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Abstract. A fundamental inequality for Hilbert spaces is the �1 − �2 -norm inequality which
gives that for any x ∈ H

n , ‖x‖1 � √
n‖x‖2. But this is a strict inequality for all but vectors with

constant modulus for their coefficients. We will give a trivial method to compute, for each x , the
constant c for which ‖x‖1 = c

√
n‖x‖2. Since this inequality is one of the most used results in

Hilbert space theory, we believe this will have unlimited applications in the field. We will also
show some variations of this result.

1. Introduction

The �1 − �2 -norm inequality which gives that for any x ∈ H
n , ‖x‖1 � √

n‖x‖2 .
But this is a strict inequality for all but vectors with constant modulus for their coeffi-
cients. We will give a trivial method to compute, for each x, the constant c for which
‖x‖1 = c

√
n|x‖2. Since this is one of the most fundamental and most used inequalities

in Hilbert space theory, we believe this will have broad application in the field. We will
also show some variations of this result. For a background in this area see [1, 2].

2. The �1− �2 -norm inequality

We need a definition.

DEFINITION 1. A vector of the form x = 1√
n(c1,c2, . . . ,cn) ∈ H

n , with |ci| = 1
for all i = 1,2, . . . ,n will be called a constant modulus vector.

THEOREM 1. Let x = (a1,a2, . . . ,an) ∈ H
n , a real or complex Hilbert space. The

following are equivalent:

1. We have
‖x‖1 =

(
1− cx

2

)√
n‖x‖2.
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2. We have
n

∑
i=1

∣∣∣∣ |ai|
‖x‖2

− 1√
n

∣∣∣∣
2

= cx.

3. The infimum of the distance from x
‖x‖2

to the constant modulus vectors is
√

cx .

In particular,
‖x‖1 �

√
s‖x‖2,

if and only if (
1− cx

2

)√
n �

√
s,

if and only if

1− cx

2
�
√

s
n
.

Proof. (1) ⇔ (2) : We compute:

n

∑
i=1

∣∣∣∣ |ai|
‖x‖2

− 1√
n

∣∣∣∣
2

=
1

‖x‖2
2

n

∑
i=1

|ai|2 +
n

∑
i=1

1
n
− 2√

n‖x‖2

n

∑
i=1

|ai|

= 2

(
1− 1√

n‖x‖2

n

∑
i=1

|ai|
)

= cx.

if and only if
1√

n‖x‖2

n

∑
i=1

|ai| = 1− cx

2
,

if and only if
n

∑
i=1

|ai| =
(
1− cx

2

)√
n‖x‖2.

(1) ⇔ (3) : We compute:

inf

{
n

∑
i=1

∣∣∣∣ ai

‖x‖2
− ci√

n

∣∣∣∣
2

: |ci| = 1

}

= inf

{
1

‖x‖2
2

n

∑
i=1

|ai|2 +
n

∑
i=1

∣∣∣∣ ci√
n

∣∣∣∣
2

−2
1

‖x‖2
√

n
Re

n

∑
i=1

aici : |ci| = 1

}

= 2− 2
‖x‖2

√
n

n

∑
i=1

|ai|.

The equality occurs when 1√
n (c1,c2, . . . ,cn) is a constant modulus vector with ci =

ai

|ai|
if ai �= 0.
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Thus

cx = 2− 2
‖x‖2

√
n

n

∑
i=1

|ai| if and only if (1) holds �

Now we want to look at an application of the above. For this we need two prelim-
inary results.

THEOREM 2. Let S be a subspace of H
n and let P be the orthogonal projection

on S . For any x ∈ H
n , Px

‖Px‖ is the closest unit vector in S to x .

Proof. Let y be a unit vector in S and extend it to be an orthonormal basis
{y,u1,u2, . . . ,uk} for S . Then

Px = 〈x,y〉y+
k

∑
i=1

〈x,ui〉ui.

Hence

‖Px‖2 = |〈x,y〉|2 +
k

∑
i=1

|〈x,ui〉|2 � |〈x,y〉|2.

Therefore
‖Px‖ � |〈x,y〉| � Re〈x,y〉.

Now we have∥∥∥x− Px
‖Px‖

∥∥∥2
= ‖x‖2−2‖Px‖+1 � ‖x‖2−2Re〈x,y〉+‖y‖2 = ‖x− y‖2,

which is our claim. �

Next, we examine the �1− �2 -norm inequality for subspaces.

THEOREM 3. Let S be a subspace of H
n and let P be the projection onto S . The

following are equivalent:

1. For every unit vector x ∈ S ,

‖x‖1 �
(
1− c

2

)√
n.

2. The �2 distance of any unit vector in S to any constant modulus vector is greater
than or equal to

√
c.

3. For every constant modulus vector x , we have

‖Px‖2 � 1− c
2
.



62 S. BOTELHO-ANDRADE, P. G. CASAZZA, D. CHENG AND T. T. TRAN

Proof. (1) ⇔ (2) : Let x = (a1,a2, . . . ,an) .

inf

{
n

∑
i=1

|ai− ci√
n
|2 : |ci| = 1

}
= inf

{
n

∑
i=1

|ai|2 +
n

∑
i=1

1
n
− 2√

n
Re

n

∑
i=1

aici : |ci| = 1

}

= 2− 2√
n

n

∑
i=1

|ai|.

Now,

c � 2− 2√
n

n

∑
i=1

|ai| if and only if
n

∑
i=1

|ai| �
(
1− c

2

)√
n.

(2) ⇔ (3) : By Theorem 2, we need to check how close

Px
‖Px‖ is to the all one’s vector x.

So we compute:∥∥∥∥ Px
‖Px‖ − x

∥∥∥∥
2

= 2−
〈

Px
‖Px‖ ,x

〉
−
〈

x,
Px

‖Px‖
〉

= 2−2‖Px‖

So,

c �
∥∥∥∥ Px
‖Px‖ − x

∥∥∥∥
2

if and only if ‖Px‖ � 1− c
2
. �

Now we have the second main result. For this recall [1, 2] that if P is a projection
on H

n with orthonormal basis {ei}n
i=1 then ∑n

i=1 ‖Pei‖2 = dim P(Hn) .

THEOREM 4. Let S be a s-dimensional subspace of H
n with orthonormal basis

{ei}n
i=1 . If

‖y‖1 �
√

s‖y‖2, for all y ∈ S,

then there is an I ⊂ [n] with |I| = s and S = span {ei}i∈I .

Proof. For any y ∈ S , let cy be defined in (2) of Theorem 1. Since

‖y‖1 �
√

s‖y‖2, for all y ∈ S,

then

1− cy

2
�
√

s
n
.

Set
c = inf{cy : y ∈ S}

then

1− c
2

�
√

s
n

(1)
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We will prove: {Pei}n
i=1 is an orthogonal set. This will impliy that there is an I ⊂ [n]

so that Pei = ei for i ∈ I and Pei = 0 for i ∈ Ic .
First note that {Pei}n

i=1 is a Parseval frame for S and so

n

∑
i=1

‖Pei‖2 = s.

Assume there are two of these vectors which are not orthogonal. By reindexing, we will
assume Pe1,Pe2 are not orthogonal. Hence, by replacing Pe2 by c2Pe2 with |c2| = 1
if necessary with Re c2〈Pe1,Pe2〉 > 0, we have

‖Pe1 + c2Pe2‖2 > ‖Pe1‖2 +‖Pe2‖2.

Now, by replacing Pe3 by c3Pe3 with |c3| = 1 if necessary, we have

‖Pe1 + c2Pe2 + c3Pe3‖2 � ‖Pe1 +Pe2‖2 +‖Pe3‖2 > ‖Pe1‖2 +‖Pe2‖2 +‖Pe3‖3.

Continuing, and letting c1 = 1, we have∥∥∥∥∥P
(

n

∑
i=1

ciei

)∥∥∥∥∥
2

>
n

∑
i=1

‖Pei‖2 = s.

It follows from Theorem 3,√
s
n

<

∥∥∥∥∥P
(

1√
n

n

∑
i=1

ciei

)∥∥∥∥∥� 1− c
2
,

which contradicts Equation (1) above. �

3. An application to Lp[0,1]

It was pointed out to us by Bill Johnson that our work has application to Banach
space theory. That, in general, when working with finite dimensional �p , it is better to
use the Lp[0,1] normalization. But applying our results, the nasty n1/2 goes away and
the expressions are independent of dimension. What is quite interesting here is the fact
that if p < s and f ∈ L1[0,1] then we can measure how peaky f is by seeing how small
‖ f‖p is. What apparently was not realized is that when p = 1 and s = 2 we get a nice
equality instead of an inequality.

THEOREM 5. Let f � 0 be norm one in L2[0,1] . The following are equivalent:

1. We have
‖ f‖1 =

(
1− c

2

)
.

2. We have
‖ f −1‖2

2 = c.



64 S. BOTELHO-ANDRADE, P. G. CASAZZA, D. CHENG AND T. T. TRAN

Proof. We use the parallelogram law:

4 = ‖ f −1‖2
2 +‖ f +1‖2

2

= ‖ f −1‖2
2 +‖ f‖2

2 +1+2
∫ 1

0
f (t)dt

= ‖ f −1‖2
2 +2+2‖ f‖1.

I.e.
‖ f −1‖2

2 = 2−2‖ f‖1.

It follows that
‖ f −1‖2

2 = c if and only if ‖ f‖1 = 1− c
2
. �
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