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ON STRONGLY GENERALIZED CONVEX
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Abstract. In this paper, we have introduced the notion of strongly generalized convex func-
tions of higher order. We derived new integral inequalities of Hermite-Hadamard and Hermite-
Hadamard-Féjer type for the class of strongly generalized convex functions of higher order. The
results of Awan ef al. [M. U. AWAN, M. A. NOOR, K. I. NOOR AND F. SAFDAR, On strongly
generalized convex functions, Filomat 31, 18 (2017), 5783-5790] are the special case of the
results obtained in this paper.

1. Introduction

Karamardian [9] introduced strongly convex function in 1969. However, there are
references citing Polyak [13] has introduced strongly convex functions as a general-
ization of convex functions, see [1 1, 12]. Karamardian [9] established the relationship
between strongly convex functions and strongly monotone maps. It is well known
that every differentiable function is strongly convex if and only if its gradient map is
strongly monotone [9]. Karamardian [9] also showed that every bidifferentiable func-
tion is strongly convex if and only if its Hessian matrix is strongly positive definite.

Lin and Fukushima [10] introduced strongly convex functions of higher order to
simplify the study of mathematical programs with equilibrium constraints. Obviously,
strong convexity of higher order is a generalization of strong convexity, the function
y(x) = x* is strongly convex of order 4, but not strongly convex of order 2 on R, see
[10]. Lin and Fukushima [10] have established that the optimal solution of MPEC under
strong convexity of higher order is same as the optimal solution of penalized problem.
Further, Lin and Fukushima [10] have shown that the higher order strong convexity of
a function is equivalent to higher order strong monotonicity of the gradient map of the
function.

Azdcar et al. [2] derived an appropriate counterpart of the Féjer inequalities and
presented also refinement of Hermite-Hadamard inequalities for strongly convex func-
tions. Gordji et al. [6] introduced the concept of 1 -convex/( ¢-convex [7]) functions as
a generalization of convex functions and obtained the Hermite-Hadamard, Féjer, Jensen
and Slater type inequalities for 1 -convex functions. Further, Delavar and Sen [4] have
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given some applications for Hermite-Hadamard-Féjer type integral inequalities for dif-
ferentiable 71 -convex functions.

Recently, Awan er al. [1] introduced the notion of strongly 7 -convex functions
and formulated some new integral inequalities of Hermite-Hadamard type for strongly
n -convex functions. For more details, one can refer to [3, 5].

Motivated by Awan et al. [1] and Lin and Fukushima [10], we introduce in this
paper the concept of strongly 7 -convex functions of higher order, as a generaliza-
tion of the strongly 1 -convex functions. We investigate the Hermite-Hadamard and
Hermite-Hadamard-Féjer type inequalities for strongly 7 -convex functions of higher
order. Special cases are also investigated. These results extend and unify several results
established in literature.

2. Preliminaries

Let R" be the n-dimensional Euclidean space. We denote the usual inner product
by (-,-) and for x € R", ||-|| denote the norm defined by

. 1/2
[lx[| = (Z,xiz) :
i=1

It is basic knowledge in mathematical analysis that a function v : X CR" — R
is said to be convex on X # ¢ if

y(x+ (1 =0)y) <ty(x) + (1 =0)y(y),

forall x,y € X and ¢ € [0,1].

DEFINITION 1. [10] A function y : X CR"” — R is said to be strongly convex
with order o > 0 on a convex set X C R" if there exist a constant ¢ > 0, such that

y(tx+(1=1)y) <ty(x) + (1 —0)y(y) —ct(1—1)[lx—y[|°,
forany x,y € X and any 7 € [0, 1].

When o = 2, this property reduces to the strong convexity in the ordinary sense.

DEFINITION 2. [1] A function ¥ : X C R — R is said to be 7 -convex function
with respectto n: R xR — R, if

W(x+(1=0)y) SyO)+m(y(x),¥(), YxyeX, t€[0,1].
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THEOREM 1. [6] Suppose that y : [a,b] — R is a 1 -convex function such that
N is bounded from above on y([a,b]) x y(|a,b]). Then,

a+b\ My 1 b
— K
‘/’( 3 ) > \b—a/a v (x)dx

c Y@ +y®) nya),y(b)+nyb) yla)

= 2 + 4
< v(a)+y(b) n &7
2 2

where My is upper bound of 1.

THEOREM 2. [6] (Hermite-Hadamard-Féjer left Inequality). Suppose that y :
[a,b] — R is a N -convex function, such that M is bounded from above on y([a,b]) x
y([a,b)). Also suppose that & : [a,b] — R™ is integrable and symmetric with respect
to %” Then,

a+b
Y172

)/abé(X)dx_%Lbn(W(a+b_x)7W(x))é(x)dx
< /ab y(x)& (x)dx.

THEOREM 3. [6] (Hermite-Hadamard-Féjer Right Inequality). Suppose that y :
[a,b] — R is a N -convex function, such that M is bounded from above on y([a,b]) x
v([a,b)). Also suppose that & : [a,b] — R* is integrable and symmetric with respect
to #. Then,

[ vigwar < YOV e
()1

L n(w(a).y z(b_agw(b%‘/’(“” / (b - x)E (¥)dx.

Now, we define the 7 -convex and strongly 71 -convex function of higher order in
R”.

DEFINITION 3. A function y : X C R" — R is said to be 7 -convex function
with respect to 1 : w(X) X w(X) — R, if

w(x+(1=0)y) SyO)+m(y(x),¥(), YxyeX, t€[0,1].

DEFINITION 4. A function y : X C R” — R is said to be strongly 1 -convex
function of order ¢ > 0 with respectto 11 : y(X) X y(X) — R and modulus ¢ > 0,
if

W(tx+ (1 =0y) SwO) +m(yx), y(y) —c(l =0k =y vxyeX, r€[0,1].
)
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EXAMPLE 1. X =R™, w(x) =4x, n(x,y) =exp(x—y)*+x. Then, v is strongly
1 -convex function of order 4 with modulus 1.

When o =2, this property reduces to the strongly 1 -convex function in the ordi-
nary sense. But if o not equal to 2, they are different.

EXAMPLE 2. X = RTU{0}, y(x) =x, n(x,y) = (x—y)*+x+y. Then, v is
strongly 7 -convex function of order 4 with modulus 1 and is not strongly 71 -convex
function of order 2.

REMARK 1. If X C R and x =y in (1), then (1) reduces to Remark 1.4 of [1].

LEMMA 1. [8] If w\") for n € N exists and is integrable on [a,b], then

y@ryb) 1 5 k= Db-af
5 _ b_a/a l[/(x)dx—kg‘zww(k) (a)
= (bz_nc!l)n /Olt”—l(n—2t)w<"’(m+ (1 —1)b)dt.

THEOREM 4. Let v : X CR" — R be a differentiable strongly 1 -convex func-
tion of order ¢ > 0. If W has minimum at y, then

N(y(x), w(y)) —cllx=yl[° = 0. 2)

Proof. Since y has minimum at y, then Vy/(y) = 0 and the condition
(Vy(y),x—y) =0 3)

is satisfied automatically.
We know that v is strongly 1 -convex of order ¢ > 0, then

y(x+(1—1)y) S w(y) +m(wx), w(y) —cr(l =)=yl
Dividing above inequality by ¢ and taking limit # — O on both sides, we have
(Vy(y),x—y) < n(wx), y(y)) —clx—y[° )

From (3) and (4), we have 1 (y(x), y(y)) —c[lx—y[|° > 0.
This completes the proof. [l

REMARK 2. When X C R and ¢ = 2, then above theorem reduces to Theorem
1.6 of [1].
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3. Main results

In this section, we derive our main results.

THEOREM 5. Let y : [a,b] — R be strongly 1 -convex function of order ¢ >0
with modulus ¢ > 0. If n(.,.) is bounded from above on y([a,b]) x y([a,b]), then

a+b Mn C o 1 /h
TPV, © p—d|°<
"’( 2 ) 2 Paoplb-al s g J, vdx

I
v(a)+y(b)  n(y(a),yb)+n(yb),ya) Cllb—al|°
6

<

= 2 + 4
y(a)+y(b) o

< =7 T 7

< 5 + 2 Hb all’,

where My is upper bound of 1.

Proof. Since y is strongly 1 -convex of order ¢, then

<a+b> <a+b—zb a)>+2<a+b+2t(b—a))>

(3
lVl(a—HJ—H (b—a )
*

L <W<a—|—b—2t(b a)) ’W<a+b+2t(b—a))> _zt(,”b_auc

b+t(b— M
b a))+—n—£t"b—a||".

2 4
This implies
a+b\ My, o o a+b+t(b—a)
Similarly,
a+b\ My, o o a+b—t(b—a)

By using the change of variable technique, we have

a+b b

o [ywar= 1 [/ i+ [ v
2/ (a—l—b—tb a)>dt+2/ (a—l—b—l—;(b—a))dl

M
> [ [w(“”’) ~ Sl “”6} di
0 2 2

_ a+b M’”I o
_"’( 2 ) 2 +4(o+1)”b all®.
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We now prove the right hand side of the theorem. Since y is strongly 1 -convex func-
tion of order o > 0, we have

ylta+(1—1)b) < y(b) +m(w(a), w(b)) — ct(1 —1)|[b—all°.

Integrating above inequality with respect to ¢ on [0, 1], we have

[ a1 -spjar< [ Two) +m(y@), o) - -ollo - alr,

’ C
bia/u vx)dx S y(b) + %n(w(a%w(b)) ~glb—a|o=r.
Similarly,
’ C
bia/u vx)dx < yla)+ %n(w(b)w(a)) —¢lo—al®=0.
Therefore,
b 1 p / ' y(x)dx < Min{P,Q}
< w(a>42rw(b) N n(llf(a)+l//(b))4+n(l//(b),l//(a)) - g”b—aH"
< YO, B Sl

This completes the proof. [l

REMARK 3. When o = 2, then above theorem reduces to Theorem 2.1 of [1]. If
we consider ¢ = 0, then above theorem reduces to Theorem 1.

Now we establish the result on Féjer type inequality for strongly 7 -convex func-
tion of order o > 0.

THEOREM 6. Let y : [a,b] — R be a strongly 1M -convex function of order o,
such that n(.,.) is bounded above on y([a,b]) x y([a,b]). Also suppose that & :

[a,b] — R is integrable and symmetric with respect to “erb, then

v(52) [ ewan+ S [ltatb-201°E a5~ Lafab)

< [ vz

y(a)+y(b) [*
< f~/a &(x)dx

b
—c||b—aH(G_2)/a (b—x)(x — a)& (x)dx + Ry(a,b),
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where

Lofab) =3 [ n0pa+b 2, y(0)E e

and Ry (a,b) = n(W(”)’W(?&jn()W(b)’“/(“)) (b —x)& (x)dx, respectively.

Proof. First, we prove the first pair inequality of the theorem.
Since v is strongly 1 -convex function of order o, then

w(“?’) —y (%((l—t)b+ta)+%((l—t)a+tb))

<y((1—t)a+1d) +%n (w((1—=1)b+ra),y((1 —1)a+1b))
— a2,

Since & : [a,b] — R™ is integrable and symmetric with respect to ﬂ , then

v(52) [ etoar

= (b—a)y/<a;rb) /()lé((l—t)a+tb)dt

< (b—a)/ll//((l—t)a+tb)§((1—t)a+tb)dt

(b—a / 1 (w((1 = 1)b + 1), w((1 — t)a+ b)) E((1 —t)a+ tb)dt
—Z(b—a)/o (b —a)(1 —20) [°E((1 — )a+1b)di
b 1 b
= [ wWE@dx+3 [ n(wlatb—2).w(x) EWdx
c b
5 [ la+b=2¢| (x)ax
Next, we prove the second pair inequality of the theorem,

/w Ydx = (b—a / wlta+ (1 —b)E (ta+ (1 —1)b)dt.

Using the definition of strongly 1 -convex function of order o, we have

b 1
[ vwzwas< -0 o) [ Eat - op
(@), ) [ 1Eat (1o ™

—c||b—aH"/Olt(1—t)’g'(ta—i—(l—t)b)dt .
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Similarly,
b 1
[ vwEwas< - v [ Eat - p
+ n(y(d), u/(a))/olté (ta+ (1 —1)b)dt (8
_ c||b—aH"/01t(1 ~0E(ta+ (1 —t)b)dt} .
From (7) and (8), we have
b 1
2 [CWWEWdx < b=aly(a)+ y)] [ EGa+ 1 -nb)r
+(b=a)n(wla) w®) +n(ve).v@) [ € (tant (1 0)b)ds
—2ch—a||("“)/01z(1 —t)é(ta+ (1 —1)b)dt.
Applying change of variable technique in above inequality, we have

[ vigar < WOTYOD g
v +

n(y(a), n(y(b),y(a)] 1*
G | b=0E0as

b
—c||b—aH(0_2)/u (b—x)(x— a)& (x)dx.

_|_

This completes the proof. [l

REMARK 4. When ¢ = 0, then the first pair of inequality of the above theorem
reduces to Theorem 2 and the second pair of inequality of the above theorem reduces
to Theorem 3.

Now, we discuss a new variant of Hermite-Hadamard inequality for differentiable
strongly 7 -convex of order ©.

THEOREM 7. Let y: I C R — R be n-times differentiable strongly 1 -convex
function of order & on I° where a,b € I° with a < b and ' € Ly[a,b]. If |y P is
strongly 1 -convex function of order ¢ with ¢ > 1, then for n > 2 and p > 1, we have
via) +yb) 1 /b o (k=1)b-a)

_ dr— S 77
2 b—al, Y k§2 2(k+ 1)! (@)

< (bz_,f)na“—%><n>[a<n>|w<">(bw+ﬁ<n>n(\w<"><a>|”»Iw("><b>l”>

1
—cy(n)la—b[°7,
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where
n—1
(n) = nl’
n?—2
PO = e
L n—1
W= s

Proof. Recall Lemma 1;

v(@+yd) 1P < (k=1)(b—a)
2 _b—a/a "'(x)dx_k% 20k 1)! Yl
(b-ay

1
_ =1y — 27y ) _
= /O (0 — 20) " (ta+ (1 — 1)b)d.

Case 1. When p = 1, using the definition of strong 7 -convexity of order ¢, we
have

v(a)+y() o (k=1)(b—a)
2 b a/"' dx_kzz 20k+1)! W(k)(“)‘

[/Oltn_l(”_%)‘I/(")(ta+(1—t)b)|dt]

<o [Iw \/ A
MW@y O)) [ 020

_ c||a—bHG/01t"(1 —1)(n —2t)dt}

b—a)t|n—-1 n?—2
: 2n!) [n—i—lw( )|+

mn(\w“)(a)\»lw(")(b)l)

B c(n—1) e
(n+l)(n—|—3)H d ]

Case 2. When p > 1,

- -a)
2 Tho a/”’ 2 (k+1)! "'(k)(“)‘

< U (" (n=20)) P (" 1<n 2r>>ﬁ|w<"><m+<1—”b"‘”]'

0
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Using Holder’s inequality, we have

vy 1 (k= 1)(b—a)
2 _b—a/a ‘”(’C)d’“‘k% 2(k+ 1)! Y

1

S % [/Oltn_l(n—%)dt}lp [/Olt"_l(n—Zt)ll/(")(ta—i—(l —Z)b)|pdt};

1
(b=ay (n=1\"7 [ [
< n p n _
<50 oy W' (D)| Ot (n—2t)dt

1

1 1 Z
F (@ ) [ 020 a0l [ (100~ 20)a]

This implies
w(a) ;L w(b) bia /ab W(x)dx_zzi%fl—)!a)k ()
<l (1) P Ty 2y o)
B i(?)znljt plla- b”g] K

This completes the proof. [

4. Conclusion

The strong convexity of a function is the basis for many inequalities in mathemat-
ics. We introduced the concept of strongly 7 -convex functions of higher order, as a
generalization of the strongly 7 -convex functions. Some new counterparts of Hermite-
Hadamard and Hermite-Hadamard-Féjer type inequalities for strongly 7 -convex func-
tions of higher order are obtained.
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