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APPLICATIONS OF ONE INEQUALITY TO MEASURES
OF NON-COMPACTNESS AND NARROW OPERATORS

NINA A. ERZAKOVA

(Communicated by L. Pick)

Abstract. We consider a generalization of an inequality from papers by Yu. A. Dubinskii, J.-
L. Lions and E. Magenes. This inequality is of great importance for the proof of solvability
of nonlinear elliptic and parabolic equations. In contrast to their works, we do not require the
compactness of the embedding. We suggest a new approach to the problem of narrow operators.
In particular, we find a new application of measures of non-compactness.

1. Introduction
The paper is devoted to several variants of an inequality from [5, 15, 16]:

e ([5,Lemma 1]) Let E, E; be linear normed spaces and E be embedded into E| .
Let 3 by any subset of E such that Au € 3 Vu €3 and VA € R. Let S be
provided by function M : 3 — R such that M(u) >0, M(u) =0 <= u=0,
M(Au) = |A|M(u) Vue 3 and VA € R. Let S be embedded into E, i.e. |[ulr <
KM (u) for some K >0 and all u € 3. Let the embedding S C E be compact,
i.e. every sequence {u,} (u, €3, M(u,) < Ky for some Ky > 0) contains a
subsequence which converges in E. Then

lu—vlle <eM(u) +M©V))+cellu—vlEg, (L.1)
forall u,ve 3.

e ([15, Lemma 5.1] and [16, Theorem 16.4]) Let Ey, E, E; be Banach spaces,
Eo C E C E; and the embedding E; into E be compact. Then, for every € > 0
there exists a constant ¢, such that

lulle < |z + cellulle, (1.2)

for all u € Ey.
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In[15, Lemma 5.1] Ey, E are also reflexive.

As it was noted in [15, 12.2], Inequality (1.1) implies Inequality (1.2).

In [5, 15, 16] Inequalities (1.1) and (1.2) were used to obtain a priori estimates of
solutions of nonlinear elliptic and parabolic equations (see for example [16, Remark
16.3]).

In this paper we investigate similar inequalities under assumptions that are less
restrictive than in [5, 15, 16]. In particular we do not require the compactness of the
embedding. We prove the inequalities and construct an example (Example 1) where the
inequalities are still valid but the corresponding embedding is not compact.

The results obtained could have the same applications as the results from [5, 15,
16], e.g. to the proof of solvability of nonlinear elliptic and parabolic equations [5, 15,
16]. Moreover, in this paper we find a new application of this inequality and measures
of non-compactness (MNCs for brevity), namely to narrow operators. For an account
of the theory of measures of non-compactness, we forward the reader to [1, 3, 4] (see
also [2,6,7,8,9, 10, 11, 12, 20, 21, 22]) and references therein.

Theorems 1-3 of this paper generalize previous results obtained in [6].

2. Main results

Let E and E; be normed spaces. Let M: J — R, be a function defined on some
subset J C E where R is the set of real non-negative numbers.

Consider maps A: T — E, T: J— Ej, and asubset U C J satisfying the follow-
ing condition:

Ve >03ce >0:YueclU |A(u)||E < eM(u) +ce||T (u)]|Eg, - (2.1)

REMARK 1. If [|A(ug)||g = O for some up € J then (2.1) is trivial for u = uy.
Note that (2.1) also implies

L. ||A(up)||g =0 for all uy € J with HT(M())HE1 =0;
2. lim |A(up)||g=01f lim ||T(up)||g, =0 and lim M (u,) =0 for some {u, }, u, €
J.

For a subset U C J we define

T(U) = supM(v), #U) = infM(v).

vel velU
A subset U C J is called M -bounded if T1(U) < =. We say that a set U C J has

M -property, if U is M -bounded and T(U) > 0. We say that an operator A: J — E is
M -bounded, if A maps every M -bounded set U C J into a bounded subset of E.

THEOREM 1. Let E and E| be normed spaces, let A be an M -bounded opera-
tor from J into E, and let T be an M -bounded operator from J into E|. Then the
following conditions are equivalent:
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(i) For every subset U C J possessing the M -property and for every € > 0 there
exists a constant cg > 0 such that (2.1) is true for all u € U .

(ii) For any sequence {u,} of elements from J such that {u,} possesses the M -
property and

lim |17 1), = 0. 22)
we have
Tim A ()] = 0. 2.3)

(iii) For any sequence {u,} of elements from J such that {u,} possesses the M -
property and (2.2) holds we have

lim [}A (us) || = 0. (2.4)

n—oo

Proof. Suppose that (i) is true. We claim that (ii) is true too.

Let a sequence {u, } have the M -property. Then there exist numbers 0 < r <R <
oo such that r < M(u,) < R for all n. Now we assume that (2.2) is true and claim
that (2.3) is true too. Fix any € > 0. Let ¢, be the constant from (2.1). Then there
exists a number ng > 0 such that for all n > ne we have ||T(u,)||g, < €/ce. Now (2.1)
implies that for all n > ne we have also ||A(u,)||g < eR+ €.

Letting € — 0, we get (2.3), that is, Condition (ii) holds.

Condition (iii) obviously follows from (ii).

Suppose now that (iii) is true, but (i), that is, (2.1), is not true. Thus there exist a
set U with the M -property, € > 0, a sequence of elements {u,} (u, € U for every n)
and a sequence of numbers {c,} (¢, — o) such that

1A (un) £ > eM (un) + call T (un) (2.5)

holds for all n.

By the assumptions of Theorem 1, the operator A is M -bounded. Since {u,} has
the M -property and hence M -bounded, the sequence {A(u,)} is bounded in the norm
of E. Now (2.5) together with ¢, — e implies ||T (uy)||g, — 0. However by (2.5) we
have ||A(u,)||g > er for all n, which contradicts (2.4). Therefore, (iii) indeed implies
. O

REMARK 2. In contrast to [5, 15, 16], we do not assume that set J; = {v € J:
M(v) < 1} is relatively compact in E .

EXAMPLE 1. Let Q be a subsetof R", let i be a continuous measure in the sense
of [14]. Suppose (L) < eo. Denote by L,(u) the space of p-measurable functions

1/p
on Q with the norm [|ul|, ) = Q{hﬂ’du) for 1 < p <o and

[l ) = inf{z € R : u(D(u,1)) = 0},
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where
D(u,t) ={s € Q: |u(s)| >t}

for 1 > 0.
Let J C Lo.(1t) be a set all functions u such that |u(s)| = y almost everywhere in
Q forany y € Ry . Then for all € > 0 there exists a constant ¢ > 0 such that

ll () < Ellaall oy + cellul] g )

forall 1 < p<eo, 1< g<o and u € J belonging to an arbitrary spherical interlayer
r< ullr <R(0<r<R< o).

Indeed consider the norm in L..((t) as a M-function on J. Let a sequence {u,}
satisfy conditions: there exist constants 0 < r < R < co such that r < [|un||1_(,) < R for
all n and

Jim s [, () = 0.

It follows that
lim r(p(supp un))''? < Jim ||z, u) =0

n—oo

and
lim p(supp u,) =0
Nn—oo

lim i/ lun|Pdp = 1im [[uy]| ) < R lim (u(supp u,))"/? =0,
n—oo n—o0 P n—o0
Q

that is, the condition (ii) of Theorem 1 is satisfied. By Theorem 1 it implies (i).

and

REMARK 3. It is well known that the sequence of Rademacher functions r, =
signsin(2"mt) (1 €[0,1], n=1,2,...) is not compactin L,([0,1],R).

Analogously to Theorem 1, we can prove the assertion below.

THEOREM 2. Let (E,d) and (E\,d)) be metric spaces, A be an M -bounded
operator from J into E and T be an M -bounded operator from J into E|. Then the
following conditions are equivalent:

(i) For every subset U C J possessing the M -property and every € > 0, there
exists a constant cg > 0 such that for all u,yv € U

d(A(u),A(v)) < e(M(u) +M(v)) +cedi (T (u),T(v)). (2.6)
(ii) For any sequences {un}, {v,} in J possessing the M -property and satisfying

lim dy (T (u,),T (vi)) =0,

n—o00

we have
lim d(A(uy),A(v,)) =0.

n—o0
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(iii) For any sequences {uy}, {vn} in J possessing the M -property and satisfying
lim dy (T (u,),T (vy)) =0,

we have
lim d(A(un),A(va)) =0.

n—o0

Proof. Suppose that (i) is true. We claim that (ii) is true too.
Let sequences {u,}, {v,} in J have the M -property. Then there exist numbers
0 < r < R < e such that r < M(u,),M(u,) <R for all n. Now we assume that

lim dy (T (1), T(v2)) = 0

and we claim that
lim d(A(uy),A(v,)) =0.

Fix any € > 0. Let c¢ be the constant from (2.6). Then there exists a number ne > 0
such that for all n > ng we have d (T (u,), T (v)) < €/ce. Now (2.6) implies that for
all n > ne we have also d(A(uy,),A(v,)) < €2R+ €.

Letting € — 0, we get r}grolo d(A(un),A(vn)) =0, i.e. Condition (ii) holds.

Condition (iii) obviously follows from (ii).

Suppose now that (iii) is true, but (i), i.e. (2.6) is not true. Then there exist € > 0,
sequences of elements {u,}, {v,} with the M-property and a sequence of numbers
{cn} (¢, — =0) such that

d(A(un),A(vp)) > e(M(up) +M(vp)) + cndi (T (un), T (vy)) 2.7)

holds for all n.

By the assumptions of Theorem 2, the operator A is M-bounded. Since {u,}
and {v,} have the M -property and hence M -bounded, the sequence {d(A(u,),A(v,))}
is bounded in E. Now (2.7) together with ¢, — e implies di(T (u,),T(v,)) — 0.
However by (2.7) we have d(A(uy),A(v,)) > €2r for all n, which contradicts

lim d(A(un),A(vn)) = 0.

Therefore, (iii) indeed implies (i). [

3. Measures of non-compactness in the inequality

Let (E,d) be any metric space. Let us recall that a set U is totally bounded if for
each & > 0 the set may be covered by a finite number of balls of radius r < 6. In a
complete metric space a totally bounded set is precompact (relatively compact), that is,
its closure is compact.

The MNC Be(U) = B(U) of U C E or the separation MNC is defined as the
supremum of all numbers r > 0 such that there exists an infinite sequence in U with
d(up,um) > r for every n # m (see, for example, [1, 3, 4]).

The MNC f satisfies the regularity property: Bg(U) = 0 if and only if U is a
totally bounded set in E.
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THEOREM 3. Let (E,d) and (E1,d,) be metric spaces and let A: J — E and
T:3 — E; be M-bounded operators. Let U CJ be a subset possessing the M -
property. Suppose that for every € > 0 there exists a constant cg > 0 such that the
inequality (2.6) holds for all u,v € U. Then for every € > 0 and every subset V C U
we have

Be(A(V)) < 2e(V) + cePe, (T (V). 3.1

Proof. Let (2.6) be true for all u,v from U. Let V be an arbitrary subset of U.
If Be(A(V)) =0, then the assertion is trivial. Let Bg(A(V)) > 0. By the definition of
the MNC fg, forany 0 < § < Bg(A(V)) there exists a sequence {A(v,)} C A(V) such
that
Be(A(V)) =6 < d(A(va),A(vin))

forall n £ m.
By the definition of g, we can choose in {v,} elements ¥,, ¥,,, satisfying the

inequality

di(T (), T (9m)) < BE, (T(V)) + 6.
Applying (2.6) for any € > 0, we obtain

Be(A(V)) — 6 < d(A(Py),A(Vm))

E(M(Vn) +M(V)) + ced\ (T (Vn), T (Vm))
2et(V) +ce(Be, (T(V)) +6),

which implies (3.1) since 6 is arbitrary. [

N //\/

COROLLARY 1. If(3.1) be true then B(T(U)) =0 implies B(A(U)) =0 for all
subsets U C J possessing the M -property. It is obviously that the last remains valid
for every MNC equivalent to the MNC 3.

Let us recall ¢ is an MNC equivalent to the MNC B, that is, there exist constants
c1 >0 and ¢y > 0 such that

c1p(V) < B(V) < 0(V).

Below we consider any non-negative function Wg (not necessarily equivalent to
B) defined on bounded subsets of a normed space E with yg(U) < o for all bounded
subsets of a normed space E . For example, yg may be the measure of nonequiabsolute
continuity Vg in a regular space E ([2, 7, 8, 9, 10, 20, 21, 22]). It is well known that
the equality vg(U) =0 is possible on non-compact sets.

THEOREM 4. Let E and E| be linear normed spaces, A be an M -bounded op-
erator from J into E, and let T be an M -bounded operator from J into E|. Then the
following conditions are equivalent:

(i) For every subset U C J possessing the M -property and for every € > 0 there
exists a constant cg > 0 such that

ve(A(V)) <2eT(V) +ceyr, (T(V)) 3.2)
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is true for every subset V C U.
(ii) For any sequence {V,} of subsets from J such that UV, possesses the M -
property and

lim i, (T(V,)) =0, (33)
we have
lim yg(A(V,)) =0. (3.4)

(iii) For any sequence {V,} of subsets from J such that UV, possesses the M -
property and (3.3) holds we have

lim iz (A(V,)) = 0. (3.5)

n—oo

Proof. Suppose that (i) is true. We claim that (ii) is true too. Let a consequence
{Vy} such that UV,, have the M -property. Then there exist numbers 0 < r < R such that
r < M(u) <R forall u € UV,. Now we assume that (3.3) is true and claim that (3.4) is
true too. Fix any € > 0. Let ¢, be the constant from (3.2). Then there exists a number
ng > 0 such that for all n > ne we have yg, (T (V,)) < €/ce. Now (3.2) implies that
for all n > ne we have also Yg(A(V,)) < eR+ €. Letting € — 0, we get (3.4), that is,
Condition (ii) holds.

Condition (iii) obviously follows from (ii).

Suppose now that (iii) is true, but (i), that is, (3.2), is not true. Then there exist a
set U with the M -property, € > 0, a sequence of subsets {V,} (V,, CU for every n)
and a sequence of numbers {c,} (¢, — =) such that

VE(A(Vy)) > 2e1(Vy) +CnVE, (T(Va)) (3.6)

holds for all n. By the assumptions of Theorem 4, the operator A is M -bounded.
Since U has the M -property and hence M -bounded, V, C U for every n, the se-
quence {A(V,)} is bounded in the norm of E. Now (3.6) together with ¢, — e implies
yg, (T(V,)) — 0. However by (3.6) we have wg(A(V,)) > 2¢er for all n, which contra-
dicts (3.5). Therefore, (iii) indeed implies (i). [

4. Application to narrow operators

We first recall basic definitions and notation in a form convenient for us.

Let (€2,Y, i) be ameasure space where Q is a subset of R” and u is a continuous
measure in the sense of [14]; that is, each subset D C Q, u(D) > 0, can be split into
two subsets of the same measure. Assume also that (1 (Q) < .

Let 37 be the setof all D € ¥ with u(D) >0 and let S(u) be the linear space of
all equivalence classes of (-measurable functions u: Q — K, where K € {R,C}.

Let kp be the characteristic function of a set D € ¥,. A function u € S(u) is called
amean zero signon D if u? = kp and u({t€D:u(t) =1})=pu({t €D :u(t) =—1}).

Recall that a normed space X which is a linear subspace of S(t) is called an ideal
space if kg € X and for each u € S(u) and v € X the condition |u| < |v| implies u € X
and [|ul|x < []v]x-
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Let D € ¥ be any subset and let X be an ideal space on (Q,Y, ). Denote by
Jp C X be set of all mean zero signs on D. Since |u| < kg forall u € Jp and D € 7,
the set Jp is bounded in X forall D€ X7 .

In addition, the embedding 7: L..(u) — X is bounded for all ideal spaces X .

The spaces L, () (see Example 1) are examples of ideal Banach spaces.

The elements of the sequence of Rademacher functions r, = signsin(2"nt) (¢ €
[0,1], n=1,2,...)in L,([0,1],R) are examples of mean zero signs on [0, 1].

The definition of a mean zero sign implies the following assertion:

PROPOSITION 1. Let D1,D, € £ be any sets with Dy D> = &. Then for any
uy € JIp,, up € Ip, the function u=uy £uy belongs to Ip,up,-

For normed spaces E and E; denote by .Z(E,E]) the space of all linear continu-
ous operators A: E — E.

Let X be an ideal space on (Q,Y, 1) and let ¥ be a Banach space.

An operator A € Z(X,Y) is called narrow if for each § > 0 and each D € 3"
there exists a mean zero sign u on D with ||Au|ly < J.

The notion of a narrow operator was introduced by A. Plichko and M. Popov [18].
Narrow operators were studied by many mathematicians (for details and bibliography
see, for example, [13, 17, 19]).

The following assertion is a consequence of the definition.

PROPOSITION 2. Let X be an ideal space on (Q,Y,1) and let D € Y be any
subset. Then the following conditions are equivalent:
(i) A € Z(X,Y) is a narrow operator;
(i) VD eXt inf ||Auly =0;
ucJp
(i) VD e ¥ F{up}:u, €Ip, n=12,..., nlglgoHAunHy =0.

We suggest a new approach to the problem of narrow operators via inequality (2.1).
(Recall that by Jp C X we denote the set of all mean zero signs on D.)

THEOREM 5. Let X be an ideal space on (Q,Y, 1) and let Y be a Banach space.
Suppose that for every D € ¥ there exists a bounded function Mp : 3p — R and
an Mp -bounded operator (not necessarily linear) Tp: Jp — E| (Where E| is some
normed space) such that for any 6 > 0 there exists u € Jp with ||Tp(u)||g, < 0. Then
every operator A € £ (X,Y), satisfying for all D € ¥, the condition:

Ve>0dc, >0:YueJp ||AI/LHY<£MD(1/L)+CSHTD(1/L)HEI 4.1

is a narrow operator.

Proof. Let D € Y7 be any subset and suppose A € .Z(X,Y) satisfies (4.1). Since
Tp is Mp-bounded, (4.1) implies that A is Mp-bounded too. Putting § — 0 in the
assumptions of Theorem 5, we get a sequence {u,} of elements of Jp such that
i || 7 (1) |, = 0.
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If lim Mp(u,) >0, then U = {u,} C Jp possesses Mp-property. Applying The-

n—00

orem | to U = {u,}, we obtain lim ||Au,||y =0.
Nn—oo

If lim Mp(u,) =0, then lim ||Au,|y =0 by (4.1), i.e. A is narrow by Proposition

2.0

REMARK 4. Let Ly(tt), 1 < p <o, be as in Example 1. Since ||ul[r,) =

(u(D))"/P for all u € Jp and D € ¥, the identity operator I: L,(u) — L,(u) and
the embedding I: L,(u) — Ly(it) (g < p) are not narrow.

Recall that an operator A: E — E|, where E, E| are normed spaces, is compact if
it maps bounded subsets of E into totally bounded subsets of E;. Below we show that
the restriction on Jp of the embedding I: L..(u) — Ly(1) (1 < g < o) is not compact
forall D X7,

EXAMPLE 2. Fix any D € £*. We construct a sequence {uy},u, € Jp,n =
1,2,..., defined in a manner analogous to the sequence of Rademacher functions.

Since  is a continuous measure we can split D into subsets D =D;UD;,, DN
D, =0, ,U(Dl) = ‘LL(DQ) Putting

1 if s € Dy,
ui(s)=< -1 ifs € D,, 4.2)
0 ifs¢D,

we obtain some function from Jp. By analogy with (4.2) we can construct uy; € Jp,
and u» € Jp, . Denote us := uy1 +u12 € Jp. Iterating the above process, we obtain a
sequence {u,}, u, € Ip,n=1,2,..., defined in a manner analogous to the sequence
of Rademacher functions.

Note that uy —uy = 2i where & € Jp, and 2u(D12) = u(D), 2u(DiaND;) =
u(D;),i=1,2. Forall n#m

Uy =ty = 25, 5 € Tpy 2 (D) = (D) (4.3)
where 2 (D, ND;) = w(D;), i=1,2.

Note that [luy — ua||z, ) = (297! (D))" for all 1 < g < . For the sequence
{un}, un € Ip, n=1,2,..., constructed in Example 2 we have B (){u.} =
(29- ' (D))"/4 since e — | () = (27- (D)4 for all k#m and 1 < g < oo.
Hence the restriction on Jp of the embedding /: L..(u) — Ly(1) (1 < g < eo) is not
compact for all D € 7.

The idea of the proof of the following sufficient condition for an operator to be
narrow is based on the definition of the MNC f3 as well as on the proof of Theorem 3.

We assume below that i is o -additive, i.e. for all countable collections {D;}i,
of pairwise disjoint sets in X we have

(U0

Ms

H(Dy). 4.4)
1
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THEOREM 6. Let X be an ideal space on (,Y, 1) where the measure [L is O -
additive, and let Y be a Banach space. Denote by Z the set of all mean zero signs u in
X. Suppose A € £(X,Y) is compact on Z and

Ve >03ce >0 ||Aully < €+ cepi(suppu) (4.5)

forall u e Z. Then A is a narrow operator.

Proof. Fix any D € 7. Let {u,}, u, € Jp, n=1,2,..., be a sequence con-
structed in Example 2. Then the sequence {Au, } is relatively compact, that is, By {Au, }
= 0. Hence for any 0 > 0 there exist u; and wu;; (7 # 1) such that ||Auz — Augz|ly < 0.
Hence by (4.3) and linearity of A

6 > [|Auz — Aunlly = [|A(us — un) ||y = [A20)[ly = 2[|AV]ly

where ¥ € Jp,. and 2u(Dpn) = (D).

For simplicity of notation put A; = Dy, vy = ¥, Af ={weD:v; =1} and
Ar={weD:v, =—1}.

Thus we find the sets Ay, A} and A} with A] UA] =Ap, AT NA] =@, 22u(A))
=22 (A[) = 1(D) and the function v; = Kpr = Kp-» V1 € Ja, such that |Avy]ly <
8/2. We repeat our argument for D\ A; and we find the sets Ay C D\ Ay, A], A
with AT UA; = Ay, AT NA, =@, 2°u(A]) =2°u(A;y) = u(D) and the function
V) = K'A;r — K‘Az— , V2 € Jp, such that l[Ava]ly < 5/22.

Iterating this process we get sequences of sets {A,}, {AF}, {A,} and of func-
tions {v,} such that A, C D\ (AjU...UA,_1), AF UA; =A,, AT NA; =@, 2 (AF)
=2"u(A) = u(D), va = Kyt — Ky » Vo € Ta, and [|Av, ||y < 8/2" forall n.

Note that this process does not terminate. Define

Pr=1JA Py = A win=Kpr —Kp- (4.6)
n=m

n=m

for all m. Note that P,; NP,, = @ and (4.4) implies u(P,}) = u (P, ) = u(D)/2™.
Denote y,, = Aw,,. By the construction, the sequence {y,}7_, is fundamental,

that is, it satisfies the Cauchy condition:

[vx = yilly = [JAwi — Awi|ly = [|A (Wi —w1)]|y
k k k S
A Evn gZHAvnHY<Zi
n=I[ n=I n=I[

forany k> [. Hence lim Aw,, and as consequence lim ||Aw,||, exist.
Mm—oo

m-—oo

Moreover, by (4.4)

Y

lim u(suppwy,) =0. 4.7)
m—oo
By (4.7) and (4.5) we have

lim || Aw,|ly = 0. (4.8)
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By the construction, for all m

m—1
W] = Kp+ — Kp- = Vo t+w
1 P, P, z n T Wm
and w; € Jp.
For all m we have

m—1
< X llAvally + llAwn]ly -
Y n=1

[Aw1 ]y =

m—1
A (2 vn> +Aw,,
n=1

Letting m — oo, we get by (4.8)

oo

< O
[[Aw [l < Z\AvnHY 22—= :

Thus for each § > 0 and each D € ¥ there exists a mean zero sign wy on D
with ||Aw; ||y < 8. Then A is narrow. O

REMARK 5. In contrast to [19, Proposition 2.1], in Theorem 6 we suppose that ¥
is a Banach space and u is o -additive measure. However, we do not require from the
norm in X to be absolutely continuous on the unit.

Since we do not use the property |[Aul|x = |A|||u|lx where A € R or C, then X
could be a Kéthe F -space.

We recall briefly that an F -space is a complete metric linear space X with an
invariant metric p (i.e. p(u,v) = p(u+z,v+z) foreach u,v,z € X).

An F-space X which is a linear subspace of S(u) is called a Kothe F -space on
(Q,>,u) if ko € X and for each u € S(it) and v € X the condition |u| < |v| implies
u€X and |jully < ||v||x (see for example [13] and [19]).

Here ||u|lx = p(u,0) and the property ||Au|/x = |A|||ul|x could be not satisfied in
general.

The condition (4.5) in Theorem 6 is essential, since the non-narrow continuous
linear functional, constructed in [17], obviously does not satisfy (4.5).

Also note that if

lim ||Axplly =0, 4.9)
w(D)—0

then the condition (4.5) will be clearly satisfied.
In particular, if the norm in X is absolutely continuous on the unit as in [19,
Proposition 2.1], then (liI)n llxpllx =0 and we have (4.9) for all A € £ (X,Y) both
u(D)—0

compact and not compact.
As a consequence we obtain the following result: every operator A € £ (L, (u),Y),
1 < p < oo, with a compact restriction on L. (L) is narrow by Theorem 6.
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