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ON SOME CLASSICAL TRACE INEQUALITIES AND
A NEW HILBERT-SCHMIDT NORM INEQUALITY

MOSTAFA HAYAINEH, SAJA HAYAINEH AND FUAD KITTANEH

(Communicated by J.-C. Bourin)

Abstract. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Using some
classical trace inequalities, we prove, among other inequalities, that

4B+ BA||, < [[4"B+BA™,

for % < s <t < 1. We conjecture that this inequality is also true for all unitarily invariant norms,
and we affirmatively settle this conjecture for the case s = % and 1 =1.

1. Introduction

Throughout this paper, all matrices are assumed to be n x n complex matrices. In
their investigation of trace inequalities for multiple products of powers of two positive
semidefinite matrices, T. Ando, F. Hiai, and K. Okubo [1] proved that if A and B are
positive semidefinite matrices, then

2
u(A%B> <tr A'BA'B < tr AB? (1)

for 0 <7 < 1. See Corollary 2.2 in [1].
The inequalities (1) can be generalized by proving that the inequality

tr ABA' B < tr A'BA''B (2)

holds for % <s <t <1, where A is a positive semidefinite matrix and B is a Hermitian
matrix.

To accomplish this, we consider the function f (1) = tr A’BA'~'B for 0 <t < 1.
Note that f () = f (1 —1),andso f (t) is symmetric about f = 1. The Cauchy Schwarz
inequality (see [2, p. 96]) says that for any two matrices X and Y, we have

1 1
tr < (tr tr .
XY | < X*X)2 Y*Y)?

Mathematics subject classification (2010): Primary 15A60, Secondary 15A45, 15B57, 47A30, 47B15.
Keywords and phrases: Trace, Hilbert-Schmidt norm, positive semidefinite matrix, Hermitian matrix,
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Using this inequality, we can prove that f (r) is logarithmically convex (and hence it is
convex) for 0 <z < 1. Infact,if 0 <s,7 < 1, then

f(%”) —tr AT BA(Y)p

D=

<trA BA’BAITY(trA%BAl‘SBA%)
= (tr A'BA''B) 4 (tr A*BA'*B) :
= (f()2(f(s)
1

<SU@+10).

D=

Thus, f(¢) is decreasing for 0 < é, increasing for % <t < 1, attains its mini-
mum at ¢ = %, and attains its maximumat r =0 and t = 1.

Another proof of the inequality (2) can be concluded from Lemma 2 in [7]. We
remark here that the inequality (2) is equivalent to saying that

tr A“BAPB < tr AYBA®B
for a,B,y,0 >0 with ot + 3 = y+ 6 and

max{o, B} < max{y,8}.

Related classical trace inequalities, based on log convexity results, can be found in [8],
[13], and [14].
The second inequality in (1) is a particular case of the inequality

|tr AB'A' B | < tr AB, (3)

where A and B are positive semidefinite matrices and 0 <s,7 < 1.
In [1], T. Ando, F. Hiai, and K. Okubo proved that the inequality (3) holds for all
non-negative real numbers s,¢ for which

1 . 1
s—= =
2 2

! <
It is natural to ask what is the complete range of validity of the inequality (3).
Plevnik [ 14] gave a counterexample to the inequality (3). He answered it in the negative
for s = %,t = % .
Recently, M. Hayajneh, S. Hayajneh, and F. Kittaneh [ 1] generalized the inequal-
ity (3) by proving that the inequality

tr AYB*A'™"B'~?| < tr AB, 4)
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holds for all complex numbers w,z for which

Rez——| < =.
€z ) )

1
R - =
ew 2’—1—

1 ‘ 1
A special case of the inequality (4) when w = z is the inequality

|tr AB*A'*B'"%| < tr AB.
n [5], Bottazzi et al. have proved this inequality under the condition that

1 3
—<Rez< -
g SRersg
We mention here that the inequality (3) has been studied by several authors as in
(31, [9], and [10].
Section 2 is devoted to proving the following Hilbert-Schmidt norm inequality as
the first application of the inequality (2):

la*B+BA™|, < [|aB+BA™|

for % <s <t <1, where A is a positive semidefinite matrix and and B is a Hermitian
matrix.

In Section 3, we prove the following trace inequality as the second application of
the ineqaulity (2):

tr A'BA'" (logA)B < tr A" (logA)BA' B,

where A is a positive definite matrix, B is a Hermitian matrix, and % t<1. Asa
consequence of this trace inequality, we prove that the inequality

|A'B+BA'"logAl|, < ||A (logA) B+ BA' ||,

holds for 1 <t < 1, where A is a positive definite matrix with 6 (A) C [e~!,1] U[e, )
and B is a Hermitian matrix.

It would be interesting to investigate the following conjectures concerning the gen-
eralizations of our Hilbert-Schmidt norm inequalities to the wider class of unitarily
invariant norms.

CONJECTURE 1. Let A be a positive semidefinite matrix and B be a Hermitian
matrix. Then for % < s <1 < 1 and for every unitarily invariant norm, we have

ll4°B+BA™||| < [[]a"B +BA™|.

CONJECTURE 2. Let A be a positive deﬁmte matrix such that 6 (A) C [e”!,1] U
[e,0) and B be a Hermitian matrix. Then for 1 5 <t < 1 and for every unitarily invariant
norm, we have

|A"B + BA' "logA|| < [||A" (logA) B+ BA'™|||.
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In Section 4, we present further applications of the inequality (2). These appli-
cations contain trace inequalities involving means of two non-negative real numbers,
which include a generalization of the Ando-Hiai-Okubo trace inequalities (1). We con-
clude the paper with a general trace inequality for products of positive definite matrices,
which is related to the inequality (2).

2. A new Hilbert-Schmidt norm inequality

In this section, we affirmatively settle Conjecture 1 for the Hilbert-Schmidt norm.
This application is a Hilbert-Schmidt norm inequality, which asserts that
e R

where A is a positive semidefinite matrix, B is a Hermitian matrix, and % <s<r«l.
A useful lemma for our purpose is the following.

LEMMA 1. Let A and C be any two positive semidefinite matrices. Then the
function g(t) = tr (A"+A'"")C is increasing for % <r <.

Proof. Without loss of generality, we may assume that A is a positive definite
matrix. The general case follows by a continuity argument.

By the spectral theorem, it is evident that the matrix (A’ —A'~")logA is a positive
semidefinite matrix for % <t < 1. Since C is a positive semidefinite matrix, it follows
that

d -
e (r) = tr (A"logA —A'"logA) C > 0.
Therefore, g (t) is increasing for 3 <7 < 1. O

THEOREM 1. Let A be a positive semidefinite matrix and B be a Hermitian ma-
trix. Then

[A*B+BA'"S||, < |A'B+BAY||, for 5 <s<t<l1.

1
Hz )
In other words, the function h(t) = HAtB—I—BAl_tH2 is increasing for % <r <.
Proof. Using the fact that for any matrix X, ||X||3 = tr X*X, we have
(h(1)? = |A'B+BA™|]2
=tr (BA'+A''B) (A'B+BA'™")
S (AZ’B2 +A2(H)B2> 2t A'BAIB

—tr <A2’ +A2(H)> B>+ 2tr A'BA''B.
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Replacing A by A? and taking C = B? in Lemma 1, we see that tr (AZ’ —|—A2(1”)> B?
is increasing for % <t < 1. Since tr AABA'"'B is increasing for % <t <1, it follows
that % (r) is increasing for % <t < 1. This completes the proof of the theorem. [

The arithmetic-geometric mean inequality for unitarily invariant norms (see, e.g.,
[4] or [12]) says thatif S and T are positive semidefinite matrices, then for every matrix
X and every unitarily invariant norm, we have

2)|sXT| < [[| %X + X7

Using the triangle inequality, the self-adjointness of unitarily invariant norms, and
the arithmetic-geometric mean inequality for unitarily invariant norms, we have

1

[[48+ a2 | < a4 + | oa?
=2jats|
< [lAB + B]l,

where A is a positive semidefinite matrix and B is a Hermitian matrix. This affirma-
tively settles Conjecture 1 for the case s = % and r = 1.

3. Related inequalities

The following trace inequality is the second application of the inequality (2).

THEOREM 2. Let A be a positive definite matrix and B be a Hermitian matrix.
Then for % <t <1, we have

tr A’BA'™ (logA) B < tr A" (logA) BA'™B.

Proof. Consider f(¢) =tr A’BA'~'B. Then we have

dt
= tr (—A'BA' " (logA) B+ A’ (logA) BA' 'B).

d _ i t 1—t ti 1—t
Ef(t)_tr( (A'B)A B+ABdt(A B))

Since the function f (t) = tr A’BA'~'B is increasing for % <t < 1, it follows that
L f(t) > 0. Thus,

tr A’BA'™ (logA) B < tr A’ (logA)BA'™'B.
This completes the proof of the theorem. [

Letting = 1 in Theorem 2, we have the following corollary.



1180 M. HAYAINEH, S. HAYAINEH AND F. KITTANEH
COROLLARY 1. Let A be a positive definite matrix and B be a Hermitian matrix.
Then
tr AB(logA)B < tr A(logA)B. (5)

It should be mentioned here that the inequality (5) can also be concluded from
Theorem 1.2 in [6].
The following norm inequality is a another consequence of Theorem 2.

THEOREM 3. Let A be a positive deﬁnzte matrix such that ¢ (A) C [e”!,1] U
[e,0) and B be a Hermitian matrix. Then for } 5 <t <1, we have

[A"B+BA'" (logA)||, < ||A’ (logA) B+BA"™|,.

Proof. We can see that the square of the right-hand side of the desired norm in-
equality is equal to

tr (4% (logA)* B+ 421 B%) 12 A" (logA) BA' B
and the square of the left-hand side is equal to
o (A2fB2 4 A0 (1ogA)2B2) 42t A'BA' (logA) B

Note that tr A’BA'~" (logA) B < tr A’ (logA) BA'~'B by Theorem 2. Thus, it is enough
to show that

tr <A2’32+A2<1 ) (logA) 32) tr (A” (logA)? B2 + A2~ ’)B2> ©6)

By the spectral theorem, it is evident that 6 (A) C [e™!,1] U[e,o0) implies that

the matrix <A2’ — A2 ‘)> ((logA) —I) is a positive semidefinite matrix. Since B>
is also positive semidefinite, it follows that

tr (Az’ —A2<H>> ((1ogA)2 - 1) B> 0.

This gives the inequality (6).
Thus,

tr (A” (logA)? B2 +A2(H)B2> +2tr A" (logA)BA''B
>t (A2’B2 +A20-) (logA)sz> +2tr A'BA' (logA) B
Hence, the desired norm inequality is valid for % <t <1, O

Note that if we set r = % in Theorem 3, the inequality becomes equality, but if we

set t = 1, we get the following inequality.

COROLLARY 2. Let A be a positive definite matrix such that 6 (A) C [¢~!,1] U
[e,0) and B be a Hermitian matrix. Then

[AB+ B (logA)|; < [|A(logA) B+ B,
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4. Further applications

In this section, we give more applications of the inequality (2). These applications
contain trace inequalities involving means of two non-negative real numbers, which
include a generalization of the Ando-Hiai-Okubo trace inequalities (1). Here, we as-
sume that A is a positive semidefinite matrix, B is a Hermitian matrix, a,b > 0, and
I<r<t.

REMARK 1. Let f(a,b) and g (a,b) be means of a and b. Then

tr A8(72)gal=¢("2) B < r ATBA"B < tr A/ Al =/ (Rl g, 7

In fact, since f(a,b) and g (a,b) are means of @ and b and § < r < 1, it follows
by the internality property that

1 1
§<g<r7§) <r<f(r7l)< L.
Therefore, using the inequality (2), we have
tr A2(72) pal=¢("3) B < tr A”BAY B < tr A/(FDBA/ (g,
The following example is derived from the inequality (1).

EXAMPLE 1. Let f(a,b) =max{a,b} and g(a,b) =min{a,b} in the inequality
(1). Then

1)? 1 2
tr (AfB) <tr A’BA"B < tr AB. 8)

The inequalities (8) yeild the inequalities (1) when B is a positive semidefinite
matrix.

Another related trace inequality is

tr A“BAPB < Ztr (A‘””BAﬁ "B A%~ "BA/”"B) ©)

where A is a positive semidefinite matrix, B is a Hermitian matrix and o, > 1 > 0.

To prove the inequality (9), let C = BA"" — AnBA™" and R = A% . Since
tr RCC* > 0, it follows that

tr A% <BAI%_" —A”BAI%_H> (A/%ﬂB ATBA”> >0,

which is equivalent to the inequality (9).

It is interesting to see that the inequality (9) gives another proof of the convexity

1

of the function f ( ). To see this, replace A by A®*F in the inequality (9) and set
s= Gt 1= oqp et f () <3 (F () 7).

REMARK 2. Since the function f(¢) = tr A’BA!~'B is logarithmically convex

(and hence it is convex) for 0 <7 < 1, it follows that dz f(t) = 0. Thus, for a positive
definite matrix A and a Hermitian matrix B, we have the trace inequality

1
tr A" (logA) BA'™ (logA) B < St <A’BA1” (logA)* B+ A'~'BA! (logA)2B> . (10)
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Letting ¢t = % in the inequality (10), we obtain the inequality
tr (A% (10gA)B>2 <tr ABA? (logA)*B.
Letting # =0 or ¢t = 1 in the inequality (10), we obtain the inequality
tr (logA)BA (logA) B < %tr (AB (logA)® B+ BA (10gA)2B> .

REMARK 3. It should be mentioned here that the functions g (7) given in Lemma
1 and h(t) given in Theorem | are also logarithmically convex (and hence they are
convex) for 0 <t < 1, symmetric about t = % , decreasing for 0 < < % , increasing for
% <t < 1, attain their minima at t = %, and attain their maximaatt =0 and 7= 1.

We conclude the paper with a general trace inequality, from which we obtain a
trace inequality related to those given in the previous sections.

THEOREM 4. Let T be a positive definite matrix, X,Y be positive semidefinite
matrices, and B be a Hermitian matrix. Then

tr (T%YT*%BXBJFT*%YT%BXB) < tr(T*%YT*%BX%TX%B+T%YT%BX%T*1X%B).
If, in addition, T commutes with X and Y, then

1
tr YBXB < Str (YT 'BXTB+YTBXT 'B).

Proof. Let C=BX2T? —TBX*T~% and R=T"3YT%. Since tr RCC* > 0, it
follows that 1 1 . L L L
w T 2YT? (BXfo—TBX7T7> (TixfB—TTXfBT> >0,
which is equivalent to
tr (T%YT*%BXBJFT*%YT%BXB) <tr (T*%YT*%BX%TX%BJFT%YT%BX%T*IX%L") .
This completes the proof of the theorem. [
Based on Theorem 4, we have the following trace inequality, which is closely

related to the one given in the inequality (9). In this inequality, the positivity of the
matrix A is strengthend, while the positivity of the exponents is released.

COROLLARY 3. Let A be a positive definite matrix and B be a Hermitian matrix.
Then for the real numbers o, 3,1, we have
1
tr A"BAPB < Str (A‘”"BAﬁ—"B +A“—"3Aﬁ+"3) .

Proof. The result follows immediately by replacing X.,Y,T by AP, A% A" re-
spectively in Theorem 4. [

Note that if we restrict the values of o, 8,1 in Corollary 3 such that o, >1n >0
and if we use a continuity argument, then we retain the inequality (9).

Acknowledgement. The authors are grateful to J. C. Bourin for his comments and
suggestions.
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