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ON RABIER’S RESULT AND NONBOUNDED
MONTGOMERY’S IDENTITY

ASFAND FAHAD, JULIE JAKSETIC AND JOSIP PECARIC

(Communicated by M. Praljak)

Abstract. In this paper, we use generalized Montgomery’s identity, given in [7], to give improve-
ment of result from [9] for the class of n-convex functions.

1. Introduction

Steffensen [10] proved the following inequality: if f,4: [a,f] = R, 0< h < 1
and f is decreasing, then

B B oty

F)dr < / forndi< [ fwar, (1)
B-v o o
where v = ff h(t)dt. From (1) we see that integral f(f? f()h(t)dr is estimated from
below and above. With similar inclinations toward Steffensen’s inequality, but in much
more general setting, Rabier in [9] gave lower and upper estimation of the weighted
integral [ |f (x)|y (|x|)dx. The principal Rabier’s result, see [9], is given in the next

Rn

theorem.

THEOREM 1. Let y : [0,00) — R be non decreasing and locally integrable near
0. Then, @y N(r) := [ l[/(t%)dt is well defined and

Al s
me||N) </RN [f () w(|x])a

for every f € L'"RN)NL>(RY), f# 0, where wy is the measure of the unit ball of
RN

onf =@y (

In this paper we gave an improvement of the inequality in Theorem 1 for the class
of the n-convex functions. We use the following generalized Montgomery’s identity
givenin [7].
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PROPOSITION 1. Ler v : [a,b] — R be a differentiable function on [a,b], such
that ' € L'([a,b)), and w : [a,b] — R such that ["w(s)ds = 1.
Then,

b b
W@ = [ wow)ds+ [ pules)y/(5)ds

holds for the Peano Kernal p,, defined as:

W(s), a<s<x,
pw(x,s) =
W(s)—1,x<s<b,

where

W(s)= /asw(é)dé for s € la,b].

REMARK 1. Observe that the function x — p,,(x,s) is increasing function, for
fixed s. Indeed, if a < x; < xp < b then

07 a<s <X17
Pw(x2,8) = pu(xr,s) =9 1, x1 <s<x

0, <s<b.

2. Main results

Before giving the main result we give the following simple lemma:

LEMMA 1. Let y € C'([0,00)), such that y' € L'([0,c0)), and w : [0,0) — R,
such that [y w(s)ds = 1. Then

v = [ woweds+ [ purovs)ds

where

W(s), 0 <s<x,
pw(x,s) =
W(s)—1,x<s<eo,

and

W(s) = /Osw(é)dé for s €10,0).
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Proof. From y' € L1([0,0)) we have y/() — w(0) = [ ¥/(s)ds i.e. y(=) €R
Now, the proof follows from the following lines

| v s)as = [ wow s+ [“0wis) - ws)s
_ /0 ' ( /0 Sw(t)dt) W (s)ds+ / ) ( /0 Sw(t)dt) W (s)ds— / W (s)ds
(Fubini) = /Oxw(t) (/tx u/(s)ds) dt + /Oxw(t) (/: u/(s)ds) dt
[ Coto ([ rs)ar- v+ v

= y(X)W(x) = y(x)W(x) + y (o)W (c0)
= [ wowd =y + yi

—_ /O w(O)w(t)dr +y(x). O
The following theorem states our main result:

THEOREM 2. Let y € C"([0,00)) be an n-convex real valued function and let
feLYRN)NL=(RY), f#0. Then the following holds:

L r@ly()dx - onlifl [yt

n—2 (k+1) 0 oo . 1
wki!()/o |:/RN ‘f(x)|Pw(‘x‘,S)dx—a)NHfHN/O Pw(lN7S)dt:| *ds

>

where r =

Proof. By using the Lemma | we have the following identity:

L rlv()dx - onlfl [ v

x)|/ww(s)l//(s)dsdx—|—/ |/ pw(|x|,s) ¥ (s)dsdx
—a)NHf||o<,/ / (s) dsdi — o]|f]| / / put% )W (s)dsdr.

By rearranging and using Fubini’s theorem, we have:

L @l - onl £l [ weh)

= [T [ 7w~ wa||mr}

o[ [/ o) onlle [ putehs)ar| ws)as.
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Also, [pn |f(x)|dx — on|| f]|r =0, since r= waH'm. Hence
L @lwiahds—anlfl [ ek e
~ [T Lol as—arlisle [ pit ] vias o
R

Using the (n— 2)-th Taylor’s expansion of ¥ we get:
n—2 k s n—2
'(s) = (k1) () / (m) gy 5~ §) d
)= RO+ [ v @)=

After substitution in (2) and using Fubini’s theorem, we get:
1

L @lw(hax—axlsll [ wieh) @
_2 w(kﬂ-)( >/O [/R f(x>|pw(x,s>dx_wNf||m/0’pw(t%,s)dt] Fds

+/ [ Lo veimatsta—oninte [/ puich.s)a] S 2
(g)ae.

Since v is n-convex, y (&) >0, and since p,,(-,s) is non decreasing, from Theorem

1 we have [pn |f(x)|pw(|x],s)dx — oy || f]|- [y pw(ﬂ{/ s)dt > 0, so the right hand side
is non negative and we get the required result. [J

REMARK 2. If y(®)(0) >0 for k =1,2,...,n—1 then, by using the previous
theorem, we get an improvement of the inequality given in Theorem I in the class of
n-convex functions.

Using (4) we can make an estimate of the difference formed from Theorem 2.

COROLLARY 1. Suppose that all the assumptions of Theorem 2 hold. Addition-
ally, assume (p,q) is a pair of conjugate exponents, and y") € LP([0,0)). Then

L @lwhdr— sl [ vk )

n=2 o (k+1) oo , 1
- WT(O)/O [/RN |f(x)\pw(IXI7s)dx—a)N||fH°<,/O pw(tﬁ,s)dt] & ds

k=0

<JIKll, [

)
p

where K(£) = I | fus LA (1, 8) dx — ol flle i pu(c5)di] 57502 s

Inequality (5) is sharp for 1 < p < oo and for p =1 the constant
n—2

I [ [ @lputid sy onll [ rm(t#s)dt} s

is the best possible.
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Proof. The first part follows from (4) and Holder’s inequality.

For the proof of the sharpness we will find a function y for which the equality in
(5) is obtained.

For 1 < p < oo take y to be such that

For p = oo take

For p =1 we take
tn

emtoe ). U

v(t)=

3. Further refinements

Theorem 2 can be refined further for some classes of functions, using exponential
convexity (for details see [1, 2]). First, let us define a linear functional .Z by:

Ly = / (| ([x])dx — @] ]| / yieh) ©)

SO [ Lot ol [ b fas

Under the assumptions of Theorem 2 we conclude that .# acts non-negatively on the
class of n-convex functions.
Further, let us introduce a family of n-convex functions on [0,e) with

= 7
o (x) Y (7
This is, indeed, a family of n-convex functions since %(pt (x)=e™>0.
Since ¢ — ¢~ is exponentially convex function, the quadratic form
Y &6 I e oy (%) (8)
ij=1
is positively semi-definite. According to Theorem 2,
> &1L Prire; ©)

i,j=1

is also positively semi-definite, for any m € N, & € R and p; € R, concluding ex-
ponential convexity of the mapping p — Z¢@,. In particular, if we take m =2 in (9)
we have additionaly that p — Z¢, is also log-convex mapping, property that we will
need in the next theorem.

THEOREM 3. Under the assumptions of Theorem 2 the following statements hold.

(i) The mapping p — £ @, is exponentially convex on R.
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(ii) For p,q,r € R such that p < q < r, we have
(L))" "< (ZLop) (L) 7. (10)

REMARK 3. We have outlined proof of the theorem in lines above. Second part
of Theorem 3 is known as Lyapunov inequality, it follows from log-convexity, and it
refines lower (upper) bound for action of the functional on the class of functions given
in (7). This conclusion is a simple consequence of the fact that exponentially convex
mappings are non-negative and if exponentially convex mapping attains zero value at
some point it is zero everywhere (see [5]).

Similar estimation technique can be applied for classes of n-convex functions
given in the paper [5].
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