μ) provides a different meaning to our result when
comparing with the ones of Chávez-Domı́nguez, that are given for abstract Banach
lattices.

Let X be a pointed metric space and let Y (μ) be a Banach function space. Al-
though the definition given in [3] for Lipschitz p -convexity allows to prove factor-
ization results, for the aim of coherence we prefer to define Lipschitz p -convexity in a
slightly different way. This will allow to obtain Maurey-Rosenthal type factorizations in
the classical sense. We will say that T ∈ Lip0(X ,Y (μ)) is Lipschitz strongly p -convex
(1 � p < ∞), if there exists a constant K � 0 such that for all (x j

i )i�n, j�m,(y j
i )i�n, j�m

in X and (λ j
i )i�n, j�m in R ,

∥∥∥
( n

∑
i=1

∣∣∣ m

∑
j=1

λ j
i (T (x j

i )−T (y j
i ))

∣∣∣p)1/p∥∥∥� K
( n

∑
i=1

∣∣∣ m

∑
j=1

λ j
i d(x j

i ,y
j
i )

∣∣∣p)1/p
. (2)

The definition of Chávez-Domı́nguez is a bit weaker; we get it if we make m = 1
in inequality (2). This is the reason we use the term “strongly” in our definition. We
can prove a result that is similar to the one given in [3, Theorem 3.3].

LEMMA 1. Let T ∈ Lip0(X ,Y (μ)) be a Lipschitz operator. If T is Lipschitz
strongly p-convex, then TL : Æ(X) → Y (μ) is p-convex.

Proof. The proof is straightforward. Assume that T is Lipschitz strongly p -
convex and use (2). Consider the molecules mi ∈ M (X) , that can be written as mi =
∑ri

j=1 λ j
i m

xj
i ,y

j
i

for i = 1, . . . ,n . Write m = max{ri : i = 1, . . . ,n} and complete the sums

to m terms by adding λ j
i = 0 for ri < j � m for each i .

∥∥∥
( n

∑
i=1

|TL(mi)|p
)1/p∥∥∥ =

∥∥∥
( n

∑
i=1

∣∣∣TL

( m

∑
j=1

λ j
i m

xj
i ,y

j
i

)∣∣∣p)1/p∥∥∥

=
∥∥∥
( n

∑
i=1

∣∣∣ m

∑
j=1

λ j
i (T (x j

i )−T (y j
i ))

∣∣∣p)1/p∥∥∥

� K
( n

∑
i=1

∣∣∣ m

∑
j=1

λ j
i d(x j

i ,y
j
i )

∣∣∣p)1/p

� K
( n

∑
i=1

( m

∑
j=1

|λ j
i |d(x j

i ,y
j
i )

)p)1/p
.
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Since this computation can be done for each set of representations of the molecules mi

and the left hand side of the inequality does not depend on the representations, we get
that ∥∥∥

( n

∑
i=1

|TL(mi)|p
)1/p∥∥∥� K

( n

∑
i=1

∥∥∥mi

∥∥∥p

Æ(X)

)1/p
.

Thus, TL is p -convex. �

THEOREM 3. Let Y (μ) be a Banach function space and let T ∈ Lip0(X ,Y (μ))
be a Lipschitz operator. If Y (μ) is p-concave and T is Lipschitz strongly p-convex
(1� p < ∞), then there is g ∈Mult(Lp(μ);Y (μ)) and a Lipschitz map S : X → Lp(μ)
(with S(0) = 0 ) such that T = Mg ◦ S .

Proof. By Lemma 1, TL : Æ(X) → Y (μ) is p -convex. Since Y (μ) is p -concave,
it is in particular order continuous, and by the Maurey-Rosenthal Theorem [4, Corollary
2], there exists a positive multiplication operator Mg : Lp(μ) →Y (μ) and a continuous
operator u : Æ(X) → Lp(μ) such that TL = Mg ◦ u . Defining S := u ◦ δX we complete
the proof. �

4. Applications: Lipschitz isomorphisms among subsets
of measurable functions with different metrics

Factorization of operators among Banach function spaces are useful tools for the
study of the properties of subspaces of these spaces. For example, Maurey-Rosenthal
type factorizations of operators hold the key to getting the structure of reflexive sub-
spaces of L1 -spaces. The Lipschitz version of these results – that are based in the
arguments explained in the previous sections – can also be applied to subsets A of
Banach function spaces, when these subsets A are considered as metric substructures.
Therefore, we will center our attention on the application of our results to the analysis
of the metric structure of subsets A of Banach function spaces. Certain norm inequal-
ities among the elements of A will provide Lipschitz isomorphisms between metrics
on A provided by different Banach function spaces. In particular, when considering
the classical Banach function spaces Lp(μ) with respect to a finite measure μ , we
will characterize in terms of norm inequalities, those subsets A of Lq(μ) for which
there is a weight h so that Lp(hdμ) and Lq(μ) induce a Lipschitz automorphism on
A (1 < q < p < ∞). To illustrate these results, we provide some examples that easily
characterize the solutions of some integral inequalities.

We will develop our results in the following setting. Suppose that we have a Lips-
chitz copy – that is, a (bi)Lipschitz bijection from a metric space to a metric subspace of
a fixed Banach function space Y1(μ) , and we want to know if this metric space can be
found as a metric subspace of a weighted Lp space defined on the same measure space
(Ω,Σ,μ) . A direct application of Theorem 2 to the identity map gives the following
result.

Let us introduce before a technical definition. We will say that a set of measurable
functions A has measurable support if the union of all the supports of all the functions
belonging to it is a measurable set. We will assume that μ is a finite measure.
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THEOREM 4. Let A ⊂ Y1(μ) such that 0 ∈ A and has measurable support. Sup-
pose that Y1(μ) and Y2(μ)πY1(μ)′ are order continuous and Y1(μ) has the Fatou
property. The following statements are equivalent:

(i) There is a Lipschitz map S : (A,d‖·‖Y1(μ)
) → Y2(μ) with S(0) = 0 such that the in-

equality ∫ n

∑
i=1

(
x1
i − x2

i

)
y′i dμ �

∥∥∥ n

∑
i=1

(
S(x1

i )−S(x2
i )

)
y′i

∥∥∥
Y2(μ)πY1(μ)′

holds for each n ∈ N and every x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ A and y′1, . . . ,y

′
n ∈ Y1(μ)′ .

(ii) There exists a function g ∈ Mult(Y2(μ);Y1(μ)) such that the multiplication map

M1/g : (A,d‖·‖Y1(μ)
) −→ Y2(μ)

defines a Lipschitz isomorphism.

Moreover, if (i) (and so (ii)) happens, the equation x = gS(x) (maybe up to a multi-
plicative constant) holds for each x ∈ A.

Proof. For the aim of clarity, we will write Y1 and Y2 instead of Y1(μ) and Y2(μ)
in all the proof.

(i) ⇒ (ii). Suppose that there is such a Lipschitz map S . Considering the met-
ric space X = (A,d‖·‖Y1

) , by Theorem 2 there is a function g ∈ Mult(Y2;Y1) such that
x = gS(x) for all x ∈ A . In particular, we can assume that g is non-zero in any sub-
set of positive measure of the measurable support of all the functions in the subspace
generated by A , that coincides with union of the supports of all the functions in A . We
can assume that g = 1 outside this support. Since we are giving a factorization of the
identity map, this implies that S(x) = x/g for all x∈ A . Moreover, since S is Lipschitz,
we obtain that there is a constant K > 0 such that if x1,x2 ∈ A ,

d‖·‖Y2
(x1/g,x2/g) = d‖·‖Y2

(S(x1),S(x2))� Kd‖·‖Y1
(x1,x2),

and, for f1, f2 ∈ A
g ⊆ Y2 ,

d‖·‖Y1
(g f1,g f2)� ‖g‖Mult(Y2;Y1) · ‖ f1− f2‖Y2 = ‖g‖Mult(Y2;Y1) ·d‖·‖Y2

( f1, f2).

That is, if x1 = g f1 ∈ A and x2 = g f2 ∈ A , we obtain that

d‖·‖Y1
(x1,x2)� ‖g‖Mult(Y2;Y1) ·d‖·‖Y2

(x1/g,x2/g).

Consequently, the multiplication 1/g defines a bijective map that gives a Lipschitz
isomorphism, as we wanted to prove.

(ii) ⇒ (i). Note first that by the factorization we can assume w.l.o.g that g
cannot be equal to 0 in any set of positive measure. Take n ∈ N and finite sets
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x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ Y1 and y′1, . . . ,y

′
n ∈ Y ′

1 . Then, if we define the operator S as
S(x) := ‖g‖Mult(Y2;Y1) · x/g , we obtain

n

∑
i=1

∫ (
x1
i − x2

i

)
y′i dμ =

∫
g
( n

∑
i=1

(
x1
i /g− x2

i /g
)
y′i

)
dμ

� ‖g‖Mult(Y2;Y1) ·
∥∥∥ n

∑
i=1

(x1
i /g− x2

i /g)y′i
∥∥∥

Y2πY ′
1

=
∥∥∥ n

∑
i=1

(S(x1
i )−S(x2

i ))y
′
i

∥∥∥
Y2πY ′

1

.

Since clearly S(0) = 0, these computations show (i) and the proof is finished. �

EXAMPLE 1. The first non-trivial example – despite its simplicity – is given by
the Lipschitz map defined by an appropriate multiplication operator. Let Y (μ) be an
order continuous Banach function space over the finite measure μ and suppose that it
has the Fatou property. Let A ⊂ Y (μ) such that 0 ∈ A with measurable support and
take Y1(μ) = Y2(μ) = Y (μ) in Theorem 4. Note that in this case Y1(μ)πY1(μ)′ =
L1(μ) ([11]). Assume that the measurable function h defines a multiplication operator
Mh : (A,d‖·‖Y1(μ)

) → Y1(μ) – if h ∈ BL∞(μ) – in such a way that the inequality

∫
∑
i=1

(
x1
i − x2

i

)
y′i dμ �

∥∥∥ n

∑
i=1

h
(
x1
i − x2

i

)
y′i

∥∥∥
L1(μ)

=
∫ ∣∣∣ n

∑
i=1

(
x1
i − x2

i

)
y′i

∣∣∣ |h|dμ (3)

holds for each n∈ N and every pair of finite sets x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ A and y′1, . . . ,y

′
n

∈Y1(μ)′ . Of course, Mh is a Lipschitz operator that preserves 0. Consequently, Corol-
lary 4 gives a function g ∈ L∞(μ) such that the multiplication operator M1/g gives
a Lipschitz isomorphism from A to Y (μ) . By the equation x = gS(x) = ghx for all
x ∈ A , we have that g can be identified with 1/h , at least in the support of the set A . In
particular, 1/h must be bounded in the support of A , since g belongs to L∞(μ) ; it can
be seen that otherwise the inequality (3) does not hold for some elements of Y (μ) .

The following results show why Theorem 4 provides the key tool of the present
paper. For instance, it provides the next corollary, that characterizes when a subset of
Lq(μ) – considered as a metric space – can be identified metrically with a subset of a
space Lp(hdμ) for a certain weight h .

COROLLARY 1. Let 1 < q < p < ∞ and let 1/r = 1/p+ 1/q′ . Let A ⊆ Lq(μ)
such that 0 ∈ A and has measurable support. The following statements are equivalent.

(i) There is a Lipschitz operator S : (A,d‖·‖Lq(μ)
) → Lp(μ) such that S(0) = 0 and

∫ n

∑
i=1

(
x1
i − x2

i

)
y′i dμ �

∥∥∥ n

∑
i=1

(
S(x1

i )−S(x2
i )

)
y′i

∥∥∥
Lr(μ)

holds for each n∈N and each pair of finite sets x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈A and y′1, . . . ,y

′
n

∈ Lq′(μ) .
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(ii) There is a function g ∈ Lr′(μ) such that the identity between (A,d‖·‖Lq(μ)
) and

(A,d‖·‖Lp(dμ/gp)
) is a Lipschitz isomorphism.

Moreover, if this holds we have that S satisfy the equation S(x) = x/g for all x ∈ A
(maybe up to a multiplicative constant) .

Proof. (i) ⇒ (ii). Let us see how (ii) follows from Theorem 4 by taking Y1(μ) =
Lq(μ) and Y2(μ) = Lp(μ) . Note that, by the conditions on p and q , we have that
1/q = 1/p+ 1/r′ , and so Mult(Lp(μ);Lq(μ)) = Lr′(μ) and Lp(μ)πLq′(μ) = Lr(μ) .
All these spaces are order continuous and have the Fatou property. Call B to the support
of A , that is, the union of all the supports of the functions of A . By Theorem 4, we
have that for a certain g ∈ Lr′(μ) – that can be assumed to be positive – the operator
S(x) = x/g , for x ∈ A , defines a Lipschitz isomorphism between (A,d‖·‖Lq(μ |B)

) and

(A,d‖·‖Lp(μ |B)
) . The map y� gy defines an isometry from Lp(μ |B) on Lp(dμ |B/gp) .

Therefore, we have that the identity is a Lipschitz isomorphism between (A,d‖·‖Lq(μ)
)

and (A,d‖·‖Lp(dμ/gp)
) .

Theorem 4 for the spaces Lq(μ) and Lp(μ) and the last computations give (ii) ⇒
(i). �

EXAMPLE 2. Let us show some concrete examples of the dominations that can be
considered when applying our results.

(1) The p-th power as a Lipschitz operator defining an integral domination for the
identity map. Let 1 < q < p < ∞ and μ a probability measure, and consider
the power map S : Lq(μ) → Lp(μ) defined by S(x) := |x|q/p . Take a subset
A ⊂ Lq(μ) containing 0 such that S restricted to A is a Lipschitz operator, that
is, there is a constant K > 0 such that

∥∥|x|q/p−|y|q/p
∥∥

Lp(μ) � K‖x− y‖Lq(μ), for all x,y ∈ A.

Assume also that the integral inequality

∫ n

∑
i=1

(
xi,1 − xi,2

)
y′i dμ �

(∫ ∣∣∣ n

∑
i=1

(|xi,1|q/p−|xi,2|q/p)y′i
∣∣∣r dμ

)1/r

holds for each finite set x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ A and y′1, . . . ,y

′
n ∈ Lq′(μ) , where

1/r = 1/p+1/q′.

By Corollary 1, we have that there is a function g∈ Lr′(μ) such that (A,d‖·‖Lq(μ)
)

and (A,d‖·‖Lp(μ/gp)
) can be identified by means of a Lipschitz isomorphism. More-

over, by the last statement in this result we can write an explicit formula for the
operator S when restricted to the set A : if x ∈ A it must satisfy the equation
|x|q/p = x/g , which strongly restricts the structure of the sets A satisfying this
property.
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(2) A logarithmic domination that implies Lipschitz isomorphism for a subset of mea-
surable functions with topologies coming from different Lp -spaces. Let q = 4/3
and p = 4, and so q′ = 4 and r = 2. Consider a subset A of functions in 1

2BL∞[0,1]

considered as functions in L4/3[0,1] and containing the zero function. Con-
sider also the metric subspace (A,‖ · ‖L4/3[0,1]) of the metric space ( 1

2BL∞[0,1],‖ ·
‖L4/3[0,1]). Take now the operator R : ( 1

2BL∞[0,1],‖ ·‖L4/3[0,1]) → L4/3[0,1] defined
as

R( f ) := log( f +1), f ∈ 1
2
BL∞[0,1],

and notice that it is well-defined almost everywhere. Since for −1/2� r � 1/2
the function r �→ log(r + 1) is differentiable with bounded derivative, we have
that |R( f1)−R( f2)|� 2| f1 − f2| and so

‖R( f1)−R( f2)‖L4/3[0,1] � 2‖ f1− f2‖L4/3[0,1], f1, f2 ∈ 1
2
BL∞[0,1].

Therefore, R is a Lipschitz operator.

Consider also any continuous linear map P : L4/3[0,1]→ L4[0,1] . Then we have
that S := P◦R : ( 1

2BL∞[0,1],‖ · ‖L4/3[0,1]) → L4[0,1] is a Lipschitz operator too.

Let us show that the associated logarithmic domination implies by virtue of our
results, a strong relation among the metric spaces (A,d‖·‖

L4/3
) and (A,d‖·‖L4(w)

)
for a certain weight function w . Indeed, suppose that for all finite sets f1,1, . . . , fn,1,
f1,2, . . . , fn,2 ∈ A and h1, . . . ,hn ∈ L4[0,1] the adapted version of the inequality in
(i) of Corollary 1 holds, that is

∫
[0,1]

n

∑
i=1

( f 1
i − f 2

i )hi dx�
(∫

[0,1]

∣∣ n

∑
i=1

P
(

log
( fi,1 +1)
( fi,2 +1)

)
hi

∣∣2 dx
)1/2

.

Thus, by Corollary 1 we can say that for sets A satisfying these requirements,
there is a weight g ∈ L2[0,1] such that the identity map between (A,d‖·‖

L4/3
)

and (A,d‖·‖L4(dx/g4)
) is a Lipschitz isomorphism. Also, this situation forces the

functions f ∈ A to satisfy the equation P◦ log( f +1) = f
g .

Let us finish the paper with the following result that concerns the metric structure
of the space of measurable functions L0(μ) . Also in this case, whenever a subset A
of measurable functions has a metric structure coming from a norm, our results can be
applied to analyze the Lipschitz isomorphisms between subsets of two different (metric)
spaces of (classes of) measurable functions. If (Ω,Σ,μ) is a finite measure space,
consider a subset A of the space L0(μ) of all the μ -a.e equal classes of functions
endowed with its natural metric

d0( f ,g) =
∫

Ω

| f (w)−g(w)|
1+ | f (w)−g(w)| dμ(w).

The idea is just to notice that the results are also valid when a metric isomorphism
with a space of measurable function is taken instead of considering directly a subset of
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an Lq -space. The proof of the next result follows the lines of the corollary above, as
a direct application of Theorem 4. We say that the metric d0 is equivalent to another
metric coming from a norm of a Banach function space d‖‖̇X(μ)

in the set of measurable

functions A ⊆ X(μ) if and only if there are positive constants q and Q such that

q d0(x1,x2)� ‖x1− x2‖X(μ) � Q d0(x1,x2), x1,x2 ∈ A,

that is, the identity is Lipschitz in both directions.

COROLLARY 2. Let 1 � q � p < ∞ and let 1/r = 1/p+ 1/q′ . Let A ⊆ L0(μ)
such that 0 ∈ A and has measurable support, and the metrics d0 and d‖·‖Lq(μ)

are
equivalent on it. The following statements are equivalent.

(i) There is a Lipschitz operator S : (A,d0) → Lp(μ) such that S(0) = 0 and

∫ n

∑
i=1

(
x1
i − x2

i

)
y′i dμ �

∥∥∥ n

∑
i=1

(
S(x1

i )−S(x2
i )

)
y′i

∥∥∥
Lr(μ)

holds for each n∈N and functions x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ A and y′1, . . . ,y

′
n ∈ Lq′(μ) .

(ii) There exists a function g ∈ Lr′(μ) such that the identity between (A,d0) and
(A,d‖·‖Lp(dμ/gp)

) is a Lipschitz isomorphism.
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