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ON MULTILINEAR COMMUTATORS OF MARCINKIEWICZ INTEGRALS
IN VARIABLE EXPONENT LEBESGUE AND HERZ TYPE SPACES

LIWEI WANG AND LISHENG SHU

(Communicated by I. Peri¢)

Abstract. Based on some pointwise estimates, we establish the boundedness of multilinear com-
mutators of Marcinkiewicz integrals in variable exponent Lebesgue spaces, which in turn are
used to obtain some boundedness results for such operators in variable exponent Herz and Herz-
Morrey spaces. Further, we consider the boundedness in variable exponent Herz-type Hardy
spaces applying the atomic decomposition and generalization of the BMO norms.

1. Introduction

Suppose that S"~! is the unit sphere in R” (n > 2) equipped with the normalized
Lebesgue measure do(x'). Let Q € L'(S""!) be homogeneous of degree zero and
satisfy

Q(x)do(x') =0, (1)
Snfl

where x' = x/|x| for any x # 0.
Stein in [41] introduced the n-dimensional Marcinkiewicz integral operator

o)) = ([ 1R S ) |

where

Fos (1)) = | DD f(vyay

eyl =yt
Moreover, he proved that if Q satisfies a Lipy (0 <y < 1) conditionon S"!, i.e.,

QW) —Qp) | <CW =y, ¥y es, )
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then Lo is of type (p,p) for 1 < p < 2 and of weak type (1,1). Benedek, Calderén
and Panzone in [2] showed that g is of type (p,p) for 1 < p < oo provided that
Q is continuously differentiable in x # 0. Subsequently, Torchinsky, Ding efc. made
important progress on this operator, see [9, 10, 23, 24, 25, 26, 27, 28, 29, 43] for its
recent development.

A locally integrable function b is said to be a BMO function, if it satisfies

1
ol = sup = [ 1b() ~baldy <,
B /s

x€R™ r>0

where and in the sequel B is ball centered at x and radius of r, bp = ﬁ Jpb(t)dt and

|6]|+ is the norm in BMO(R"). For b € BMO(R"), [b,lq|, the commutator of the
Marcinkiewicz integral operator, is then defined by

tap(f) = b, palf = bua(f) — ua(bf).

Torchinsky and Wang [43] showed that for 1 < p < eo, [b,Ug] : LP(®) — L? () if
Q€ Lipy(S™!) (0<y< 1) and o is a weight in the Muckenhoupt A, class (see [13]
for the definition).

Given a vector b = (by,b,,...,by), where b}s are suitable functions. Motivated
by the work of Pérez and Trujillo-Gonzdlez [37] on multilinear operators, we define the
multilinear commutators of the Marcinkiewicz integrals by

2\ 2
d_3’> B
t

b (1)) = ( |

where m € N. Clearly, if m =1 and b; = b, then the operators i, ; coincide with the

commutator [b, lig]. In the case of Q € Lip,(S"~!) (0 <y< 1) and b; € BMO(R"),
Zhang in [51] proved that p, ; are bounded on L? (w) for 1 < p < e when w €A,
and established a weighted weak L(logL)-type estimate when p =1 and ® € A;. We
refer to [14, 34] for an extensive study of multilinear operators.

In recent years, following the fundamental work of Kovacik and Rakosnik [21],
function spaces with variable exponent have attracted a great attention in connection
with problems of the boundedness of classical operators (such as maximal, potential
and Calderén-Zygmund operators efc.) on those spaces, which in turn were motivated
by the treatment of recent problems in fluid dynamics, image restoration and PDE with
non-standard growth conditions, see for instance [3, 7, 15, 39, 48, 49, 50, 52].

Unfortunately the variable exponent Lebesgue spaces L) (R") and the classical
cases have some undesired properties. For example, the variable L” 9 (R™) spaces are
not translation invariant. As a consequence, the variable exponent Lebesgue spaces
are not rearrangement invariant Banach spaces, and so neither good-A techniques nor
rearrangement inequalities may be applied for a generalization of some standard results
in classical Lebesgue spaces to the case of LP(") (R"), see [5, 8] for futher details.

Karlovich and Lerner in [20] proved that [b,T], the commutator of a standard
Calderén-Zygmund singular integral operator 7 and a BMO function b, is bounded

[ ) 2 )y
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on LP) (R™), which improves a celebrated result by Coifman, Rochberg and Weiss in
[4]. Recently, Xu [47] made a futher step and showed that the multilinear commutators
with vector symbol b = (b1,by,...,by) as defined by Pérez and Trujillo-Gonzdlez in
[37] enjoy the same LP()(R") estimates when b; € BMO(R"), i = 1,2,...,m. These
results inspire us to ask whether the multilinear operators [, 7 have the similar map-

ping properties in variable exponent L(") (R™) spaces? Our first result (see Theorem 1
below) will give an affirmative answer to this question.

Herz spaces K, (R") and K, /(IR") (see [32] for the definition) have been play-
ing a central role in harmonic analysis and PDE. For instance, they are good substitutes
of the ordinary Hardy spaces when considering the boundedness of non-translation in-
variant singular integral operators, they also appear in the characterization of multiplier
on Hardy spaces and in the regularity theory for elliptic and parabolic equations in di-
vergence form, see [32, 38]. The generalized Herz spaces I'(;(’g (R™) and K;‘(’g (R™)
with variable exponent p(-) were recently studied by Izuki [16, 17]. Simultaneously,
he has given some basic lemmas on generalization of the BMO norms to get the bound-
edness of classical operators and their commutators on such spaces. For the time being,
the theory of Variable Herz spaces and their generalization spaces (e.g. variable Herz-
Morrey spaces MK o )(R”) as studied in [19]) are widely developed, one can consult
[1, 12, 33, 40] for 1ts development and applications.

On the other hand, the variable exponent Herz-type Hardy spaces, as well as their
atomic decomposition characterizations, have been intensively studied by a significant
number of authors [12, 45]. Using these decompositions, they also established the
boundedness results for some singular integrals on such spaces.

Motivated by the results mentioned above, another purpose of this article is to
prove the boundedness of the operators Mo in variable exponent Herz-type spaces,
which includes variable exponent Herz, Herz-Morrey and the atomic Herz-Hardy spaces.

We usually denote cubes in R” by Q, |Q| is the Lebesgue measure of Q. yg is
a characteristic function of a measurable set E C R". Let B; = {x € R": |x| < 2/}(l €
Z) and B:=B(x,r) ={y € R": |[x—y| <r}. fp means the integral average of f
on B, namely, fp = ﬁ Jpf(x)dx. p'(-) denotes the conjugate exponent defined by
1/p(-)+1/p'(:) = 1. By %/(R") we denote the space of tempered distributions. For
x € R, we denote by [x] the largest integer less than or equal to x. The letter C stands
for a positive constant, which may vary from line to line. The expression f < g means
that f < Cg,and f~ g means f Sg< f.

2. Preliminaries and lemmas
We begin with a brief and necessarily incomplete review of the variable exponent

Lebesgue spaces LP(')(R”), see [5, 8] for more information.
Let p(-) : R" — [1,e0) be a measurable function. We assume that

1<p_<pk) <py <o
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where and in the sequel

p—=essinfiepnp(x), py = esssup,cpap(x).

By L’)(R") we denote the set of all measurable functions f on R” such that

prof)i= [ 1F@Idx < e
This is a Banach space with respect to the Luxemburg-Nakano norm
1100y = InE{p > 02 pyy (/1) < 1}
Obviously, this norm has the following property

A Nt oy = W vy enys v 2 1/ P
(

Given an open set Q C R", the space L p( )(Q) is defined by

loc
Lf;c (Q) = {f: f € L’ (K) for all compact subsets K C Q}.
For simplicity, we use the notation

PR") = {p(-): p— > land py < oo}

and
BR") :={p(-) € Z(R"): M is bounded on L") (R")},
where M is the Hardy-Littlewood maximal operator defined by
M) =sup o [ 7).
0sx 10|

We say a measurable function ¢ : R” — [1,00) is globally log-Ho1der continuous
if it satisfies

—C

|¢(x)—¢(y)|<m7 x—yl<1/2,, 4)
C
|¢(x)—¢(}’)|<m’ Iyl > |x], (5)

for any x,y € R". The set of p(-) satisfying (4) and (5) is denoted by LH(R"). It
is well-known that if p(-) € Z(R")(LH(R"), then the Hardy-Littlewood maximal
operator M is bounded on LP()(R"), thus we have p(-) € B(R"), see [6, 35].

When p(-) € Z2(R"), f € LPO)(R") and g € L’ ()(R"), the generalized H&lder
inequality holds in the form

L @00l < o1 e s ey ©)

with r, =14+1/p_—1/py,see [2], Theorem 2.1].
The following Lemmas | and 2 are due to Izuki [18, Page 203].
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LEMMA 1. Suppose p(-) € B(R"), then we have
1
HH%BHU)(-)(R»«) 12l 7o) gy < C-

LEMMA 2. Suppose p(-) € B(R"), then we have for all measurable subsets E C

HXEHLp(-)(Rn) ‘E‘ 81 HXE”LI)/(-)(RH) ‘E‘ &

T < C| = ) < Clmr )

HXB”LP(-)(R") |B| HXB”LP’(-)(Rn) |B|

where 01,0, are constants with 0 < 8,0, < 1.

B,

REMARK 1. We would like to stress that everywhere below the constants §; and
0, are always the same as in Lemma 2.

LEMMA 3. Suppose pi(-),p(:) € ZZ(R"), i=1,2,...,m, so that
1 21

-3

Spilx)’

where m € N. Then for all f; € LPiC)(R"), we have

i=1

LPC)(Rm)

LEMMA 4. Suppose p(-) € LH(R") and 0 < p_ < p(x) < py < oo.
(i) For all balls (or cubes) |B| < 2" and any x € B, we have

HxB”LI’(')(Rn) ~ |B|1/p(x)
(ii) For all balls (or cubes) |B| > 1, we have
||XBHL/’(')(]R7!) ~ |B|1/Poo’

where pe, :=limy_... p(x).

The proofs of Lemmas 3 and 4 can be found in [5] and [8], respectively. Combin-
ing Lemma 3, Lemma 4 and Lemma 3 in [18, Page 464], a simple computation shows
that

LEMMA 5. Suppose p(-) € ZR"), by e BMOR"), i=1,2,....m, k> j (k,j €
N), then we have

sup
BCR" ||XB||LP )(R")

H B)XB

~ 15l
i

LPO) (R

and

Cle= )" TTBill sl gy -
LPC) (R i=1

H XBk
=1
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REMARK 2. We remark that Lemma 5 is a generalization of the well known prop-
erties for BMO(R") spaces (see [42]), and is also a generalized version of Izuki’s result
in [17, Page 204].

3. Boundedness on variable exponent Lebesgue spaces

We first recall the duality and density in variable exponent Lebesgue spaces LP(") (R™),
and some pointwise estimates for sharp maximal functions.

For p(-) € Z(R"), the spaces L()(R") can be endowed with the Orlicz type
norm

11206 gy sup{ L@l g € L7O®), gl e < 1}.
This norm, as pointed out in [21], is equivalent to the Luxemburg-Nakano norm, that is
11l r) ey < £ 11250 @y STl gy (7
where r, =1+1/p_—1/p,.

By L7 we denote the set of all bounded functions f with compact support. From
[21, Theorem 2.11] (see also [20, Lemma 2.2]), we get the following.

LEMMA 6. Suppose p(-) € P (R"), then L is dense in LPO)(R™) and in LP'0) (R").

For § >0 and f € L} (R"), we define

loc

X) = 8 /6)6 = U L 8 1/6
Ma(f)() = ()" <>—(Z£Q|/Qf<y>| dy) |

Given a function f € LZOC(R"), set also
: s, )"
f sup inf ( / fly)—c dy) ,
6( ) ance ‘Q| ‘ |

where the supremums are taken over all cubes O C R" containing x.
The non-increasing rearrangement of a measurable function f on R” is defined as

f(s) ::inf{a >0:|{reR":|f(r)] >0} <s}7 >0,

and for a fixed A € (0, 1), the local sharp maximal function Mi f is given by

M (f)(x) = sup inf ((f — ) 20)" (21Q))-

0>x ceR

The next lemma is due to [20, Proposition 2.3].
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LEMMA 7. Suppose A € (0,1), § >0 and f € L? (R"), then we have

loc
ME () < (/M) fh (),  xeR™.

A function @ defined on [0,) is said to be a Young function, if ® is a con-
tinuous, nonnegative, strictly increasing and convex function with lim,_,+ ®(r)/t =
lim, _ g+ t/®(¢) = 0. We define the ®-average of a function f over a cube Q by

. N f I
¢7Q—1nf{l>0.|Q/QCD< N )dygl}.

Associated to this ®-average, we define the maximal operator Mg by

/1

Mo (f)(x) := sup|| flle,o-
0>x

When ®(7) =tlog"(e+1) (r>1), we denote Mg by My i) - Itis well-known that if
m e N, then My jogym = M+ the m+ 1 iterations of the Hardy-Littlewood maximal
operator M, see [36, Page 179].

Ding, Lu and Zhang [11] established the following pointwise estimates for the
sharp function of g, which generalizes the ones obtained by Torchinsky and Wang
[43].

LEMMA 8. Let 0 < 8 < 1 and [, ua(f) be both locally integrable. Then there
exsits a positive constant C, independet of f and x, such that

(Ha(f)(x) <CMf(x), xR

For the multilinear commutators U, 7, there holds a similar piontwise estimate.
To state it, we first introduce some notations.

As in [37], given any positive integer m, for all 1 < j < m, we denote by C;-" the
family of all finite subset 6 = {o(1),06(2),...,0(j)} of {1,2,...,m} of j different
elements. For any o € C", we associate the complementary sequence ¢’ given by
o' ={1,2,....m}\o.

Suppose b= (b1,b2,...,by) and 6 ={0(1),0(2),...,0(j)} € C}'. Denote bs =
{bc(l)aba@)a oo ,bo—(j)}, bs = bo’(l)bo'(2) = ~b0—(j) and ||bo‘|| = Hjeo HbH* . In the case
o=1{1,2,...,m}, we denote ||bs|| by ||5]|.

Forany o = {o(1),0(2),...,0(j)} € C?", we define

2\ 2
dt
[1(Bs ) (x) = boiy () t—3> ~
We now mention an immediate consequence of Proposition 2.4 in [51].

. Q(x—y)
—_— d
/‘X*YKI i=1 |x_y|n71f(y) Y

%%mw=<[

If 0 = {1,2,...,m}, then we understand g, ; = Ug; and g3 = L.
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LEMMA 9. Suppose Q € Lip,(S™') (0<y<1) and 0< 8 <& <1. Let i,

be as in (3). Then for any f € LY, there exists a constant C > 0, depending only on &
and €, such that

(i 50) < C{ 1B £+ 3, Motz 10 -

j= IGECm

We also need the following result from Lerner [22, Theorem 1].

LEMMA 10. Suppose g € LIIOC(R") and let f be a measurable function with
S (40e0) =0, then

FWeldx<c [ M fl0Mg(x)dx.

where constants ¢, A, depend only on dimension n.

Rn

We now state the main result of this section.

THEOREM 1. Suppose Q € Lip,(S™™") (0 <y< 1) andlet p(-) € BR"), b=
(b1,b2,...,by) and b; € BMO(R"), i =1,2,...,m. Then the multilinear commutators
Ug, 3, as in (3) are bounded on LPO)(R™).

REMARK 3. Clearly, this result is a generalized version of [44, Theorem 1]. How-
ever, it should be pointed that in the proof of Theorem 1 we use some ideas from [20]
and [47].

Proof of Theorem 1. Let f € L and g € LF'O)(R") C L} .(R"). We show Theorem
1 by indction on m. For m = 1, the same argument as in [44, Page 1098] gives

Nt 100y < i s oy < CILA L oy

Suppose now that the Theorem 1 is true for m — 1. We will show that it is true
for m. By Theorem 1.4 in [51, Page 1389], U, ; satisfies the conditions of Lemmas 9.
Thus, from Lemmas 9, 7, 8 and the generalized Holder inequality (6), it follows that

L gz s(ldx <C [ M (g 5)(0)Mg(x)dx
<c /R (1o )5 (Mg )
gC/é’l{||zML(logL mf +2 Z [bo||Me( th/ lx )}Mg(x)dx

j= IGECW

<0 [ {1B1Muan s 00+ 3, S, el (5) M)

j=1 oeC;"

<CTTIbl- [, 3 My 1 (OMg(x)dx
j=1 j=1

S CNS oo ey Nl ) ey
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Combining (8) and (7), we get that
||ﬂQ,Bf||LP(-)(Rn) < ||”Q’Bf||gp(-)(Rn) < CHf”LI’(')(]R")'

By Lemma 6, this concludes the proof of Theorem 1. [

4. Boundedness on variable exponent Herz-Morrey spaces

Let By = {x € R" : [x| <2}, Ry = B\By_1 and y; = xg, be the characteristic
function of the set R for k € Z.

DEFINITION 1. Let p(-) € Z(R"), 0 < g < and a € R. The homogeneous

variable exponent Herz space I'(Z(ﬂ) (R™) consists of all f € Lfa(c') (R™\{0}) satisfying

1/q
ke = (S 29000 ) <o

keZ

with the usual modification when ¢ = eo.

DEFINITION 2. Let A >0, p(-) € Z(R"), 0 < g <~ and a € R. The ho-
mogeneous variable exponent Herz-Morrey space MI'(;‘ZE_)(R”) consists of all f €

LPY(R™M {0}) satisfying

loc

L 1/q
g oy =502 (3 29010l ) <o
MK oo ®) T ez kzz_'m LPO(RY)
with the usual modification when ¢ = eo.

REMARK 4. Tt obviously follows that MK" | (R") = Ky (R") and K¢ (R") =
LPO)(R™) . If p(-) is constant, then KI‘;‘(’.)(R") and MK;‘ZE_)(R") coincide with the clas-
sical Herz and Herz-Morrey spaces, respectively (see [30, 32]).

Now we present the main results of this section.

THEOREM 2. Suppose Q € Lipy(S"!) (0<y< 1) and let b= (b1,by,...,by),
bi e BMOR"), i=1,2,....m. If L >0, p(-) € Z(R")NLH(R"), 0 < g < o and
A —nd| < o < nd,y, where 0 < 81,8, < | are the constants appearing in Lemma 2.
Then the multilinear commutators Mgy are bounded on MKZZE_) (R™).

In fact, Theorem 2 remains valid also in the particular case A = 0, namely, in the
framework of variable exponent Herz spaces. More precisely, we have

THEOREM 3. Suppose Q € Lipy(S"™!) (0 <y < 1) and let p(-), q, b be as in
Theorem 2. If —nd; < o0 < n&,, where 0 < 81,6, < 1 are the constants appearing in
Lemma 2. Then the multilinear commutators [, 3 are bounded on KI‘;{(’_)(R").



86 L. WANG AND L. SHU

REMARK 5. We note that Theorem 3 generalizes the corresponding result in [46,
Page 178] to the case of multilinear operators. Since its proof is essentially a repetition
of the proof of Theorem 2, we will omit the details.

Proof of Theorem 2. Let f € MKZZE.) (R"). Write
Z J ) x(x Z filx
J=—eo J=—eo

Then, we have

_ - LAg Zkaq q
()(R") Sup k_z_oo ||ILLQ b( )kaLp()(]Rn)

q
<Csup2 14 E 2kaq( E, ||lJ'Qb () xell o R")
LEZ f=—o0 J=—o0

B q
resup2 B0 3 20 S (1) o)
LEZ j— j=k—2

L oo
- q
+Csup2 Lra Z 2kaq< Z H.ugj,‘(fj)XkHLM-)(R"))
LeZ k=—oo Jj=k+3

=Vi+ V4 V.

gz (NI e

To estimate V;, note thatif x € Ry, y € R;j and j < k—3, then |x—y| ~ |x|. Since
Qe Lip,(S"") C L=(S"""), by the Minkowski inequality, we have
Q(x—y)

(/Ox /X_y|<tili(bi(X)_b( ))Wf’( Dy %;)%

1

i) T, |bi(x) = bi(y)| ( dt) 3

<l [ LT [
€2l (sn-1) R x— y[rT <t >t 3 y

<o / GO 500 =i b2,

x —y|n1 \x—y\%

9)

<cat [ FOITTIb0) - iy

Similarly, we derive the estimate

o I R DD i)y 29%

e —y[t
)T Bix) = bi(y)] (= dr\?
<C/R,‘ T </ 73) @ 1o
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gc/‘momnﬁnmu%4wwugw

=yt %]
e [ 1G0T - by

Let 4 = (A 225 Am), A = (bi)p;, i=1,2,...,m. From (9), (10) and the general-

ized Holder inequality (6), it follows that

o5/ < </0

(U

2%/Hw O)I14;0)ldy

[ GO R ety
fe—yl<t i el

[ 1100 - ni) 2D
eyl i =yl

I+l

<oty Yy |/| Dol £i(0)ldy
i= OO'EC'”
<2l 2 3 1069 =Dl 00~ Aozl s
i=0 ey

Gathering this, Lemmas 1, 2 and 5, we get that

|| (”Qij)Xk HLI’(') (R")
< C2_k71 Hf]”LP()(Rn) Z Z || (b() — )L)GX](”L”(')(R”) || (b() — )L)O'/Xj”Lp,(-)(Rn)

i=0ceC

m
Clk— )" TTNOil 27 Nl o oy 12851 o oy 5 0 g
i=1
”%Bk”Lp )(R7)

<C(k—]) Hf/”LP )(Rn) ”X ”
Lp Rn

< C(k— jym2U=hme: 1731l 220 (eny -

Thus we arrive at

k-3

L
Vi <Csup2 40 Y (S 20 ] g (k — 2N e
LeZ k=—co " j=—oo

If 0 < g <1, applying the well-known inequality

oo q oo
<2ai> <Ydl, ai>0,i=12,..., (11)

i=1
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we deduce that

L
Vi <Csup2™ LAq Z Z 2/0{1] k— ])qu(k J)(o—né&y) ‘1||fjH
LeZ kffooj_—oo

L
<Cspr Y el VT Y (S A
LeZ j=—o0 k=j+3

<CHf||q ak n
Ko ®)

If 1 < g < oo, since o —nd, <0, Holder’s inequality implies that

k=3

L
Vi <Csup2~t Y ( D Zjaqu/”L,, &) o (k ./)(a*n&)qﬁ)
LeZ k=—c0 " j=—oo

k=3 q
7

X( 3 (k- jymd 2l n52)f1/2>q

L
< Csup2t Y ( 2 Zjaqu/”L,, &2 ./)(a*n&)qﬁ)
LeZ k=—co \ j=—oo

< Coup2~124 g £ill? pUk=i)(@nd)a/2
P ) (@)
LeZ j=—oo k=j+3

< Csup2 A 2 27%4)| £114
LezZ jp—

<CHfllq o
Ko p()f

r() Rn

Rn)

For V;, by the boundedness of (i, 7 on L) (R"), we get immediately that

Vo < Csup2 tra ¥ okeq < C|If|4
2 Lep k_z_‘x) ||fk||Lp Rn Hf” ;}E)(Rn)

For V3, similar to the estimate of V|, we have

sl < ([

(f

[ GO R ety
fe—yl<t iy el

/\xnyt ﬁ(bi(x) —bi (y))ij( )dy

1
2dr\?
=

1
Zdr\ 2
t_3 .

lx —y|n1
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Note that if x € R, y € Rj and j > k+3, then [x—y| ~ |y|. As argued before, by
the Minkowski inequality, we obtain
1
2dr\ 2
3

</on| /\x—y|<t ﬁ(bi(x) h (y))Mff( )y

R
1
. m () — b: 2
<C/ i I Wf? bz(y)|</ d_;) dy
R; x =y <ty >t T

(12)
)T b (x) = 5:y)] |
C : d
/. lx — y[r! |x—y|% y
<2 f”/ e |H\b )|dy.
Similarly, we have
oo m Q(X—y) 2dt)é
bi(x) — bi(y)) ———= fi(y)dy| —=
([ T o 2G5 ]
|Fi )T |bi(x) — bi(y)] ( °°dt)7
c ) a
/Rf =yt /|y| r (13)

<C/» )T [Bi(x) — bi(y)] 1 Lo

lx — [t vl

<C2 f”/ £y IH\b y)ldy.

Let 1 = (A, A2, Am), Ai = (bi)p,, i=1,2,...,m. Combining (12), (13) and the
generalized Holder inequality (6), we conclude that

91 < €27 [ TTi0 b))l
<y ¥ )ol / (60) =)ot )y
i= OGEC’”
<Oy 3, 3, 1669~ DhI6) ~ Rttt e
i=0 ey

This together with Lemmas 1, 2 and 5 gives

|| (”Qij)Xk HLI’(') (R")

m

<O fillpogn 3 2 100 = Dozl gm0~ Do il o

i=0ceC!

m
< CU=R)" TTBill 2728l o ey 128 1 o) gy 1711 0 e
i=1
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. 1281l 1) (e
<C(—k)" ||fJHLP )(RM) AR ILO®?)
28 T
C(] - k)mz(k_j)n51 Hfj||LP(-)(Rn)~
Thus we get
LA < ki N k—\né q
Vi <Csup2™9 3 240( 3 (- k20 )
LeZ k=—o0 j=k+3
q
< Csup2™ Liq 2 ( 2 210‘||fJHLP ) (@) (j— k)mZ( )(n31+0¢)>
LeZ k=—o0 " j=k+3
q
+Csup2™ Lig Z ( 2 270‘“f,||u, )@ (j— k)mz( )(n51+0<)>
LeZ k=—co ~ j=L+1
= V31 + Vas.

If 1 < g < oo, since or+nd; > 0, by Holder’s inequality, we obtain

Vi1 < Csup2 144 2 ( 2 DI 4, gy 20 12)
LeZ k=—oco * j=k+3
L q
x( 2 (j—k)ma "o (k=j)(o+nd))q ’/2> q
J=k+3
< Csup2 4 2 ( 2 2’0“1||fJH )(06+n51)q/2>
LeZ k=—oco * j=k+3

j=3 )
<C2up2 LAq Z zjotquj”q - Z o (k=j)(o+nd1)q/2
€z Jj=—eo k=—oo

<A e

qﬁ()(Rn)

For V35, in view of o +nd; — A > 0, we derive that

Vi, < Csup2 44 2 ( 2 27| 51, 2(k—.f><a+nsl+x>q/2>
LeZ k=—co  j=L+1
o A
X( Z (]-_k)mq’z(k—j)(a+n51—l)q’/Z) q
j=L+1
L oo j
<Csup2_mq Z Z Z(k—j)(a+n51+7L)q/2zj7tq2—j7tq( z quﬂf(\\q 0 )
X 7 o ren
LEZ k=—oco j=L+1 A LPU)(R")
< q 2~ LAg Zqu 2 J)(o+ndi—A)q/2
S 50 P P>
<CIANS car

Koy B
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If 0 < g <1, by inequality (11), we have

L L
V31 <Csup2ta 3 oked N (j—gymaalkimaa gy
LeZ k=—oo j=k+3

ji-3

<Csup2 4 Z 27%) 1119, ) (B Z (j—kyragk-i)otndng
LEZ jm—oo L k:ﬂo

<CIIY e

Ko (B

For V3, we have

=

L
—LA )nd
Vi <Csup2™0 §7 oked 7 (j— k2 p)d ) o
LeZ k=—co Jj=L+1

=

L
<Csup2~tta Y 2keq D (j — k)ymaoWk=imdrap—jean it

LeZ k=—o0 Jj=L+1
><27~M‘1< 2 Zfaqu/HLp >
2

< q Lig SV may (k=) (etndi—A)g

CI Mg S92 k_Z Y (j—k)

—oo Jj=L+1

< q

SCIA, g ®)

Kap p()
This completes the proof of Theorem 2. [

5. Boundedness on variable exponent Herz-type Hardy spaces

Note that in Theorem 3 for the range of o, we have the restriction o@ < nd,. It
is natural to ask what will happen if o > nd,. The main purpose of this section is
to further study the mapping properties of the multilinear commutators U, 7 in this
situation. Before stating the main result, we give some definitions.

DEFINITION 3. Suppose o > nd,, p(-) € Z(R") and non-negative integer s >
[¢—ndy]. Let bi(i=1,2,...,m) be alocally integrable function and b = (by,b, ... ,by).
A function a(x) on R” is said to be a central (o, p(-),s;b)-atom, if it satisfies

(i) suppa C B(0,r) :={x e R": |x| < r}.
(@0) lall o) gny < [B(O, 7).

lll / B )dx:O, f0r|ﬁ| SGECm7j:07l7"‘7m
ZEO'

REMARK 6. It is easy to see that if p(x) = p is constant, then taking & = 1 — 11—7
we can get the classical case, see [31].
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A temperate distribution f is said to belong to HK*%

> (R™), if it can be written
p('),b

as

f= 2 Ajaj, in the sense of .7/ (R"),

J=—o0

where a; is a central (et p(-),s;b)-atom with support contained in Bj, A; € R and
Y |4j]? < eo. Moreover,

1

. it 7
sy ooy ~inf (3 1)
pl-)b

Jj=—c0

where the infimum is taken over all above decompositions of f.
Our main result in this section can be stated as follows.

THEOREM 4. Suppose Q € Lipy(S"~!) (0<y< 1) and let b= (b1,by,...,bn),
bie BMORY), i=12,....m. If p(:) € Z(R)NLHR"), 0 <g<e, 0<e<1
and nd, < o0 < né, + €, where &, is the constant appearing in Lemma 2. Then the
multilinear commutators [, ; map HK;’_‘;:%(R") into K;‘(’g(R").

Proof of Theorem 4. Let a; be a central (c, p(+),0;b)-atom with support con-
tained in B;. We first restrict 0 < ¢ < 1. In this case, it suffices to show [|u, ;4| K24 (g
: "
< C. We write
j+2

k . k
sl = 2 2Nkl e+ 2 2 asbasesl e
. —— oo :J’Jr

=1+J.

We treat I first. Using the LP()(R")-boundedness of U, 7> We have

Jjt+2 Jj+2 .
I1<C Z Zk“qHaj||Z,,(-)(Rn) <C Z o (k=j)ogq <C.
k=—o0 k=—o0

To evaluate J, let A; = (b;)p;. If x € Ry, y € Bj and k > j+3, then 2|y| < |x|. By the
Minkowski inequality and the vanishing condition of a;, we deduce that

- - Y 2 3
Fapl)) = (/o [ COR O T %)
7 Qx — 2, 3
</Bj (/lx_m E(bi(x)—bi(y))ﬁaj(y) t_§> dy
i 1 1 2 dt z
< C/Bj </I)c—y<t iI:[l(bi(X) _bi(y))<x—y"1 - xnl)“j()’) t_3> dy
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1yl
c/ § ORI Wde
<c / § COREEIETS

Thus, by the generalized Holder inequality (6), Lemmas 1, 2 and 5, we have

||Xkl-lg.5aj ||Lp(-) (RM)

m

93

< Cz(j_k)_anaj”LP(-)(RH) Z Z H(b() - 7L)GQCkHLP(-)(]Rn)”(b(') - )L)G/XjHLI’/(')(Rn)

i=0ceC

m

< CUk= )" TT il 290799278 o s o 128, ) oy
i=1

ol o

”XBk”Lp ) (Rn)

< Clk — jymU-K4nd)—jo

< Clk— jym2U=H-

Thus, in view of 1 +nd, — ot > €+né — o > 0, we have

oo

J<C 2 (k— jymagU-K(+nd-a)a .
k=j+3

Now let 1 <g<eooand f=X7

j_°<’

Aja;. For convenience below we put 1 =

1 +nd, — o, then we have 1 > 0. By the Mmkowski inequality, the Holder inequality

and the LP()(R")-boundedness of the multilinear commutator U 7> We obtain
||”Q7Zf||K;’(‘f§(R")

o k=3 g
<{ Z 206/“1< Z A'j|||Xk”g72aj||LI’(')(R’1)) }

k=—oo j=—oo

1
oo oo q q
H{ 52 3 Wllsgselom ) |

k= —oo j=k—2

< c{kiUJ(,iZ_ix,-|<k—f>’“2“‘"’”)q}l {kiﬂéz’“z“_”“)q}q

S 5 k3 . ald y &
< C{ 2 ( Y, (417297 "’1/2)< D (k—j)mf/z(./k)nq’m) }
k=—00 \ j=—o0 j=—o
! 1

- - - /dy L
+C{ 3 ( 3 ;Lj|qz<k—j>aq/2)< 3 2<j—k>aq'/2)“}q
oo \ k-2 k2
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> > i oo 2 1
<c{ > |)Lj|‘1< > 2<.fk>nq/z>}"+c{ 3 |x,-|q< by 2(kj)aq/2>}q
' k=j+3 j —

j=—oo Jj=—o0

1
<c( 3 )

Jj=—o0

This completes the proof of Theorem 4. [
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