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THE OSTROWSKI TYPE INEQUALITIES WITH THE
APPLICATION TO THE THREE POINT INTEGRAL FORMULA

SANJA KOVAC, JOSIP PECARIC AND SANJA TIPURIC-SPUZEVIC

(Communicated by S. Varosanec)

Abstract. The generalization of the integral formula with three nodes is introduced, and some
sharp and the best possible inequalities for the functions whose higher order derivatives belong
to L, spaces are given. We establish non-weighted version of the three point integral formula.
From the general non-weighted formula we shall get the famous Simpson, dual Simpson and
Maclaurin formulae. Some new errors of approximation in these integral formulae are obtained.

1. Introduction

The most elementary quadrature rules with three nodes are Simpson’s rule, based
on the Simpson’s formula [3]

[ ra="t2 [f(a>+4f(“§b) +f<b>] SO om), W

where 1 € [a,b], the dual Simpson’s rule based on the following three-point formula

[3]

[t = 25 [ () () 2 ()] + s o)
(2)

where & € [a,b], and Maclaurin’s rule based on the Maclaurin’s formula

/abf(,)d, _ b;a [3f(5a6+b> +2f<a42rb> +3f<a—;5b>} . 7(5b1g4%)5f(4)(6)7
3)

where 6 € [a,b]. These formulae are valid for any function f with continuous forth
derivative f*) on [a,b)].

In this paper we will use the concept of the harmonic polynomials which was
considered by J. Pecari¢ and S. VaroSanec [13]. Namely, let

o={a=x)<x < <xy=b}

Mathematics subject classification (2010): 26D15, 65D30, 65D32.
Keywords and phrases: sequences of harmonic polynomials, numerical integration, L, spaces, in-
equalities, Gaussian quadrature, Simpson’s rule, dual Simpson’s rule, Maclaurin’s rule.
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be a subdivision of the interval [a,b]. Set
Pi,(1), t € [a,xi]
Py, (1), t € (x1,x2]
Sn(t’c) =
Pmn(t)a IS (xm—laxm};

where {Pj,}, are the sequences of harmonic polynomials, i.e. P}, (t) = Pjx-1(7). By
succesive integration by parts they have proved whenever the integrals exist that

(—1)"/bSn(t,0)df<"‘1)(t) :/bf(t)dt+ki(_1)’< [Pmk(b)f("‘l)(b)
a a =

m—1
+ 3 (Pirle)) =Py () f 4 () = Pucla) f 4D (a) |
j=1
“)
Using formula (4) we will obtain the general quadrature formula with three nodes x,
“b and a+b—x, for some x € [a,F2]. Such formulae will include the values of

the higher order derivatives of function f in nodes x, # and a + b — x. Further, we

observe functions f whose higher ordered derivatives belong to L, spaces and estab-
lish sharp and the best possible constants for such inequalities. Finally, for appropriate
choices of x we will give the generalizations ot the well-known Simpson’s (1), dual
Simpson’s (2) and Maclaurin’s formula (3). Also, the Legendre-Gauss quadrature for-
mula with two nodes

b _b-a atb b-a at+b b—a (b—a) 4
/af(t)d’_ 2 (f( 2 _2ﬁ>+f< 2 +z\/§>)+ 0 MO

will appear as special case, since its exactness is the same as the exactness of the above
mentioned three-point Newton-Cotes formulae.

For ¢q € [a,b] set siD(co) which stands for the class of all continuous functions
f :la,b] — R differentiable on {(a,co)|J{co,b) such that

M= sup |f'(t)| <woand M,:= sup |f'(t)| <ee.

te{a,co) t€{co,b)

If co =a weset M; =0 and if ¢o = b we set M, =0.
In [5] the generalization of the M. Niezgoda result ([12]) is obtained for the
weighted integral formula.

DEFINITION 1. Let w: [a,b] — [0,°0) be an integrable weight function and wy :
[a,b] — R are differentiable functions for k € N. We say that {wy }ren is w-harmonic
sequence of functions if for k =2, wi(t) = wi_1(¢t) and w)(t) = w(z), for 1 € [a,D].

Given a subdivision 6 = {a =xp < x; < ... < xp_1 < X = b} of the interval
[a, D], let us consider different w-harmonic sequences of functions {wj;}ren on each
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interval [x;_1,x;], j € {1,2,...,m}. Define
win(t), t € [a,x1]
Wzn(l‘), t e ()CI,XQ]
W(t.0) = { . (©)

Wi (1), t € (Xpm—1,b].

Then for every function f : [a,b] — R, such that ) is piecewise continuous on [a, 5],
it is proved in [6] that

[ vt = 304 o Vo @
“ k=1
mg [k () = wirax)] £ () = wiea) 47 (a)

/anto " (¢)dr.

The identity (7) is called weighted integral identity.
Here and hereafter the symbol Lf; B (p = 1) denotes the space of p-power inte-

grable functions on the interval [a,b] equipped with the norm

i~ ([ rorar)’

and L‘[’Z 5 denotes the space of essentially bounded functions on [a,b] with the norm

[1f ]l = ess sup | (1)].

t€la,b]

Let us denote

T f(x0,%1,%2, - ., /w Hdi—Y ( l)kfl[wmk(b)f(kfl)(b)

k=1

&5 Do) —w0140)] 197 () el @)

j=1

The following three theorems have been established in [5] . For the reader convience
we give a proof of the first theorem here :

THEOREM 1. Let f: [a,b] — R be a function such that f"~1) € D(cy), for some
n €N and

M; = sup
1€{a.co)

f(")(t)‘ <o and M,= sup 'f ‘

[E c()h
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Then the following inequality holds:
1
(M (co—a) + ME (b= c0)] """ [Wasal-, 0)llgs 1 < p < o0
|Tf(x07xl7x27'” 7xm)| <
maX{MlvMi’}'HWH,W(WG)Hh P = °°.

Proof. From the identity (7) we have
b
T(x0,3,- - m) = (_1)"/ W oo(t, ) £ (1)t
a

€0
- )"/ Wy (1, 6) £ (1)di + (— / Wy (1, 6) £ (1)t
a
By taking the absolute value and applying Holder inequality we get
|Tf(x0,X1,5 s Xm)]|

(£, 0) ) (1)dr | +

(2, 0) ) (£)d1

”WV!,W("G) q.la,col ||f(n)Hp,[a,co] =+ ”WV!,W('?G)”L[,[CO,h] . Hf(n)”p,[co,h]

<
< Ml ' (CO _a)l/p ' ||W"7W('a6) q.la,co) +M,- (b - CO)I/p ' ||W"7W('a6)

q,[co.b]*
For 1 < p < = we apply discrete Holder inequality and get
1
T f(x0,%1,. - %m)| < [Mlp(co —a)+ML(b— CO)] . ”Wn,W('a o) an
while for p = oo we have
1 (0,21, 520m) | < max{My, My} - [Wo(-, 0) |1
so the proof is complete. [J

In [5] following lemma is given:

LEMMA 1. Let 1 < p <ooand f:[a,b] — R be a function such that f") € D(cy),
for some n € N and

M; = sup
re{a,co)

f(”+1)(t)‘<oo and M, = sup 'f"“ ‘

[E c() h
Then the following inequalities holds:

M? (co—a)PT!
)y _— P < P
£ () = ™ (e O]FPRES il

Hf<"><-> = (0) e o] < Milco=a), p=o=

ME (b — co)Pt!
Wy - f P Ar\P—c)
1P =S} o < =77

17 = (€0} ey < Mrb=c0), - p=oe.

, 1<K p<oo

;o ISp<ee
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THEOREM 2. Let f : [a,b] — R be a function such that f") € D(cy), for some
n e N and

M; = sup
re{a,co)

f(”H)(t)‘ <oo and M,= sup ’f "H ‘ oo.

[E c()h

Assume 1 < p,q < oo are conjugate exponents (
(6). Then the following inequality holds:

b4 3 =1) and W, (-,0) defined by

(n—1) _ r(n—1 b
T f (X010, ) — (— 1)L (bb f a/me(t,cr)dt

—a

1
W |:M (CO _a)erl +Mp(b 0)17+1] /P : Hme(',G) - n”q,[a,b]7 1 < p <o

max{M;(co—a),Mr(b—co)} - [|Wpw(-,0) —

Jap)y P = 4= L,
where 1 = ﬁfab Ww(t,0)dr.

THEOREM 3. Let f : [a,b] — R be a function such that f") € D(cy), for some
n €N and

M; = sup
te{a,co)

f(”+1)()‘<oo and M, = sup ’f”“ )‘<oo.

te Cob

Assume 1 < p,q < oo are conjugate exponents ( 11—7 + é =1) and W, (-, 0) defined by
(6). Then the following inequality holds:

b
Tf31.52,c ) = (1) £ (o) - [ Wale, o)

1
b (M (o= @)+ ME (= 0P 1] 7 W 0 g 1 < p <
<

max{M;(co—a),Mr(b—co)} - [Wau(, )1 as); p=coq=1

The aim of this paper is to derive the analogues error bound for the three-point

version of integral formula with w(r) = ﬁ obtained with some special cases for x €

a,52].
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2. The general three-point quadrature formula

For x € [a, “3%) let us consider the following subdivision of the segment [a,b]:
0= {xp <x; <xp <x3<X4},

where xg =a, x| =x, x = #, x3=a+b—x and x4 = b. Let Q,(¢) be some monic
polynomial of degree n, for some n € N. Set

Pio(r) = =4, 1 € a,]

n!

Po(t) = 20 1€ (x, 2]

n!

Sn(t,x) = (8)
Pan(t) = (—1)" Lletd=t) o (“2,a+b—x]

n!

Pin(r) = =21 t€(a+b—x,b).

n!

Further, for k =0,1,...,n— 1 we define

—a)
Py(t) = Y T ) ;o Pult) = o P )

ko=, Y

Pak(f)z( DO, n!( b t), Py (t) = U k!b)

REMARK 1. The sequences of the polynomials {ij}k:()?l?._ﬂn are harmonic, for
j=1,2,3,4,ie. Pj’.k(t) =Pji1(t), fork=1,...,n and Pjy(t) =1, for j=1,2,3,4.

REMARK 2. If we put

_ koY

0(t) : =, k=0,1n
then we have
Ot —1)*Op(a+b—1t
Py(t) = ZE)» and P3k(f)=( ) k]E, ),

Further, polynomials Qy satisfy Q) () = Qx—1(t).

REMARK 3. The following symmetry conditions are valid:
Py(t) = (—1)*Pua+b—1),v1 € [a,x]

and
b
Pult) = (~1)Py(a+b 1), € (x, %)
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Now we can state the general three point formula:

THEOREM 4. Let f: [a,b] — R be a function with a piecewise continuous n-

th derivative, for some n € N and x € a, #) Further, let Q,(t) be some monic

polynomial of degree n and S,(t,x) be defined by relation (8). Then the following
formula holds

/?mm:imwQ%“w+ew*ﬂ*w+ww) ©
+ZBk (““’ /s (6.2) £ (1)dr,
add
where
k-1
a) =" (- ouw). k=1,
Bi(x) = %, forodd k> 1
and

By (x) = Py (x) — Py (x) =0, foreven k> 1.

Proof. We consider subdivision xop = a, x; =x, X, = “—gh, x3=a-+b—x and
x4 = b of the interval [a,b] and apply formula (4) with m = 4. We have
Plk(a) = P4k(b) = 0, Vk = 1, o, n

Further, imposing polynomials (8) in (4) we get the coefficient by f*~1(x) and
(=D)L =D (g 4 b — x) equals to

vkl
M) = (-1 [Pu(e) — (] = T (- @)~ )

and coefficient by f*~1)(42) for odd k equals to

Bi(x) = (—1)! [sz(“;b)—ng(“;b)] 2Qk,(d%). O

REMARK 4. Analogue results for the general two-point formula with nodes x and
a—+ b — x were considered in [4] and [9].

Now we will state L, inequalities for the general three point integral formula.
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THEOREM 5. Let f : [a,b] — R be a function with a piecewise continuous n-th
derivative and ") e Ly[a,b] for some n € N and some 1 < p < eo. Then we have the
following inequality

/bf(f)df—iAk(X)<f(k’l)(X)+( )
-Zaart I (157)

odd
Cln,p.x) - [.£™]I, (10)
where
1
1/ xfu"qul atb q
20 [ T o], f+i=1 1<p<e
C(n,p,x) = (11)

dmax { (v = )", sup, ., wss [0,(0)]}, p=1.

The inequality is sharp for 1 < p < oo and the best possible for p = 1. Equality is
attained for the function f : [a,b] — R defined by

fet) = o /t(t—s)"_1 ISy (s x)|l’%1 sgnSy(s,x)ds (12)
* (l’l— 1)' " n\» n\»,
for 1 < p < eo, while for p = oo
1 t
£ult) = m/ (1 — 5)" LsgnSn(s, x)ds (13)

Proof. The first part of the theorem follows from the Holder inequality to the
identity (9). For 1 < g < o we have

24 r(x—a)mat! ot
Su(-x)|lg == | —L— 9d;
I8l =5 [+ lenlar]”,

=
Q=

and

1
19 (2 lloo = 3 max o (x—a)", sup | Qn(r)]

r€lx,95P]

For the proof of the sharpness, we need to find function f such that

/s (t,2)f =15 (150 ) 45

for 1 < p <eo and 1 < ¢ < eo such that 11, + 5 = 1. The function f. defined by (12)
and (13) is n— 1 times continuously differentiable and it has a piecewise existing n-th
derivative. Further, f, is a solution of the differentiable equation

Su(t,2) (1) = |Su(t,2)|4,
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so the assertion follows.
For p =1 we shall prove that

/S (£,x) " (r)de| < max |S,(z,x)|- / | (1)|de (14)

tE[a,%]

is the best possible inequality. Suppose that |S,(7,x)| attains its maximum at point

to € a,b]. First, let us assume that S,(7p,x) > 0. For & small enough define fg(n_l)(t)
by

0, <1
(n=1) 0y _ ) =1
fe T)=q = t€lo,0+e
I, t>t+e,

if 1 = x and max,, ath] |Sn(2,x)] = Qu(x). Then, for € small enough,

10+€

dt‘—

S X —1 dr| = —1 e d
t t n(2)ar.
( ) )8 ‘ {_:/t0 Q ( )
NOW, relation (14) unphes

1 f0+E€ 1 t0+€
—/IO 0u(1)dr < EQn(to)/O dr = 0, (10).

€ Jn ]

Since
1 10 +€

lim — On(t)dr = On(10),

e—0 €
the statement follows. On the other hand, if max, €la,552] |Sn(2,x)| # |On(x)|, we define
1, t<mn—=¢
70 = B e g —e1)
0, t=>1.

Then, for € small enough,

/Stx dt‘—

Now, relation (14) implies

1 1 [
Sn (Lx)Edt’ =z Sy(t,x)dr.
1

0—¢&

1o

fh—E&

1 [ 1 fo
- Su(t,x)dt < =Sy(19,x) dr = Sy(19,x).

€ Jiy—e¢ £ to—€
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Since
.1 o
lim — Su(t,x)dt = Sy (o, x),
e—0 & Jiy—¢
the statement follows.

For the case S,(#p,x) < 0, the proof is similar. [J

Let us apply upper results to the following example of monic polynomial Q,:

_a)
Qunlt) i= (=2 nlr—a— = e
+(5) a2 () -

a+b}' (15)

+ (Z) (x—a)*(r—x)""*, re [x, :

After some calculation from Theorem 4 we get

(b—a)’
6(2x—a—0b)*’

As(x) = A3(x) = A4(x) = B3(x) = 0.

(b—a)’

A = 32r—a—bp

Bi(x)=b—a—
Now we have
COROLLARY 1. Let f:[a,b] — R be afunction with a piecewise continuous n-th

derivative, for some n € N and x € [a, “*h ). Further, let Q, () be defined by relation
(15) and S, (t,x) be defined by relation ( 8). Then the following formula holds

b
/f(t)dt:D X+ To(f,) /S 1) f (16)
where
—a)’ —a)’ a
D)= g s (1004 Sla b =)+ (b-a- 512 ) f(410),
(17)
and
9= S A (f<k-1><x>+<—1>k-1f<k-1><a+b—x>)
+23k (4D, 1)

add

Proof. The proof follows from the Theorem 4 for the polynomial Q, (r) defined
by relation (15). [
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LEMMA 2. For x € [242 &40 yoe have Qnx(t) > 0, for t € (x,%5L), when n >
3. Further, we have Q, 4(t) <0, fort € (a, —) when n > 3.

Proof. We use mathematical induction by n. For n = 3 we have

b—a)’
- 2(2&—51119)20”)2'

The zeros are #; = 52

i

a+b+ b—a
2 4(2x—a—Db)?

/32 —a—b)*—8(b—a)(2x—a— b~ 6(b—aP(2x—a—b)> + (b—a)*.

-[(b—a)2—3(2x—a—b)2

I3 =

By some calculation, we check that #, < x, and for x € 242 &2y 43 > &b e,

tips & (x,“42). So, Q34(t) >0, for t € (x,%2), since Q3,(x) > 0. For n —4 we
have Q4 (x) > 0. Since Qs(t,x) >0 on (x,“}2) and by remark 2 we conclude that

Q4.(t) is monotone increasing on (x,%42), for x € [34tL 41P) 50 Q4 \(t) > 0. For
n > 5 we know from the definition of the Oy x that Qnﬂx( ) = 0. Now, let us assume
that Qpx(t) > 0 for some n > 3. Relation Q.| (¢) = (n+1)Qyx(r) > 0 implies that

#+1x 1S monotone increasing on ((x, atby - So, since h+1x(x) = 0, we conclude
+ g 2 +1,

Qn+1x( ) >0, forz € ( a+b) when x € [Sa+b7 a-;b).
For the case x = a we have

Qn,u([) = ([ _a)" _ I’l(b—a)

a—@"lzo—aylP—a—"@g“q,
by, O

s0 obviously for n >3 we have Q,4(r) <0, when 7 € (a,%5%).

THEOREM 6. For x € {a} U [S“H’ “by and 4" continuous function on [a,b)
for some n > 2, we have

/ ’ F(2)dt = D(f,x) + Tou(f,x) + £ (1) - C(2n,00,x),  for some N € (a,b),

where D(f,x), Ton(f,x) and C(2n,e,x) are defined by relations (17), (18) and (11)
respectively.
Proof. The proof follows from the integral mean value theorem. [

Specially, for n =2 we have

—613 —(12 a —.X2
[* =g+ O [0 kb 2]

so for x = q, 40 3atb ath '2’7‘31 we get the Simpson’s, Maclaurin’s, dual Simpson’s

nad Gauss-Legendre’s two-point quadrature formula, respectively.
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3. Ostrowski type inequalities for threepoint formula

Let us denote

Tf(a,x,a+b—x,b)=

_a(/ F(e)d — )—Tn(f,x>).

At first,we shall give the upper bound for T f(a,x,a+b — x,b) for functions f such
that f"~1 € D(co).

COROLLARY 2. Let f: [a,b] — R be a function such that f""~") € D(co), for
some n € N and

M; = sup f(")(t)‘ <o and M,= sup )f ‘
te{a,co) 1€(cq,b)
Then the following inequality holds:
|Tf (a,x,a+b—x,b)| (19)

N,

1 1/ _g\na+1 a+b
[M](co—a)+MF(b—co)] 7 B [ Lo 4[5 10, ()]
%+$:1, 1< p<eoo.

—a n+1 a+b
maX{Ml,Mr}~% [( nJr)l f ‘QnX( )|dt} )

<
p:oo,qzl.
[Mi(co — @)+ M,(b — co)] - &y max { (x— )" sup, ., oza) 10nx(1) |
p:l’qzoo

Proof. The proof follows from Theorem | and Theorem 5. [

Now we shall give the upper bound for

Tf(a,x,a+b—x,b)— (b__l): /bSn(t,x)dt . /bf(")(t)dt. (20)

Let n denote mean

1 b 2 n+1
:b—a/u S"(t7x)dt:n!(b—a)< n+1 / On.(1) )

COROLLARY 3. Let f:[a,b] — R be a function such that ) € D(cy), for some
n e N and

M; = sup
1€{a.co)

f(”+1)(t)‘<oo and M, = sup 'f"“ ‘

[E c()h
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Assume 1 < p,q < oo are conjugate exponents (% + é = 1) and S,(-,x) defined by (8).
Then the following inequality holds:

(n—1) _ £(n—=1)
ravatbxp) - (O P

1
e M (o — @)+ M5 — o)) 00 = Mgy, 1 < p <o

max{M;(co—a),M,(b—co)}- ||Su(-,x) —

Ja,b]s p=ec,g=1.

Proof. The proof follows from Theorem 2 ,Theorem 5 and Lema 1. [J

Now, we shall consider the upper bound for
Tf(a,x,a+b—x,b)— co/S t,x)d (21)

COROLLARY 4. Let f:[a,b] — R be a function such that ") € D(cy), for some
ncN and

M; = sup f(”H)(t)‘ <o and M, = sup 'f (1) ‘
re{a,co) t€(co,b)

Assume 1 < p,q < oo are conjugate exponents (% + é = 1) and S,(-,x) defined by (8).
Then the following inequality holds:

Tf(a,x,a+b—x,b)— C()/S (t,x)dt (22)
1 1/ _q)ha+l1 a+b
m [M (co— a)P+l_|_MP(b CO)p+1] /F.% [(ijzrl f |an( )|th] ’
1 < p <oo.
< % [MZ(C() — a)2 —|—Mr(b — Co)z] . % max {(X— a)"’supte[)@#] |an(l‘)‘} ,

p=1lg=ce e
max{M;(co —a),M:(b—co)} - [(x;[i)l + i 7 1Ot )|dt] 7
p = oo,q = l.

Proof. The proof follows from Theorem 3 and Theorem 5. [

Now let us see some special cases:

Casel. x=a,n=1

For this case we get
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1/q

a+b (b—a)) <2q+1_ (_l)q-&-l):l

and
v /e b—a
1/q q _o ¢
2 lé @Aﬂ‘ﬂ 6 L@+1

By Corollary 2, we get

b

1 b—a 2 ath

b—a /fﬂﬁﬂ— < (fw»+fw»—§4b_@f( : )
1/q
(] o= )+ M7 (b= )] 77 52 [k (207 = (07
< %+%:Ll<p<w

(bIg) maX{Ml7Mr}, p=o,q9= 1.

b;u.[Ml(CO_a)"_Mr(b—Co)], p= 17 q=o°

6

where
M= sup |[f'(t)] <o and M,= sup |f(1)] <o
r€{a,co) 1€(co.b)

and f € D(co).

Case 2. x:#,nzl
For this case we get
2(b—a)
0, 2 (1) =1 —a— =2
and
(x —a)it! ot g |* b—al(b—a)/ 1 54 1 v
2l/4 74-/ Ql 3a+b(t)) de| = T+ T~ i
g+1 3asb 57 2 |(g+1)\2¢t1  eet 39+

By Corollary 2, we get
b

1 2(b—a) 3a+b a+3b b—a _ (a+b
[roa= 250 (s (357 )+ (457) ) =55 ()

b—a
1/q

1 _ b— +1
(M7 (co—a) + MF (b —c)] " 52 [ (G + S — )|
+-=1, 1<p<oo
(b—a)? _ _
Tmax{M;,Mr}, p=c,q=1

B9 My (co—a) + M(b—co)], p=1, g="o

VA
NS | —

where
M= sup |f'(t)] <o and M,= sup |f'(r)] <eo

t€{a,co) t€{co,b)

and f € D(co).
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Case 3. x= ,n=1

Sa+b
6
For this case we get

Q175aﬁ_+b(t):t_a_M

and

1/q

<=
i
N

71/q

(x—a)‘1+1 st g |7 (b—a) (1 54t
g+1 /5a+h le”*b()‘ | ==~ (q+1) \3001 T ar1 T gar

By Corollary 2, we get

1 —a | (b— +1
(947 (co —a) + M7 (b —c0)] 7 250 [ (b + i 4 )]
—+——1 1 <p<eo.

<
252588 max{M;,M,}, p=-co, qg=1.
0 Mi(co—a) +M,(b—cp)], p=1, g=oo
where

M = sup |f/(t)]<e and M,= sup |f/(r)]<eo
t€{a,co) 1€(cq.b)

and f € D(co).

4. Some examples of the three-point integral formula

In this section we will apply results from the previous chapter to some special

cases of x € [a, 4£2].

41. x=a
For this case we get the generalization of the famous Simpson’s formula. Using

_ ba — _ bt 11
Theorem 4 we get Aj(a) = g% and Ai(a) =0 for k> 1, By(a) = T TG -3

for odd k and Byi(a) = 0, so the generalization of the Simpson’s formula states

[ e = “(f( >+4f(“+”)+f<b>) @3)
+ZB (“H’ /S (t.a) £ (1)dr.

()d d

For f : [a,b] — R such that f (4) is continuous, we get the well-known Simpson rule

(D).
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REMARK 5. This formula and related inequalities were obtained in [10] and [13].
_ 3at+b
4.2, x= T+

For this case we get the generalization of the dual Simpson’s formula. Function
Su(t,24EL) is determined by (8) and polynomial

Q, 301 (1) = (;_ 301‘1’)” - 5n(l172— a)< B 3a4—|—b>n—1

() Q)

+<z) (b—a)4<t_3a—|—b>"*4, t€[3a+b a—i—b}. o

44 4 4 2

Further, from Theorem 4 we have A;(342) = 2(h3 4) , Ap(3%2) =0, for k=2,3,4 and
a —D)* 1 (h—a)k a —a a

Ap(thy = CU—ba) >4kk<! L for k>5. By(34dk) = boa | g (3atby — o, for k =2,3,4

Bi(34t) = ek ‘;’,{, =% &)+ (&) +(%)], forodd k> 5, and By (3%2) = 0. For

f :|a,b] — R with a piecewise continuous n-th derivative we have by Corollary 1

/abf(t)dt:D(f,3a4—+b> n(f, 3a+b> +(—1)"/absn(z,¥)f<")(z)dt (25)

where

(f73a+b> b— <2f<3a+b> f(a;—b> 2f<a+3b>).

Further, if ") € L,[a,b], then the following inequality holds:

[ s (20 (120 <o p, 20 g,

Specially,

1= 22 T (1 2t -
om0 = MG el )
(o 25) = Uit eaa2) 2
(om0 =T el ) =g

REMARK 6. The same constants were obtained in [1].
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If f: [a b] — R is such that f(") is continuous for some n € N, then we have
Ja F(£)dr = DF,352) 4 Tan(f, 2452) +C(2n, 00, 242) ) (), for some

n e (a,b). (26)

Specially, for n =2 we get (2).

4.3. x=4tb

For this case we get the generalization of the Maclaurin formula. Function S,,(z, %)
is determined by (8) and polynomial

0.(n155) = (- Y - R ey
+<Z) (b gza)2 (t— 5a6+b>n72+ <;z) (b ;;1)3 (z— 5a6—|—b>n73
+<Z> (bg4a)4 (t_ 5a6—|—b>n—4, . [Sa;b’a;—b]. o

Further, from Theorem 4 we have Al(s’”b) w, Ak(%) =0, for k=2,3,4

and Ay (242) = %, for k > 5. Further,

Sa+b 2(b —a)k 5k k(k—1 k(k—1)(k—2 k(k—1)(k—2)(k—3
Bk(6+>:<3kk!>[1_ (k—1) k(= 1D)(k=2) k(k—1)(k—2)( )}’

8 8 * 48 384

for odd &, and ng(S“()+ by = 0. For f: [a,b] — R with a piecewise continuous n-th
derivative we have by Corollary 1

/ahf(t)dt:D(f,Sa%b> 4T, (f, 5“6”’) +(—1)"/ahsn (t,&‘6—+b>f(”)(t)dt, (28)

where

<f, 5a—|—b> _ (b;a) <3f(5a+b) +2f<a+b> +3f(a+65b>>.

Further, if f") € L,[a,b], then the following inequality holds:

[ s (20 (120 <o p, 20

Specially,

C(Lw, 5a6+b> N 25(12?8_861)27 C<1,1,5a6+b> _ S(bzza)
clom )G o ) -
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clam ) = U e g) =g
clam ) <TG o ) < g

REMARK 7. The same constants are also obtained in [2].

If f:[a,b] — R is such that f*") is continuous for some n € N, then we have

12 f(e)dr = D(f7 5“;") + T, <f, Sag’b> +C(2n7oo, %)f(zn)(nx for some

n € (a,b). (29)

Specially, for n =2 we get (3).

4.4. Legendre-Gauss two-point formula

We consider case where the term f (%) doesn’t appear. If we put in relation

(9) condition Bj(x) = 0, then we get A;(xg) = %5% and xg = 42 — ’2’7‘31 Function
Sy(t,xG) is determined by (8) and polynomial
%mﬁ%=0—ww—"f;?0—nwl (30)
()
4—(”)((2;}_>>(6Vfi-1o>@-xc> -3
+ <4> ( (Z? (28— 16V3)(1 )", 1€ g, 20

Further, from Theorem 4 we have Ai(xg) =0, for k =2,3,4 and Ai(xg) = %(1 -

%)k , for k > 5. Further,
Bi(xg) = % {1 —k+ (;‘) (4-2V3)+ (;‘) (6v3—10) + (’;) (28 — 16\/5)] :

for odd k > 5, and By(xg) = 0 otherwise. For f : [a,b] — R with a piecewise contin-
uous 7n-th derivative, we have by Corollary 1 the following formula

/fdt D(f,x6) +Tu(f,x6) + /Stm Od, Gl

where
b—a

2

D(f,xg) = (f(xg)+ fla+b—xc)).
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Further, if ") € L,[a,b], then the following inequality holds:

b
/u f(t)dt _D(fva) - Tn(faxG) < C(”7P7XG2) : Hf(n)”P

Specially,
C(1,00,xG) = (5_2\/2(]9_&)27 cmmchw
Cumrg) = YA 5y ) C=VBNb—ap
C(3,00,x6) = (9_4\1/2?_‘1)47 C(3,1,26) = (2‘\/3\/27\/;7—3@—@3
C(4,00,x5) = %7 C(41,xg) = (9—4\3/2(61)_61)4'

If f:[a,b] — R is such that f>") is continuous for some n € N, then we have

b
/ f(t)dt = D(f?-xG) + T2n(f7xG) +C(2n7°°7xG)f(2n)(n)7 for some ne (avb)'
’ (32)
Specially, for n =2 we get (5).
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