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Abstract. Let P and Q be two polynomials without constant term. Assume that the opera-
tor BP,Q( f ,g)(x) =

∫
f (x−P(t))g(x−Q(t)) dt

t is bounded from Lp1 × Lp2 into Lr , p1, p2 ∈
(1,∞), 1

p1
+ 1

p2
= 1

r . It is proved that if P′(t) > 0 for all t �= 0 , then r � d
d+1 . Here d is the

correlation degree of P and Q which is defined as the largest multiplicity of non-zero real roots
of P′ −Q′ .

1. Background and main result

Let P,Q : R →R be two polynomials. The bilinear Hilbert transform along P and
Q is defined by

BP,Q( f ,g)(x) =
∫

f (x−P(t))g(x−Q(t))
dt
t

, f ,g ∈ S (R), (1)

where S (Rn),n ∈ N , denotes the Schwartz space on R
n . Such an operator is a natural

bilinear analogue of the linear singular Radon transform (a.k.a. Hilbert transform along
curves) of the type

HP,Q( f )(x1,x2) =
∫

f (x1 −P(t),x2−Q(t))
dt
t

, f ∈ S (R2),

which has been studied intensively since 1960s (see, for example, the work of Stein-
Wainger [16], Christ et.al. [3] and the references therein). The study of BP,Q is still
relatively new. The fundamental question is for what values p1, p2,r with 1

p1
+ 1

p2
= 1

r
is BP,Q bounded from Lp1 ×Lp2 into Lr . To this end, we can without loss of generality
assume that P and Q contain no constant term by a translation argument. In the rest
of this article, we will always assume that p1, p2 lie in (1,∞) and r is determined by
1
r = 1

p1
+ 1

p2
.

Although for many pairs of polynomials P and Q the boundedness of BP,Q has
been obtained for a large range of exponents p1, p2,r , the full range of the exponents
remain unknown in some cases. For example, when P(t) = t and Q(t) = αt , α �= 0,1,
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BP,Q is the famous bilinear Hilbert transform, which is proved by Lacey and Thiele
[8, 9] to be bounded into Lr for r > 2

3 (also see [6, 10, 17] for some uniform-in-α
estimates). The lower bound 2

3 of r is necessary in Lacey-Thiele’s proof, but it may
not be necessary for the boundedness of the bilinear Hilbert transform. Whether r > 2

3
can be dropped in Lacey-Thiele’s theorem is still an open problem; see [1, 2, 4] for
some progress on this issue.

X. Li [11, 12] is the first to consider nonlinear polynomials in BP,Q . He proved the
L2×L2 → L1 -boundedness of BP,Q when P(t) = t and Q(t) = td (d � 2 is an integer).
Later on, Li and Xiao [13] established the full-range (up to the endpoint) boundedness
of BP,Q when P(t) = t and Q a polynomial without linear term (see also [7, 14, 15] for
the case P(t) = t and Q a smooth non-flat curve). Recently, the author [5] extended Li-
Xiao’s result to allow both P and Q to be nonlinear in BP,Q . He proved the following
theorem:

THEOREM 1. ([5]) Given two polynomials P and Q without constant term, we
can always write them as

P(t) = ad1t
d1 +ad1−1t

d1−1 + . . .+ae1t
e1 ,1 � e1 � d1,ad1ae1 �= 0 (2)

Q(t) = bd2t
d2 +bd2−1t

d2−1 + . . .+be2t
e2 ,1 � e2 � d2,bd2be2 �= 0. (3)

Assume d1 �= d2 and e1 �= e2 . Then there is a constant CP,Q depending on P and Q
(and of course p,q,r ) such that BP,Q( f ,g)(x) =

∫
f (x−P(t))g(x−Q(t)) dt

t is bounded
from Lp1 ×Lp2 into Lr , whenever p1, p2 ∈ (1,∞) , 1

r = 1
p1

+ 1
p2

, and r > d
d+1 , where

d is the correlation degree of P and Q.

Here the correlation degree of P and Q is defined as the largest multiplicity of
non-zero real roots of P′ −Q′ .

The author also observed in [5] that the lower bound d
d+1 for r may not be the

best possible for some pairs of polynomials. For instance, when P(t) = t6 and Q(t) =
3t4 − 3t2 , BP,Q is the zero operator (as both P and Q are even), which is trivially
bounded into Lr for any r > 1

2 . However, the correlation degree of P and Q is 2 ,
which gives a lower bound 2

3 by Theorem 1. It is then natural to ask

OPEN PROBLEM 2. For which pairs of polynomials P and Q is the condition
r > d

d+1 necessary to the Lr -boundedness of BP,Q ?

One can further ask:

OPEN PROBLEM 3. Given polynomials P and Q , what is the minimal value of r
that guarantees the Lr -boundedness of BP,Q ?

The purpose of this note is to give partial answers to these questions. We show
that for many pairs of polynomials, r > d

d+1 is indeed the largest (up to the endpoint)
range for the Lr -boundedness of BP,Q . More precisely,
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THEOREM 4. Let P and Q be two polynomials without constant term. Assume
that the operator BP,Q( f ,g)(x) =

∫
f (x−P(t))g(x−Q(t)) dt

t is bounded from Lp1 ×Lp2

into Lr , p1, p2 ∈ (1,∞), 1
p1

+ 1
p2

= 1
r . If P′(t) > 0 for all t �= 0 , then r � d

d+1 , where
d is the correlation degree of P and Q.

REMARKS.
(1). By similar arguments, the criterion in the above theorem also includes the

case P′(t) < 0 for all t �= 0. By symmetry, the theorem also holds if the condition is
imposed on the polynomial Q .

(2). Theorem 4 itself answers partially Open Problem 2. Together with Theorem
1, it also answers Open Problem 3 for a large range of pairs of polynomials.

(3). We believe that the criterion given in Theorem 4 could be weakened. The
weakest condition is conjectured as follows:

CONJECTURE 5. Let P and Q be two polynomials without constant term. As-
sume that the operator BP,Q( f ,g)(x) =

∫
f (x− P(t))g(x−Q(t)) dt

t is bounded from
Lp1 ×Lp2 into Lr for p1, p2 ∈ (1,∞) and 1

p1
+ 1

p2
= 1

r . Then r � d
d+1 , where d is the

correlation degree of P and Q , as long as not both P and Q are even.

The criterion in Theorem 4 essentially says that P is strictly monotonic and thus
graphically P is similar to an odd function. How to build the bridge between “odd” (in
Theorem 4) and “not even” (in Conjecture 5) seems to be a very difficult problem. It is
also possible that Conjecture 5 is in fact false, and Theorem 4 could be the best answer
to Open Problem 2.

2. Proof of the Theorem

In our proof we will use C to denote a positive large constant whose value may
change from line to line. Such constant may depend on the polynomials P and Q .
A � B is short for A � CB and A � B means CA � B for some large C . χ

E will be
used to denote the indicator function of the set E . We will follow a strategy developed
in [13].

Given two polynomials P and Q without constant term, assume the correlation
degree of P and Q is d . Let t0 be a non-zero real root of P′ −Q′ with multiplicity
d . We may assume t0 > 0, as the other case can be handled in a similar way. The
assumption P′(t) > 0 for all non-zero t implies that P is strictly increasing. Therefore,
we have P(t0) > 0 as P(0) = 0. Let 0 < δ � P(t0) be small. We will use the following
special choice of f and g :{

f = χ
[−δ ,δ ],

g = χ
[P(t0)−Q(t0)−δ ,P(t0)−Q(t0)+δ ].

(1)

By the boundedness of BP,Q and straightforward calculations of the norms of f and g ,
we have

‖BP,Q( f ,g)‖r � ‖ f‖p1‖g‖p2 � δ
1
r (2)
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In what follows, we aim to get a lower bound of ‖BP,Q( f ,g)‖r in terms of powers
of δ . Recall the expression of BP,Q

BP,Q( f ,g)(x) =
∫

f (x−P(t))g(x−Q(t))
dt
t

.

We will achieve our goal by properly restricting x and t in the above definition of
BP,Q( f ,g)(x) . Consider the interval

I =

[
P(t0)− δ

1
d+1

A
,P(t0)+

δ
1

d+1

A

]
,

where A is a large constant to be determined later. We will only consider those x ∈ I
when calculating ‖BP,Q( f ,g)‖r . Clearly x > 0 when A is large. Also note that we can
assume t > 0, otherwise we would have P(t) < 0 and

|x−P(t)|> x � P(t0)− δ
1

d+1

A
> δ ,

which implies f (x−P(t)) = 0 and BP,Q( f ,g)(x) = 0.
Since f ,g are non-negative and t is positive, we can further restrict t in order to

get a lower bound BP,Q( f ,g)(x) . For any x ∈ I , define

Jx =
{

t > 0 : |P(t)− x|< δ
2

}
.

By the definition of f (1), f (x−P(t)) = 1 when t ∈ Jx . We claim that the same holds
for g :

CLAIM 6. g(x−Q(t)) = 1 whenever x ∈ I and t ∈ Jx .

Proof. Fix x ∈ I , and let t ∈ Jx . By the definitions of I and Jx ,

|P(t)−P(t0)| � |P(t)− x|+ |P(t0)− x|� δ
2

+
δ

1
d+1

A
� δ

1
d+1

A
(3)

for small δ . Invoke mean value theorem,

|t− t0| = |P−1(P(t))−P−1(P(t0))| = |(P−1)′(ξ )||P(t)−P(t0)| (4)

for some ξ ∈ R . By inverse function theorem, |(P−1)′(ξ )| can never be ∞ as P′ is
never 0. Therefore, (3) and (4) give that

|t− t0| � |P(t)−P(t0)| � δ
1

d+1

A
, (5)



BILINEAR HILBERT TRANSFORM ALONG POLYNOMIALS 155

Now using the assumption that t0 is a root of P′ −Q′ with multiplicity d , we see
that

|x−Q(t)− (P(t0)−Q(t0))|

� |x−P(t)|+ |P(t)−Q(t)− (P(t0)−Q(t0))| � δ
2

+ |t− t0|d+1

By (5), we can bound |x−Q(t)− (P(t0)−Q(t0))| by

δ
2

+
δ

Ad+1 < δ (6)

if A is chosen large enough. Hence g(x−Q(t)) = 1 by the definition of g (1). �

Applying mean value theorem and inverse function theorem again, we see that the
measure of Jx is bounded below by∣∣∣∣P−1

(
x+

δ
2

)
−P−1

(
x− δ

2

)∣∣∣∣ � δ .

In sum, we have f (x−P(t))g(x−Q(t)) = 1 when x ∈ I and t lies in an interval
of length at least δ . Therefore,

|BP,Q( f ,g)(x)| � δ , x ∈ I.

Since the length of the interval I is � δ
1

d+1 ,

‖BP,Q( f ,g)‖r � δ ·δ 1
(d+1)r . (7)

Combine (2) and (7), and we see that

δ
1
r � δ 1+ 1

(d+1)r . (8)

As (8) holds for arbitrarily small δ , we must have r � d
d+1 . This finished the proof.
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