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Abstract. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Using some
classical trace inequalities, we prove, among other inequalities, that∥∥AsB+BA1−s

∥∥
2 �

∥∥AtB+BA1−t
∥∥

2

for 1
2 � s � t � 1 . We conjecture that this inequality is also true for all unitarily invariant norms,

and we affirmatively settle this conjecture for the case s = 1
2 and t = 1 .

1. Introduction

Throughout this paper, all matrices are assumed to be n×n complex matrices. In
their investigation of trace inequalities for multiple products of powers of two positive
semidefinite matrices, T. Ando, F. Hiai, and K. Okubo [1] proved that if A and B are
positive semidefinite matrices, then

tr
(
A

1
2 B

)2
� tr AtBA1−tB � tr AB2 (1)

for 0 � t � 1. See Corollary 2.2 in [1].
The inequalities (1) can be generalized by proving that the inequality

tr AsBA1−sB � tr AtBA1−tB (2)

holds for 1
2 � s � t � 1, where A is a positive semidefinite matrix and B is a Hermitian

matrix.
To accomplish this, we consider the function f (t) = tr AtBA1−tB for 0 � t � 1.

Note that f (t) = f (1− t), and so f (t) is symmetric about t = 1
2 . The Cauchy Schwarz

inequality (see [2, p. 96]) says that for any two matrices X and Y , we have

|tr XY | � (tr X∗X)
1
2 (tr Y ∗Y )

1
2 .
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Using this inequality, we can prove that f (t) is logarithmically convex (and hence it is
convex) for 0 � t � 1. In fact, if 0 � s,t � 1, then

f

(
s+ t
2

)
= tr A

s+t
2 BA1−( s+t

2 )B

= tr
(
A

t
2 BA

1−t
2

)(
A

1−s
2 BA

s
2

)

�
(
tr A

1−t
2 BAtBA

1−t
2

) 1
2
(
tr A

s
2 BA1−sBA

s
2

) 1
2

=
(
tr AtBA1−tB

) 1
2
(
tr AsBA1−sB

) 1
2

= ( f (t))
1
2 ( f (s))

1
2

� 1
2

( f (s)+ f (t)) .

Thus, f (t) is decreasing for 0 � t � 1
2 , increasing for 1

2 � t � 1, attains its mini-
mum at t = 1

2 , and attains its maximum at t = 0 and t = 1.
Another proof of the inequality (2) can be concluded from Lemma 2 in [7]. We

remark here that the inequality (2) is equivalent to saying that

tr AαBAβ B � tr AγBAδ B

for α,β ,γ,δ � 0 with α + β = γ + δ and

max{α,β} � max{γ,δ} .

Related classical trace inequalities, based on log convexity results, can be found in [8],
[13], and [14].

The second inequality in (1) is a particular case of the inequality

∣∣tr AsBtA1−sB1−t
∣∣ � tr AB, (3)

where A and B are positive semidefinite matrices and 0 � s,t � 1.
In [1], T. Ando, F. Hiai, and K. Okubo proved that the inequality (3) holds for all

non-negative real numbers s,t for which
∣∣∣∣s− 1

2

∣∣∣∣+
∣∣∣∣t− 1

2

∣∣∣∣ � 1
2
.

It is natural to ask what is the complete range of validity of the inequality (3).
Plevnik [14] gave a counterexample to the inequality (3). He answered it in the negative
for s = 4

5 , t = 1
5 .

Recently, M. Hayajneh, S. Hayajneh, and F. Kittaneh [11] generalized the inequal-
ity (3) by proving that the inequality

∣∣tr AwBzA1−wB1−z
∣∣ � tr AB, (4)
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holds for all complex numbers w,z for which∣∣∣∣Re w− 1
2

∣∣∣∣+
∣∣∣∣Re z− 1

2

∣∣∣∣ � 1
2
.

A special case of the inequality (4) when w = z is the inequality

∣∣tr AzBzA1−zB1−z
∣∣ � tr AB.

In [5], Bottazzi et al. have proved this inequality under the condition that

1
4

� Re z � 3
4
.

We mention here that the inequality (3) has been studied by several authors as in
[3], [9], and [10].

Section 2 is devoted to proving the following Hilbert-Schmidt norm inequality as
the first application of the inequality (2):∥∥AsB+BA1−s

∥∥
2 �

∥∥AtB+BA1−t
∥∥

2

for 1
2 � s � t � 1, where A is a positive semidefinite matrix and and B is a Hermitian

matrix.
In Section 3, we prove the following trace inequality as the second application of

the ineqaulity (2):

tr AtBA1−t (logA)B � tr At (logA)BA1−tB,

where A is a positive definite matrix, B is a Hermitian matrix, and 1
2 � t � 1. As a

consequence of this trace inequality, we prove that the inequality∥∥AtB+BA1−t logA
∥∥

2 �
∥∥At (logA)B+BA1−t

∥∥
2

holds for 1
2 � t � 1, where A is a positive definite matrix with σ (A)⊆ [

e−1,1
]∪ [e,∞)

and B is a Hermitian matrix.
It would be interesting to investigate the following conjectures concerning the gen-

eralizations of our Hilbert-Schmidt norm inequalities to the wider class of unitarily
invariant norms.

CONJECTURE 1. Let A be a positive semidefinite matrix and B be a Hermitian
matrix. Then for 1

2 � s � t � 1 and for every unitarily invariant norm, we have
∣∣∣∣∣∣AsB+BA1−s

∣∣∣∣∣∣ �
∣∣∣∣∣∣AtB+BA1−t

∣∣∣∣∣∣.
CONJECTURE 2. Let A be a positive definite matrix such that σ (A) ⊆ [

e−1,1
]∪

[e,∞) and B be a Hermitian matrix. Then for 1
2 � t � 1 and for every unitarily invariant

norm, we have ∣∣∣∣∣∣AtB+BA1−t logA
∣∣∣∣∣∣ �

∣∣∣∣∣∣At (logA)B+BA1−t
∣∣∣∣∣∣.
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In Section 4, we present further applications of the inequality (2). These appli-
cations contain trace inequalities involving means of two non-negative real numbers,
which include a generalization of the Ando-Hiai-Okubo trace inequalities (1). We con-
clude the paper with a general trace inequality for products of positive definite matrices,
which is related to the inequality (2).

2. A new Hilbert-Schmidt norm inequality

In this section, we affirmatively settle Conjecture 1 for the Hilbert-Schmidt norm.
This application is a Hilbert-Schmidt norm inequality, which asserts that

∥∥AsB+BA1−s
∥∥

2 �
∥∥AtB+BA1−t

∥∥
2

where A is a positive semidefinite matrix, B is a Hermitian matrix, and 1
2 � s � t � 1.

A useful lemma for our purpose is the following.

LEMMA 1. Let A and C be any two positive semidefinite matrices. Then the
function g(t) = tr

(
At +A1−t

)
C is increasing for 1

2 � t � 1 .

Proof. Without loss of generality, we may assume that A is a positive definite
matrix. The general case follows by a continuity argument.

By the spectral theorem, it is evident that the matrix
(
At −A1−t

)
logA is a positive

semidefinite matrix for 1
2 � t � 1. Since C is a positive semidefinite matrix, it follows

that

d
dt

g(t) = tr
(
At logA−A1−t logA

)
C � 0.

Therefore, g(t) is increasing for 1
2 � t � 1. �

THEOREM 1. Let A be a positive semidefinite matrix and B be a Hermitian ma-
trix. Then

∥∥AsB+BA1−s
∥∥

2 �
∥∥AtB+BA1−t

∥∥
2 for

1
2

� s � t � 1.

In other words, the function h(t) =
∥∥AtB+BA1−t

∥∥
2 is increasing for 1

2 � t � 1 .

Proof. Using the fact that for any matrix X , ‖X‖2
2 = tr X∗X , we have

(h(t))2 =
∥∥AtB+BA1−t

∥∥2
2

= tr
(
BAt +A1−tB

)(
AtB+BA1−t)

= tr
(
A2tB2 +A2(1−t)B2

)
+2tr AtBA1−tB

= tr
(
A2t +A2(1−t)

)
B2 +2tr AtBA1−tB.
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Replacing A by A2 and taking C = B2 in Lemma 1, we see that tr
(
A2t +A2(1−t)

)
B2

is increasing for 1
2 � t � 1. Since tr AtBA1−tB is increasing for 1

2 � t � 1, it follows
that h(t) is increasing for 1

2 � t � 1. This completes the proof of the theorem. �

The arithmetic-geometric mean inequality for unitarily invariant norms (see, e.g.,
[4] or [12]) says that if S and T are positive semidefinite matrices, then for every matrix
X and every unitarily invariant norm, we have

2|||SXT ||| � ∣∣∣∣∣∣S2X +XT 2
∣∣∣∣∣∣.

Using the triangle inequality, the self-adjointness of unitarily invariant norms, and
the arithmetic-geometric mean inequality for unitarily invariant norms, we have

∣∣∣∣∣∣∣∣∣A 1
2 B+BA

1
2

∣∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣∣A 1

2 B
∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣BA

1
2

∣∣∣∣∣∣∣∣∣
= 2

∣∣∣
∣∣∣
∣∣∣A 1

2 B
∣∣∣
∣∣∣
∣∣∣

� |||AB+B|||,

where A is a positive semidefinite matrix and B is a Hermitian matrix. This affirma-
tively settles Conjecture 1 for the case s = 1

2 and t = 1.

3. Related inequalities

The following trace inequality is the second application of the inequality (2).

THEOREM 2. Let A be a positive definite matrix and B be a Hermitian matrix.
Then for 1

2 � t � 1 , we have

tr AtBA1−t (logA)B � tr At (logA)BA1−tB.

Proof. Consider f (t) = tr AtBA1−tB . Then we have

d
dt

f (t) = tr

(
d
dt

(
AtB

)
A1−tB+AtB

d
dt

(
A1−tB

))

= tr
(−AtBA1−t (logA)B+At (logA)BA1−tB

)
.

Since the function f (t) = tr AtBA1−tB is increasing for 1
2 � t � 1, it follows that

d
dt f (t) � 0. Thus,

tr AtBA1−t (logA)B � tr At (logA)BA1−tB.

This completes the proof of the theorem. �

Letting t = 1 in Theorem 2, we have the following corollary.
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COROLLARY 1. Let A be a positive definite matrix and B be a Hermitian matrix.
Then

tr AB(logA)B � tr A(logA)B2. (5)

It should be mentioned here that the inequality (5) can also be concluded from
Theorem 1.2 in [6].

The following norm inequality is a another consequence of Theorem 2.

THEOREM 3. Let A be a positive definite matrix such that σ (A) ⊆ [
e−1,1

]∪
[e,∞) and B be a Hermitian matrix. Then for 1

2 � t � 1 , we have∥∥AtB+BA1−t (logA)
∥∥

2 �
∥∥At (logA)B+BA1−t

∥∥
2 .

Proof. We can see that the square of the right-hand side of the desired norm in-
equality is equal to

tr
(
A2t (logA)2 B2 +A2(1−t)B2

)
+2tr At (logA)BA1−tB

and the square of the left-hand side is equal to

tr
(
A2tB2 +A2(1−t) (logA)2 B2

)
+2tr AtBA1−t (logA)B.

Note that tr AtBA1−t (logA)B � tr At (logA)BA1−tB by Theorem 2. Thus, it is enough
to show that

tr
(
A2tB2 +A2(1−t) (logA)2 B2

)
� tr

(
A2t (logA)2 B2 +A2(1−t)B2

)
. (6)

By the spectral theorem, it is evident that σ (A) ⊆ [
e−1,1

]∪ [e,∞) implies that

the matrix
(
A2t −A2(1−t)

)(
(logA)2− I

)
is a positive semidefinite matrix. Since B2

is also positive semidefinite, it follows that

tr
(
A2t −A2(1−t)

)(
(logA)2− I

)
B2 � 0.

This gives the inequality (6).
Thus,

tr
(
A2t (logA)2 B2 +A2(1−t)B2

)
+2tr At (logA)BA1−tB

� tr
(
A2tB2 +A2(1−t) (logA)2 B2

)
+2tr AtBA1−t (logA)B.

Hence, the desired norm inequality is valid for 1
2 � t � 1. �

Note that if we set t = 1
2 in Theorem 3, the inequality becomes equality, but if we

set t = 1, we get the following inequality.

COROLLARY 2. Let A be a positive definite matrix such that σ (A) ⊆ [
e−1,1

]∪
[e,∞) and B be a Hermitian matrix. Then

‖AB+B(logA)‖2 � ‖A(logA)B+B‖2 .
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4. Further applications

In this section, we give more applications of the inequality (2). These applications
contain trace inequalities involving means of two non-negative real numbers, which
include a generalization of the Ando-Hiai-Okubo trace inequalities (1). Here, we as-
sume that A is a positive semidefinite matrix, B is a Hermitian matrix, a,b � 0, and
1
2 � r � 1.

REMARK 1. Let f (a,b) and g(a,b) be means of a and b . Then

tr Ag(r, 1
2 )BA1−g(r, 1

2)B � tr ArBA1−rB � tr Af (r,1)BA1− f (r,1)B. (7)

In fact, since f (a,b) and g(a,b) are means of a and b and 1
2 � r � 1, it follows

by the internality property that

1
2

� g

(
r,

1
2

)
� r � f (r,1) � 1.

Therefore, using the inequality (2), we have

tr Ag(r, 1
2 )BA1−g(r, 1

2 )B � tr ArBA1−rB � tr Af (r,1)BA1− f (r,1)B.

The following example is derived from the inequality (1).

EXAMPLE 1. Let f (a,b) = max{a,b} and g(a,b) = min{a,b} in the inequality
(1). Then

tr
(
A

1
2 B

)2
� tr ArBA1−rB � tr AB2. (8)

The inequalities (8) yeild the inequalities (1) when B is a positive semidefinite
matrix.

Another related trace inequality is

tr AαBAβ B � 1
2

tr
(
Aα+ηBAβ−ηB+Aα−ηBAβ+ηB

)
, (9)

where A is a positive semidefinite matrix, B is a Hermitian matrix and α,β � η � 0.

To prove the inequality (9), let C = BA
β+η

2 −AηBA
β−η

2 and R = Aα−η . Since
tr RCC∗ � 0, it follows that

tr Aα−η
(
BA

β+η
2 −AηBA

β−η
2

)(
A

β+η
2 B−A

β−η
2 BAη

)
� 0,

which is equivalent to the inequality (9).
It is interesting to see that the inequality (9) gives another proof of the convexity

of the function f (t) . To see this, replace A by A
1

α+β in the inequality (9) and set
s = α+η

α+β , t = α−η
α+β to get f

(
s+t
2

)
� 1

2 ( f (s)+ f (t)) .

REMARK 2. Since the function f (t) = tr AtBA1−tB is logarithmically convex

(and hence it is convex) for 0 � t � 1, it follows that d2

dt2
f (t) � 0. Thus, for a positive

definite matrix A and a Hermitian matrix B , we have the trace inequality

tr At (logA)BA1−t (logA)B � 1
2

tr
(
AtBA1−t (logA)2 B+A1−tBAt (logA)2 B

)
. (10)
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Letting t = 1
2 in the inequality (10), we obtain the inequality

tr
(
A

1
2 (logA)B

)2
� tr A

1
2 BA

1
2 (logA)2 B.

Letting t = 0 or t = 1 in the inequality (10), we obtain the inequality

tr (logA)BA(logA)B � 1
2

tr
(
AB(logA)2 B+BA(logA)2 B

)
.

REMARK 3. It should be mentioned here that the functions g(t) given in Lemma
1 and h(t) given in Theorem 1 are also logarithmically convex (and hence they are
convex) for 0 � t � 1, symmetric about t = 1

2 , decreasing for 0 � t � 1
2 , increasing for

1
2 � t � 1, attain their minima at t = 1

2 , and attain their maxima at t = 0 and t = 1.

We conclude the paper with a general trace inequality, from which we obtain a
trace inequality related to those given in the previous sections.

THEOREM 4. Let T be a positive definite matrix, X ,Y be positive semidefinite
matrices, and B be a Hermitian matrix. Then

tr
(
T

1
2YT− 1

2 BXB+T− 1
2YT

1
2 BXB

)
� tr

(
T− 1

2YT− 1
2 BX

1
2 TX

1
2 B+T

1
2YT

1
2 BX

1
2 T−1X

1
2 B

)
.

If, in addition, T commutes with X and Y , then

tr YBXB � 1
2

tr
(
YT−1BXTB+YTBXT−1B

)
.

Proof. Let C = BX
1
2 T

1
2 −TBX

1
2 T− 1

2 and R = T− 1
2YT− 1

2 . Since tr RCC∗ � 0, it
follows that

tr T− 1
2YT− 1

2

(
BX

1
2 T

1
2−TBX

1
2 T− 1

2

)(
T

1
2 X

1
2 B−T− 1

2 X
1
2 BT

)
� 0,

which is equivalent to

tr
(
T

1
2YT− 1

2 BXB+T− 1
2YT

1
2 BXB

)
� tr

(
T− 1

2YT− 1
2 BX

1
2 TX

1
2 B+T

1
2 YT

1
2 BX

1
2 T−1X

1
2 B

)
.

This completes the proof of the theorem. �

Based on Theorem 4, we have the following trace inequality, which is closely
related to the one given in the inequality (9). In this inequality, the positivity of the
matrix A is strengthend, while the positivity of the exponents is released.

COROLLARY 3. Let A be a positive definite matrix and B be a Hermitian matrix.
Then for the real numbers α,β ,η , we have

tr AαBAβ B � 1
2

tr
(
Aα+ηBAβ−ηB+Aα−ηBAβ+ηB

)
.

Proof. The result follows immediately by replacing X ,Y,T by Aβ , Aα , Aη , re-
spectively in Theorem 4. �

Note that if we restrict the values of α,β ,η in Corollary 3 such that α,β � η � 0
and if we use a continuity argument, then we retain the inequality (9).

Acknowledgement. The authors are grateful to J. C. Bourin for his comments and
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