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ON THE MEASURE OF POLYNOMIALS

ATTAINING MAXIMA ON A VERTEX

DAMIÁN PINASCO AND IGNACIO ZALDUENDO

(Communicated by M. A. Hernández Cifre)

Abstract. We calculate the probability that a k -homogeneous polynomial in n variables attain
a local maximum on a vertex in terms of the “sharpness” of the vertex, and then study the
dependence of this measure on the growth of dimension and degree. We find that the behavior of
vertices with orthogonal edges is markedly different to that of sharper vertices. If the degree k
grows with the dimension n , the probability that a polynomial attain a local maximum tends to
1/2 , but for orthogonal edges the growth-rate of k must be larger than n lnn , while for sharper
vertices a growth-rate larger than lnn will suffice.

Introduction

Several results have been obtained regarding the size of the set of polynomials
attaining relative maxima on given points [2], [7], [8]. The original motivation of these
studies was the conjecture, by the second author, that the “probability” (to be defined
below) of a k -homogeneous polynomial attaining its norm on a vertex of the unit ball
of �n

∞ would tend to one as the dimension n increases. Pérez-Garcı́a and Vilanueva
proved that an analogous result on the unit ball of �n

1 is false for degree k = 2, and in
[8] the authors showed that for any degree k > 2 the result is true on the unit ball of
�n
1 . The set of polynomials attaining a local maximum is given by inequalities between

random variables, and the difference between degree 2 and higher degrees stems from
the fact that the random variables involved are correlated for degree 2, but independent
for all higher degrees.

The difficulty in proving the original conjecture – which still stands as such – is
of a similar nature: the lack of independence of the random variables involved in the
description of the set of polynomials of interest. Although the problem on the unit ball
of �n

∞ has remained intractable, the vertices of this unit ball have one simple property
not shared by the vertices of the unit ball of �n

1 : the angles between the edges meeting
at the vertex are all right angles. In this paper we concentrate on vertices which have the
property that the edges defining them form constant angles, but drop the requirement of
orthogonality. Thus the vertices considered here may be more or less “sharp”. We study
the probability that a polynomial attain a local maximum on such a vertex. Although
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the random variables involved are not independent, we prove that the sharper the vertex,
the higher the probability of attaining maxima. We quantify these results, study their
dependence on dimension and degree, and find a clear-cut difference between the case
of orthogonal edges and sharper vertices. Specifically, if the degree k grows with the
dimension n , the probability that a polynomial attain a local maximum tends to 1/2,
but for orthogonal edges the growth-rate of k must be larger than n lnn , while for
sharper vertices a growth-rate larger than lnn suffices.

In the first section we define the basic Hilbertian structure on Pk(�n) , and the
Gaussian measure on the space of polynomials, and refer to the particularity of the case
k = 2. In the second section we calculate the measure of the set of k -homogeneous
polynomials attaining a local maximum at an outward-pointing vertex (defined below),
in terms of the “sharpness” of the vertex. We then study the dependence of this measure
on the growth of dimension and degree.

1. Hilbertian structure and Gaussian measure on Pk(�n)

For each k -homogeneous polynomial P : �n −→ � there is a unique symmet-
ric k -linear function φ such that P(x) = φ(x, . . . ,x) . Thus we consider the space
of k -homogeneous polynomials over �n as the dual of the symmetric tensor product⊗

k,s�
n . Recall ([3], [6]) the Hilbert space structure on the full tensor product

⊗
k�

n

given by the inner product

〈v1 ⊗·· ·⊗ vk,w1 ⊗·· ·⊗wk〉 = 〈v1,w1〉 · · · 〈vk,wk〉.

Define also the symmetrization operator S :
⊗

k�
n −→⊗

k�
n by setting its values on

a basis as

S(e j1 ⊗·· ·⊗ e jk) =
1
k! ∑

σ
e jσ (1)⊗·· ·⊗ e jσ (k)

where σ runs through all permutations of {1, . . . ,k} . The image of S – the sym-
metric tensor product

⊗
k,s�

n – is a predual of the space of polynomials over �n ,
Pk(�n) . We consider on

⊗
k,s�

n the Hilbert space structure induced by the ambient
space

⊗
k�

n , and on Pk(�n) the dual Hilbert space structure. The resulting norm on
Pk(�n) is the Bombieri norm [1]

‖P‖ =

(
∑

|α |=k

a2
α

α!
k!

)1/2

,

if P(x) = ∑|α |=k aαxα is the monomial-sum expression of P .

Every linear form ϕ : Pk(�n)−→� can be identified with an element of
⊗

k,s�
n.

For example, evaluation at x : ex(P) = P(x) is given by x⊗ ·· ·⊗ x . We will mainly
encounter the linear forms

∂
∂v

(a) : Pk(�n) −→� given by P �→ ∂P
∂v

(a),
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which when identified with an element of
⊗

k,s�
n is

∂
∂v

(a) = v⊗a⊗·· ·⊗a+a⊗ v⊗a⊗·· ·⊗a+ · · ·+a⊗·· ·⊗a⊗ v.

We will need to calculate the inner products between such linear forms:〈
∂
∂v

(a),
∂

∂w
(b)
〉

= 〈v⊗a⊗·· ·⊗a+ · · ·+a⊗·· ·⊗a⊗ v,

w⊗b⊗·· ·⊗b+ · · ·+b⊗·· ·⊗b⊗w〉
= k〈v,w〉〈a,b〉k−1 +(k2− k)〈v,b〉〈a,w〉〈a,b〉k−2.

Note that if 〈a,b〉= 0, this is zero for k > 2. However, when k = 2 one has 2〈a,w〉〈v,b〉
which can be non-zero. In fact, if k = 2 and n = 2,

∂
∂ (1,0)

(0,1) and
∂

∂ (0,1)
(1,0)

are the same linear form.
We consider on Pk(�n) the standard Gaussian measure W corresponding to its

Hilbert space structure, i.e., the measure

W (B) =
1

(2π)d/2

∫
B
e−

‖P‖2
2 dP, for any Borel set B ⊂ Pk(�n),

where d =
(n+k−1

k

)
, is the dimension of Pk(�n) . We note that W is rotation-invariant,

and also that if T :�n →�
n is an orthogonal transformation, then

T̃ : Pk(�n) → Pk(�n) such that T̃ (P) = P◦T

is a measure-preserving map.
Recall also that if ϕ : Pk(�n) −→ � is a linear form, ϕ is a normal random

variable with mean zero and standard deviation ‖ϕ‖ .

2. Attaining maxima on a vertex

By “vertex” we mean the following generalization of a vertex of a hipercube. Con-
sider n norm-one vectors v1, . . . ,vn in �n , such that the cosines of the angles between
any pair remain constant:

〈vi,v j〉 = c for i 
= j.

We want to calculate the probability that a k -homogeneous polynomial in n variables
attain a local maxima at the vertex a (relative to the set A – see figure).
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We must therefore have 〈∇P(a),vi〉 > 0 for i = 1, . . . ,n , i.e.: ∂P
∂vi

(a) > 0 for i =
1, . . . ,n . Note that we have〈

∂
∂vi

(a),
∂

∂v j
(a)
〉

= k〈vi,v j〉‖a‖2(k−1) + (k2− k)〈a,v j〉〈vi,a〉‖a‖2(k−2)

= k‖a‖2(k−2) [〈vi,v j〉‖a‖2 +(k−1)〈a,v j〉〈vi,a〉
]
,

and thus ∥∥∥∥ ∂
∂vi

(a)
∥∥∥∥2

=k‖a‖2(k−2) [‖a‖2 +(k−1)〈a,vi〉2
]
.

Thus the measure of the set of polynomials attaining a local maximum at a is the
Gaussian measure of an intersection of half-spaces directed by the n norm-one vectors

wi =
∂

∂vi
(a)

‖ ∂
∂vi

(a)‖ , for i = 1, . . . ,n , such that

〈wi,wj〉 =
〈vi,v j〉‖a‖2 +(k−1)〈a,v j〉〈vi,a〉√

(‖a‖2 +(k−1)〈a,vi〉2)(‖a‖2 +(k−1)〈a,v j〉2)
.

We will concentrate on “outward pointing” vertices, of the form a = α ∑n
i=1 vi .

Note that in this case,

‖a‖2 = α2
n

∑
i=1

n

∑
j=1

〈vi,v j〉 = α2n(1+nc− c),

and

〈a,v j〉 = α
n

∑
i=1

〈vi,v j〉 = α(1+nc− c).
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Thus

〈wi,wj〉 =
α2nc(1+nc− c)+ (k−1)α2(1+nc− c)2

α2n(1+nc− c)+ (k−1)α2(1+nc− c)2

=
nc+(k−1)(1+nc− c)
n+(k−1)(1+nc− c)

when i 
= j.

This expresses the cosine of the angle between wi and wj , which we will denote c , in
terms of c , k and n . Note that c is independent of α , therefore independent of the
distance of our vertex a to zero.

Note also that since ‖a‖2 = α2n(1+nc−c) > 0, the cosine c must be larger than
−1
n−1 . Hence, although for any given dimension n it can be negative, there is no negative
value of c valid for all dimensions n . Since we will want to have n tending to infinity,
we will only consider c � 0.

We now calculate the measure of the set Aa of k -homogeneous polynomials on
R

n attaining a maximum at the vertex a .

THEOREM 2.1. The measure of Aa is

W (Aa) =
1√
2πσ

∫ ∞

0
e
− t2

2σ2 γn−1(Δt)dt,

where γn−1(Δt) is the gaussian measure of the zero-centered n−1 -dimensional simplex
of size t , and

σ2 =
nk(nc+1− c)

1− c
.

Proof. In order to calculate the measure W (Aa) , we will apply a linear transfor-
mation T : R

n −→ R
n to “open” the octant R

n
+ = {x : xi � 0, i = 1, . . . ,n} .
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To do this, we write wi = ei + μ 11 for suitable μ and Tei = ei −λ 11 for suitable
λ ,

where by “suitable”, we mean

μ such that cos(ei + μ 11,e j + μ 11) = c for i 
= j, and

λ such that ei −λ 11 ⊥ e j + μ 11 for i 
= j.

Suitable μ :

c =
〈ei + μ 11,e j + μ 11〉
‖ei + μ 11‖‖e j + μ 11‖ =

2μ +nμ2

1+2μ +nμ2 ,

and thus

n(1− c)μ2 +2(1− c)μ − c = 0,

from where

μ =
−1+

√
1+ nc

1−c

n
.

Suitable λ :
〈ei −λ 11,e j + μ 11〉 = 0 for i 
= j,

λ =
μ

1+nμ

=
−1+

√
1+ nc

1−c

n
√

1+ nc
1−c

.
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Note that, in terms of the cosine c of the angles between our original vectors,

1+
nc

1− c
=

k(nc+1− c)
1− c

,

and thus

λ =
−1+

√
k(nc+1−c)

1−c

n
√

k(nc+1−c)
1−c

So now we set T : R
n −→ R

n , with Tei = ei−λ 11 ,

T =

⎡⎢⎢⎢⎣
1−λ −λ · · · −λ
−λ 1−λ · · · −λ
...

...
...

−λ −λ · · · 1−λ

⎤⎥⎥⎥⎦ ,

We have

R
n
+

T

u �→Tu=x
�� T (Rn

+)
1dγn �� R

So

W (Aa) = γn(T (Rn
+)) =

∫
T (Rn

+)
dγn(x)dx =

∫
Rn

+

dγn(T (u))|detT |du.

In order to calculate the determinant of T , we consider its eigenvalues:
a) 11 = (1, . . . ,1) is an eigenvector with eigenvalue 1−nλ :

T ( 11) = T

(
n

∑
i=1

ei

)
=

n

∑
i=1

(ei −λ 11) = 11−nλ 11 = (1−nλ ) 11.

b) S = {x : x1 + · · ·+ xn = 0} is an eigenspace with eigenvalue 1:

Tx = T

(
n

∑
i=1

xiei

)
=

n

∑
i=1

xi(ei−λ 11) =
n

∑
i=1

xiei −λ
n

∑
i=1

xi 11 = x.

Thus detT = 1−nλ = 1√
k(nc+1−c)

1−c

. Recall the measure W (Aa) of Aa ,

W (Aa) =
∫

R
n
+

|detT |dγn(Tu)du.

We will consider R
n = [ 11]

⊕
S :
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where S+
t = {u ∈ R

n
+ : ∑n

i=1 ui = t} and S◦t = PS(S+
t ) .

Thus if u ∈ S+
t , u = t√

n
11√
n + x , and we will write du = dt√

ndx . Also,

Tu =
t√
n
T

(
11√
n

)
+Tx =

t√
n

1√
k(nc+1−c)

1−c

(
11√
n

)
+ x,

so ‖Tu‖2 = t2(1−c)
nk(nc+1−c) +‖x‖2 . Thus

W (Aa) =
1

(2π)
n
2

∫
R

n
+

1√
k(nc+1−c)

1−c

e−
‖Tu‖2

2 du

=
1

(2π)
n
2

∫ ∞

0

∫
S◦t

1√
k(nc+1−c)

1−c

e
− t2(1−c)

2nk(nc+1−c) e−
‖x‖2

2 dx
dt√
n

=
√

1− c√
2πnk(nc+1− c)

∫ ∞

0
e
− t2(1−c)

2nk(nc+1−c)
1

(2π)
n−1
2

∫
S◦t

e−
‖x‖2

2 dxdt

=
√

1− c√
2πnk(nc+1− c)

∫ ∞

0
e
− t2(1−c)

2nk(nc+1−c) γn−1(S◦t )dt

=
1√
2πσ

∫ ∞

0
e
− t2

2σ2 γn−1(S◦t )dt,

where

σ2 =
nk(nc+1− c)

1− c
.

This completes the proof. �

Note that σ2 grows with c from nk to infinity in the interval [0,1) . Thus W (Aa)
grows with c and tends to 1

2 as c → 1, that is, as the vertex gets sharper.
We will calculate lower bounds for W (Aa) for fixed c , under certain conditions

on the relationship between degree k and dimension n . For this we need a lower bound
for the gaussian measure of simplices.
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LEMMA 2.2. If S◦t denotes the zero-centered n− 1 -dimensional simplex of size
t ,

γn−1(S◦t ) �
(

1− e
− t2

2n(n−1)

) n
2

.

Proof. Note that S◦t is the orthogonal projection onto S of S+
t = co{tei : i =

1, . . . ,n} , the convex hull of te1, . . . ,ten . Thus

S◦t = co

{
t

(
ei − 11

n

)
: i = 1, . . . ,n

}
.

This set is a simplex which contains an n− 1-dimensional ball of radius t√
n(n−1)

:

indeed, the points on the boundary of S◦t closest to the origin are

wj = ∑
i
= j

ait

(
ei − 11

n

)

with ∑i
= j ai = 1 and minimizing the norm; but

∥∥∥∥∥∑i
= j

ait(ei− 11
n

)

∥∥∥∥∥
2

=

〈
∑
i
= j

aitei− t
n

11, ∑
k 
= j

aktek − t
n

11

〉

= ∑
i
= j

a2
i t

2− 2t2

n ∑
i
= j

ai +
t2

n

= ∑
i
= j

a2
i t

2− t2

n
,

which is minimal when all ai are 1
n−1 . Thus the norm is

√
t2

n(n−1)
=

t√
n(n−1)

, and wj = ∑
i
= j

t
n−1

(
ei − 11

n

)
.

S◦t may be described as the projection over S of the intersection of half-spaces given
by the functionals φ j(x) = 〈x,wj〉 , for j = 1, . . . ,n :

S◦t =
n⋂

j=1

PS

{
x ∈ R

n : φ j(x) � t√
n(n−1)

}
⊃

n⋂
j=1

PS

{
x ∈ R

n : |φ j(x)| � t√
n(n−1)

}
.

To calculate a lower bound for γn−1(S◦t ) we use the Gaussian correlation inequality [9],
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[5], [4]. Thus

γn−1(S◦t ) �
n

∏
j=1

γn−1

(
PS

{
|φ j| � t√

n(n−1)

})

=
n

∏
j=1

γn

{
|φ j| � t√

n(n−1)

}

=

[
1√
2π

∫ t√
n(n−1)

− t√
n(n−1)

e−
s2
2 ds

]n

�
(

1− e
− t2

2n(n−1)

) n
2

,

where in the last line we have used the well-known bound for a N(0,1) normal random
variable X

P{|X |� α} �
(

1− e−
α2
2

) 1
2

. �

We now have the following.

THEOREM 2.3. If c > 0 and (kn)n∈N a sequence of natural numbers such that

lim
n→∞

lnn
kn

= 0,

then for every ε > 0 there is an nε ∈N such that for all n � nε and k � kn , the measure
of polynomials attaining a local maximum at the vertex a is

W (Aa) >
1
2
− ε.

Proof. We have

W (Aa) =
√

1− c√
2π
√

nk(nc+1− c)

∫ ∞

0
e
− t2(1−c)

2nk(nc+1−c) γn−1(S◦t )dt.

Thus

W (Aa) �
√

1− c√
2π
√

nk(nc+1− c)

∫ ∞

0
e
− t2(1−c)

2nk(nc+1−c)

(
1− e

− t2
2n(n−1)

) n
2

dt.

Now, setting u = t
√

1−c√
nk(nc+1−c)

,

W (Aa) � 1√
2π

∫ ∞

0
e−

u2
2

(
1− e

− k(nc+1−c)
2(n−1)(1−c) u

2
) n

2

du.
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Now, clearly (
1− e

− k(nc+1−c)
2(n−1)(1−c) u

2
) n

2

is bounded by 1. We prove that it converges pointwise to 1, and apply Lebesgue’s
dominated convergence theorem in our lower bound for W (Aa) . To see the pointwise
convergence to 1 consider k � kn and write

Cn,k = e
− k(nc+1−c)

2(n−1)(1−c) u
2
,

we have

(1−Cn,k)
n
2 = (1−Cn,k)

− 1
Cn,k

−nCn,k
2 (∗)

and note that nCn,k → 0: applying ln,

ln(nCn,k) = lnn− k(nc+1− c)
2(n−1)(1− c)

u2

= −k

[
(nc+1− c)

2(n−1)(1− c)
u2− lnn

k

]
→−∞, for k → ∞ and

lnn
k

<
lnn
kn

→ 0.

Thus in (*) (1−Cn,k)
n
2 → e0 = 1. We then have

W (Aa) � 1√
2π

∫ ∞

0
(1−Cn,k)

n
2 e−

u2
2 du → 1

2
.

This completes the proof. �

THEOREM 2.4. If c = 0 and (kn)n∈N a sequence of natural numbers such that

lim
n→∞

n lnn
kn

= 0,

then for every ε > 0 there is an nε ∈N such that for all n � nε and k � kn , the measure
of polynomials attaining a local maximum at the vertex a is

W (Aa) >
1
2
− ε.

Proof. The proof is as that of the previous theorem, but note that here we have

Cn,k = e
− k

2(n−1) u
2
,

thus, when applying ln,

ln(nCn,k) = lnn− k
2(n−1)

u2

= − k
n

[
nu2

2(n−1)
− n lnn

k

]
→−∞. �
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