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Abstract. Let �ω = (ω1, . . . ,ωm) be a multiple weight and {Ψ j}m
j=1 be a sequence of Young

functions. Let M
�Ψ
R be the multilinear strong maximal function with Orlicz norms which is

defined by

M
�Ψ
R (�f )(x) = sup

R∈R,R�x

m

∏
j=1

‖ f j‖Ψ j ,R,

where the supremum is taken over all rectangles with sides parallel to the coordinate axes. If
Ψ j(t) = t , then M�t

R coincides with the multilinear strong maximal function MR defined and
studied by Grafakos et al. In this paper, we first investigated the Fefferman-Stein type inequality

for M
�Ψ
R when �ω satisfies the A∞,R condition. Then, for arbitrary �ω � 0( each ω j � 0), the

Fefferman-Stein type inequality for the multilinear strong maximal function MR associated
with rectangles will be given.

1. Introduction

1.1. Hardy-Littlewood and strong maximal functions

Let f be a locally integrable function defined on R
n and Q be the family of all

cubes in R
n with sides parallel to the coordinate axes. Let M be the classical Hardy-

Littlewood maximal function defined by

M f (x) = sup
Q∈Q,Q�x

1
|Q|

∫
Q
| f (y)|dy. (1.1)

It was well known that M is of weak type (1,1) and strong type (p, p) for p > 1.
Moreover, for arbitrary weight ω , it was shown by Fefferman and Stein [6] that M
enjoys the following property:

ω({x ∈ R
n : M f (x) > t}) � C

t
‖ f‖L1(Rn,Mω), t > 0. (1.2)

Mathematics subject classification (2010): 42B20, 47G10.
Keywords and phrases: Multilinear strong maximal function, Fefferman-Stein type inequality, Young

function, multiple weights.
The third author was supported partly by NSFC (No. 11871101, 11671039) and NSFC-DFG (No. 11761131002).

c© � � , Zagreb
Paper MIA-22-38

539

http://dx.doi.org/10.7153/mia-2019-22-38


540 J. ZHANG, H. SAITO AND Q. XUE

By interpolation, it gives immediately that

‖M f‖Lp(Rn,ω) � C‖ f‖Lp(Rn,Mω), p > 1. (1.3)

Inequalities in (1.2) and (1.3) are all called the Fefferman-Stein type inequalities.
Instead of cubes, more general geometry structure has been assigned to the opera-

tor M . For example, if the family Q is replaced by R , the family of all rectangles in
R

n with sides parallel to the coordinate axes, then the maximal function becomes the
well known strong maximal function as follows :

MR f (x) = sup
R∈R,R�x

1
|R|

∫
R
| f (y)|dy.

In 1935, a maximal theorem for MR was given by Jessen, Marcinkiewicz and Zygmund
[11]. They showed that MR is not of weak type (1, 1) , which is quite different from
the properties of the classical Hardy-Littlewood maximal function. As a replacement
of the weak (1, 1) estimate, it was demonstrated in [11] that MR enjoys the following
end-point behavior property:

∣∣{x ∈ R
n : MR f (x) > λ}∣∣�n

∫
Rn

| f (x)|
λ

(
1+

(
log+ | f (x)|

λ

)n−1
)

dx. (1.4)

In 1975, Córdoba and Fefferman [5] gave a geometric proof of (1.4) and established
a covering lemma for rectangles. Their covering lemma is quite useful by the reason
that it overcomes the failure of the Besicovitch covering argument for rectangles with
arbitrary eccentricities. Subsequently, achievements have been made to obtain the cor-
responding weighted version of (1.4) . Among those achievements are the nice works
of Bagby and Kurtz [1], Capri and Gutiérrez [2], Mitsis [15], Luque and Parissis [14].
Some related works can be found in [3, 4]. In [14], Luque and Parissis formulated a
weighted version of Córdoba-Fefferman’s covering lemma and showed that the follow-
ing weighted inequality holds for ω ∈ A∞,R :

ω
({x ∈ R

n : MR f (x) > λ})�ω,n

∫
Rn

| f (x)|
λ

(
1+

(
log+ | f (x)|

λ

)n−1
)

MRω(x)dx.

(1.5)
Recently, for n = 2, the condition ω ∈ A∞,R in (1.5) was extended to any weight ω � 0
by Saito and Tanaka [16] as follows:

ω({x ∈ R
2 : MR f (x) > t}) � C

∫
R2

| f (x)|
t

(
1+ log+ | f (x)|

t

)
W (x)dx, t > 0,

where W = MRMQω and the constant C > 0 does not depend on ω and f .
Still more recently, Tanaka [17] further essentially extended the results in [16] to

higher dimensions. We summarize the results in [17] as follows:

THEOREM A. ([17]) For p > 1 and any weight ω defined on R
n , there exists a

constant C > 0 which does not depend on ω and f , such that the following inequality
holds

ω({x ∈ R
n : MR f (x) > t})1/p � C

t
‖ f‖Lp(Rn,W), for t > 0 (1.6)
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where W = MRMn−1
R . . .M1

Rω and Mc
R (c = 1, . . . ,n−1) is the strong maximal oper-

ator with the complexity c defined in Section 2.

1.2. Multilinear strong maximal functions

In order to state more clearly, we first introduce one definition.

DEFINITION 1.1. (Multilinear strong maximal function with Orlicz norms, [12])
Let �f = ( f1, . . . , fm) be an m-dimensional vector of locally integrable functions. The
multilinear strong maximal function with Orlicz norms is defined by

M
�Ψ
R (�f )(x) = sup

R∈R,R�x

m

∏
j=1

‖ f j‖Ψ j ,R,

where {Ψ j}m
j=1 is a sequence of Young functions and the supremum is taken over all

rectangles with sides parallel to the coordinate axes.

REMARK 1.2. In particular, if Ψ j(t) = t , for all t ∈ (0,∞) and all j ∈ {1, . . . ,m} ,

M
�Ψ
R coincides with the multilinear strong maximal function MR introduced and stud-

ied by Grafakos et al. [7] in 2011. The authors [7] demonstrated that MR still enjoys
a similar endpoint L logL type estimate as follows: for any λ > 0

∣∣∣{x ∈ R
n : MR(�f )(x) > λ m}∣∣∣�m,n

( m

∏
i=1

∫
Rn

Φ(m)
n

( | fi(y)|
λ

)
dy

)1/m

, (1.7)

where Φn(t) := t[1 + (log+ t)n−1] (t > 0) and Φ(m)
n is m-times compositions of the

function Φn with itself. Furthermore, the exponent is sharp in the sense that we cannot

replace Φ(m)
n by Φ(k)

n for k � m−1.

This paper will be devoted to investigate the Fefferman-Stein type inequalities for
the multilinear strong maximal functions. The first main results of this paper concerns
with the multilinear strong maximal functions with Orlicz norms M

�Ψ
R .

THEOREM 1.1. Let 1 < p1, . . . , pm < ∞ such that 1
p = ∑m

j=1
1
p j

. Assume that R

is a basis and {Ψ j}m
j=1 is a sequence of Young functions such that Ψ j ∈ B∗

p j
. Let

�ω = (ω1, . . . ,ωm) and ν�ω = ∏m
j=1 ω p/p j

j ∈ A∞,R , then there exists a constant C > 0
such that for all nonnegative functions f , the following inequality holds∫

Rn
[M �Ψ

R (�f )(y)]pν�ω(y)dy � C
m

∏
j=1

‖ f j‖p
Lp j (MRω j)

. (1.8)

Note that in Theorem 1.1, we need to assume that ν�ω ∈ A∞,R . For arbitrary
weights, the methods to establish the Fefferman-Stein type inequalities are quite dif-
ferent from Theorem 1.1. Moreover, MRω j in (1.8) will be replaced by more larger
maximal functions. For simplicity, we only consider the multilinear strong maximal
operator MR .
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THEOREM 1.2. Let 1 < p1, . . . , pm < ∞ and ∑m
i=1

1
pi

= 1
p . Let �ω = (ω1, . . . ,ωm)

and suppose that each ω j is an arbitrary weight. Denote by Wj =MRM n−1
R . . .M 1

Rω j

and Set ν�ω = ∏m
j=1 ω p/p j

j . Then, there exists a positive constant C which does not
depend on ω j and f j , such that the following inequality holds

ν�ω

(
x ∈ R

n : MR(�f )(x) > tm
)1/p

�
m

∏
j=1

C
t
‖ f j‖Lp j (Rn,Wj).

By interpolation, Theorem 1.2 yields the following corollary.

COROLLARY 1.3. Let 1 < p1, . . . , pm < ∞ and ∑m
i=1

1
pi

= 1
p . Given �ω = (ω1,

ω2, . . . ,ωm) , where each ω j is an arbitrary weight. Set ν�ω = ∏m
j=1 ω p/p j

j and Wj =
MRM n−1

R . . .M 1
Rω j . Then, there exists a positive constant C which does not depend

on ω j and f j , such that the following inequality holds

∫
Rn

[MR(�f )(y)]pν�ω (y)dy � C
m

∏
j=1

‖ f j‖p
Lp j (Rn,Wj)

(1.9)

2. Notions and preliminaries

First, we give the definitions of two kinds of maximal functions.

DEFINITION 2.1. (Multilinear maximal operator with cubes, [13]) Given �f =
( f1, f2, . . . , fm) , we define the maximal operator M by

M (�f )(x) = sup
Q�x

m

∏
j=1

1
|Q|

∫
Q
| f j(y)|dy,

where the supremum is taken over all cubes Q containing x , with sides parallel to the
coordinate axes .

DEFINITION 2.2. (Strong maximal operator with complexity c , [17]) Let c = 1,
2, . . . ,n . We say that the set of rectangles R in R

n have the complexity c whenever the
side lengths of R are exactly α1 or α2 . . . or αc for varying α1 , α2 ,. . . or αc > 0. That
is, the set of rectangles with complexity c is the c-parameter family of rectangles. For
a locally integrable function f on R

n , the strong maximal operator with complexity c
is defined by

Mc
R( f )(x) = sup

R∈Rc,R�x

1
|R|

∫
R
| f (y)|dy,

where Rc is the set of all rectangles in R
n , with sides parallel to the coordinate axes

and having the complexity c .

Then we can define the multilinear setting of it. That is,
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DEFINITION 2.3. (Multilinear strong maximal operator with complexity c)
Let c = 1,2, . . . ,n , and �f = ( f1, . . . , fm) be an m-dimensional vector of locally inte-
grable functions, the strong maximal operator M c

R(�f ) is defined by

M c
R( f )(x) = sup

R∈Rc,R�x

m

∏
j=1

1
|R|

∫
R
| f j(y)|dy, (2.1)

where Rc is the set of all rectangles in R
n , with sides parallel to the coordinate axes

and having the complexity c .

REMARK 2.4. If c = n , it is easy to check that Mc
R coincides with the strong

maximal function MR , and M c
R coincides with the multilinear strong maximal opera-

tors MR .

2.1. Basic facts about weights

For 1 < p < ∞ , a weight ω associated with R is said to satisfy the Ap,R condi-
tion, if it holds that

sup
R∈R

(
1
|R|

∫
R

ωdx

)(
1
|R|

∫
R

ω1−p′dx

) p
p′

< ∞.

In the case p = 1, we say that ω satisfies the A1,R condition if MRω(x) � cω(x)
for almost all x ∈ R

n . It follows from these definitions and the Hölder inequality that
Ap,R ⊂ Aq,R if 1 � p � q < ∞ . Then it is natural to define the class A∞,R by set-
ting A∞,R =

⋃
p>1 Ap,R . Recall that ω is said to satisfy Condition (A) [8] if there

are constants 0 < λ < 1, 0 < c(λ ) < ∞ such that for all measurable sets E , it holds
that ω({x ∈ R

n : MR [χE ](x) > λ}) � c(λ )ω(E). A basic fact is presented by Hagel-
stein, and Parissis [9] that the asymptotic estimate for the constant in Condition (A) is
equivalent to ω ∈ A∞,R .

The multiple version of Ap,R is defined as follows:

DEFINITION 2.5. ([7]) Let 1 � p1, . . . , pm < ∞ . Given �ω = (ω1, . . . ,ωm) , set

ν�ω = ∏m
i=1 ω p/pi

i . The m-tuple weight �ω associated with R is said to satisfy the A�p,R
condition if

sup
R∈R

(
1
|R|

∫
R

ν�ωdx

) m

∏
j=1

(
1
|R|

∫
R

ω
1−p′j
j dx

) p
p′j < ∞.

When p j = 1, ( 1
|R|
∫
R ω

1−p′j
j )1/p′j is understood as (infR ω j)−1 .
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2.2. Basic facts about Young functions

First, we need to recall some definitions and basic facts about Young functions.

DEFINITION 2.6. ([7]) A Young function is a continuous, convex, increasing func-
tion Φ : [0,∞] → [0,∞] with Φ(0) = 0 and Φ(t) → ∞ as t → ∞ . For 0 < ε < 1 and
t � 0, the properties of Φ easily imply that

Φ(εt) � εΦ(t).

The Φ-norm of a function f over a set E with finite measure is defined by

‖ f‖Φ,E = inf

{
λ > 0 :

1
|E|

∫
E

Φ(
| f (x)|

λ
)dx � 1

}
.

Associated with each Young function Φ , one can define its complementary function

Φ(s) = sup
t>0

{st−Φ(t)}, for s � 0.

It is well known that Φ-norms are related to the LΦ -norms via the following general-
ized Hölder inequality:

1
|E|

∫
E
| f (x)g(x)|dx � 2|| f ||Φ,E ||g||Φ,E .

DEFINITION 2.7. (Strong B∗
p condition, [12]) Let 1 < p < ∞ . A Young function

Φ is said to satisfy the strong B∗
p condition, or Φ ∈ B∗

p , if there is a positive constant c
such that the following inequality holds

∫ ∞

c

Φn(Φ(t))
t p

dt
t

< ∞,

where Φn(t) := t[log(e+ t)]n−1 ∼ t[1+(log+ t)n−1] for all t > 0.

3. The F-S inequality with weights in A∞,R

In this section, we give the proof of Theorem 1.1, first we give two lemmas which
play important roles in our proof.

LEMMA 3.1. Let 1 < p1, . . . , pm < ∞ and 0 < p < ∞ such that 1
p = ∑m

j=1
1
p j

.

Assume that R is a basis and that {Ψ j}m
j=1 is a sequence of Young functions such that

Ψ j ∈ B∗
p j

, then, M
�Ψ
R is bounded from Lp1(Rn)×Lp2(Rn)× . . .×Lpm(Rn) to Lp(Rn) .

Proof. Let MΨ
R be the Orlicz maximal operator on R

n defined by

MΨ
R( f )(x) = sup

R∈R,R�x
‖ f‖Ψ,R,
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where the supremum is taken over all rectangles with sides parallel to the coordinate
axes.

Observing that for all x ∈ R
n and for all nonnegative functions �f = ( f1, . . . , fm) ,

multilinear Orlicz maximal function is controlled by the m-fold tensor product of the
Orlicz maximal function of each variable. That is,

M
�Ψ
R (�f )(x) �

m

∏
j=1

M
Ψ j
R ( f j)(x).

Since Ψ j ∈ B∗
p j

, it follows that every M
Ψ j
R is bounded on Lpj (Rn) ([12],Theorem 2.1).

This yields immediately that M
�Ψ
R is bounded from Lp1(Rn)×Lp2(Rn)× . . .×Lpm(Rn)

to Lp(Rn) . �

DEFINITION 3.1. ([7]) Let R be a basis and let 0 < α < 1. A finite sequence
{Ãi}M

i=1 ⊂ R of sets of finite dx -measure is called α -scattered with respect to the
Lebesgue measure if ∣∣∣∣∣Ãi∩

⋃
s<i

Ãs

∣∣∣∣∣� α|Ãi|, for all 1 < i � M.

LEMMA 3.2. ([7]) Let R be a basis and let ω be a weight associated with this
basis. Suppose further that ω satisfies condition (A) for some 0 < λ < 1 and 0 <
c(λ ) < ∞ . Then given any finite sequence {Ai}M

i=1 of sets Ai ∈ R , it holds that

(1) we can find a subsequence {Ãi}i∈I of {Ai}M
i=1 which is λ -scattered with respect

to the Lebesgue measure;

(2) Ãi = Ai , i ∈ I ;

(3) for any 1 � i < j � M +1

ω

(⋃
s< j

As

)
� c(λ )

[
ω

(⋃
s<i

As

)
+ ω

( ⋃
i�s< j

Ãs

)]
.

Now, we are in the position to give the proof of Theorem 1.1.

Proof. The argument we will employ here is essentially a combination of the ideas
from [7], [10], [12]. Let N > 0 be a large integer. We will prove the required estimate
for the quantity ∫

2−N<M
�Ψ
R (�f )�2N+1

M
�Ψ
R (�f )(x)pν�ω(x)dx

with a bound independent of N . First, for each integer k , |k|� N , there exist a compact
set

Kk ⊂
{
M

�Ψ
R (�f )(x) > 2k

}
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satisfying

ν�ω (Kk) � ν�ω ({M �Ψ
R (�f )(x) > 2k) � 2ν�ω(Kk)

and a finite sequence bk = {Bk
r}r�1 of sets Bk

r ∈ R with

m

∏
j=1

‖ f j‖Ψ j ,Bk
r
> 2k.

We set bk = /0 if |k| > N and

Ωk =

⎧⎨
⎩
⋃
r

Bk
r , |k| � N,

/0, |k| > N.

Observe that these sets are decreasing in k , i.e.,Ωk+1 ⊂ Ωk . We now distribute the
sets in

⋃
k bk over μ sequences {Ai(l)}i�1,0 � l � μ − 1, where μ will be chosen

momentarily to be an appropriately large natural number. Set i0(0) = 1. In the first
i1(0)− i0(0) entries of {Ai(0)}i�1, , i.e., for

i0(0) � i < i1(0),

we place the elements of the sequence bN = {BN
r }r�1 in the order indicated by the

index r . For the next i2(0)− i1(0) entries of {Ai(0)}i�1, , i.e., for

i1(0) � i < i2(0),

we place the elements of the sequence bN−μ . Continue in this way until we reach the
first integer m0 such that N−m0μ � −N , when we stop. For indices i satisfying

im0(0) � i < im0+1(0),

we place in the sequence {Ai(0)}i�1 the elements of bN−m0μ . The sequences {Ai(l)}i�1 ,
1 � l � μ−1, are defined similarly, starting from bN−l and using the families bN−l−sμ ,
s = 0,1, . . . ,ml , where ml is chosen so that N− l−mlμ � −N .

Since ν�ω ∈ A∞,R,ν�ω satisfies condition (A) , and we may apply Lemma 3.2 to
each {Ai(l)}i�1 for some fixed 0 < λ < 1. Then we obtain sequences

{Ãi(l)}i�1 ⊂ {Ai(l)}i�1, 0 � l � μ −1,

which are λ -scattered with respect to the Lebesgue measure. In view of the definition
of the set Ωk and the construction of the families {Ai(l)}i�1 , we can use assertion (3)
of Lemma 3.2 to obtain

ν�ω(Ωk) � c

⎡
⎣ν�ω(Ωk+μ)+ ν�ω

⎛
⎝ ⋃

iml �i<iml+1

Ãi(l)

⎞
⎠
⎤
⎦

� cν�ω (Ωk+μ)+ c
iml+1(l)−1

∑
i=iml (l)

ν�ω (Ãi(l))
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if k = N − l−mlμ . It will be enough to consider these indices k because the sets Ωk

are decreasing.

Now all the sets {Ãi(l)}im+1(l)−1
i=im(l) belong to bk with k = N− l−mlμ , and therefore

m

∏
j=1

‖ f j‖Ψ j ,Ãi(l) > 2k.

Hence, it follows that

∫
2−N<M

�Ψ
R (�f )�2N+1

M
�Ψ
R (�f )(x)pν�ω(x)dx � 2p ∑

k

2kpν�ω (Ωk) := I1

and then

I1 � C∑
k

2kpν�ω (Ωk+μ)+C
μ−1

∑
l=0

∑
i∈I(l)

ν�ω(Ãi(l))

(
m

∏
j=1

‖ f j‖Ψ j ,Ãi(l)

)p

= C2−pμ ∑
k

2kpν�ω(Ωk)+C
μ−1

∑
l=0

∑
i∈I(l)

ν�ω (Ãi(l))

(
m

∏
j=1

‖ f j‖Ψ j ,Ãi(l)

)p

.

If we choose μ so large that C2−μ p � 1
2 , and since everything involved is finite, the

first term on the right-hand side can be subtracted from the left-hand side. This yields
that ∫

2−N<M
�Ψ
R (�f )�2N+1

M
�Ψ
R (�f )(x)pν�ω (x)dx

� 2p+1C
μ−1

∑
l=0

∑
i∈I(l)

ν�ω(Ãi(l))

(
m

∏
j=1

‖ f j‖Ψ j ,Ãi(l)

)p

� 2p+1C
μ−1

∑
l=0

∑
i∈I(l)

ν�ω(Ãi(l))
|Ãi(l)|

(
m

∏
j=1

‖ f j‖Ψ j ,Ãi(l)

)p

|Ãi(l)|.

Since ν�ω = ∏m
j=1 ω p/p j

j , applying the Hölder inequality, we have

ν�ω (Ãi(l))
|Ãi(l)|

=
1

|Ãi(l)|
∫

Ãi(l)

m

∏
j=1

ω p/p j
j dx

� 1

|Ãi(l)|
m

∏
j=1

(∫
Ãi(l)

ω jdx

)p/p j

=
m

∏
j=1

(
ω j(Ãi(l))
|Ãi(l)|

)p/p j

.
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Thus, we have

2p+1C
μ−1

∑
l=0

∑
i∈I(l)

ν�ω(Ãi(l))
|Ãi(l)|

(
m

∏
j=1

‖ f j‖Ψ j ,Ãi(l)

)p

|Ãi(l)|

� 2p+1C
μ−1

∑
l=0

∑
i∈I(l)

m

∏
j=1

∥∥∥∥∥ f j

(
ω j(Ãi(l))
|Ãi(l)|

)1/p j
∥∥∥∥∥

p

Ψ j ,Ãi(l)

|Ãi(l)|

� 2p+1C
μ−1

∑
l=0

∑
i∈I(l)

m

∏
j=1

∥∥∥ f j (MRω j)1/p j
∥∥∥p

Ψ j ,Ãi(l)
|Ãi(l)|.

(3.1)

For each l , let E1(l) = Ã1(l) and Ei(l) = Ãi(l) \∪Ãs(l) , i > 1. Recall that the se-
quences a(l) = {Ãi(l)}i∈I(l) are λ -scattered with respect to the Lebesgue measure.
Hence, it holds that

|Ãi(l)| � 1
1−λ

|Ei(l)|, i > 1.

Therefore, (3.1) can be further controlled by

C
1−λ

μ−1

∑
l=0

∑
i∈I(l)

m

∏
j=1

∥∥∥ f j (MRω j)1/p j
∥∥∥p

Ψ j ,Ãi(l)
|Ẽi(l)|. (3.2)

Now since the family {Ei(l)}i,l consists of pairwise disjoint sets, we can therefore
apply Lemma 3.1 to estimate the inequality (3.2). Hence,

C
1−λ

μ−1

∑
l=0

∑
i∈I(l)

m

∏
j=1

∥∥∥ f j (MRω j)
1/p j

∥∥∥p

Ψ j ,Ãi(l)
|Ẽi(l)|

� C
∫

Rn
M

�Ψ
R

(
f1(MRω1)1/p1 , . . . , fm(MRωm)1/pm

)
(x)pdx

� C
m

∏
j=1

∥∥∥ f j(MRω j)1/p j

∥∥∥p

Lp j (Rn)
= C

m

∏
j=1

∥∥ f j
∥∥p

Lp j (MRω j)
. �

4. The F-S inequality with arbitrary weights

This section will be devoted to give the proof of Theorem 1.2. In order to demon-
strate this theorem clearly, we consider more general setting, the multilinear strong
maximal operator with complexity c . Theorem 1.2 follows immediately once the fol-
lowing estimate is proved:

ν�ω

(
x ∈ R

n : M c
R(�f )(x) > tm

)1/p
�

m

∏
j=1

C
t
‖ f j‖Lp j (Rn,Wj),

where c = 1,2 . . . ,n and Wj =M c
RM c−1

R . . .M 1
Rω j , j = 1,2, . . . ,m . The same selec-

tion procedure as in [17] will be used in our proof. We only consider the bilinear case,
the multilinear case can be obtained in the similar way easily. Moreover, we also need
the following lemma.
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LEMMA 4.1. ([13]) Let 1
p = 1

p1
+ 1

p2
+ . . .+ 1

pm
and ν�ω = ∏m

j=1 ω
p
p j
j , if 1 � p j <

∞ , then for arbitrary weights ω1, . . . ,ω j , it holds that

‖M (�f )‖Lp,∞(ν�ω ) � c
m

∏
j=1

‖ f j‖Lp j (Mω j).

Now, we give the proof of Theorem 1.2.

Proof. Notice that Theorem 1.2 holds for c = 1. In fact, when c = 1, Rc is the
set of cubes, then Theorem 1.2 follows by Lemma 4.1. We assume that this theorem
holds for c = m− 1 and then we shall prove it for c = m . With a standard argument,
we may assume that the basis Rm is the set of all dyadic rectangles (Cartesian products
of dyadic intervals). We further assume that, when R ∈ Rm , the sidelengths |Pi(R)|
decrease and

|P1(R)| = |P2(R)| = . . . = |Pm̂(R)| > |Pm̂+1(R)|.
For any compact set K ⊂ {x∈ R

n : M m−1
R (�f )(x) > t2} , there exist {Ri}M

i=1 ⊂ Rm such
that K ⊂⋃M

i=1 Ri and

2

∏
j=1

1
|Ri|

∫
Ri

| f j|dy > t2, j = 1,2, . . . ,M. (4.1)

First, relabel if necessary so that the R′
is are ordered in a way such that their long

sidelengths |P1(Ri)| decrease. We now give a selection procedure to find subcollection
{R̃i}N

i=1 ⊂ {Ri}M
i=1 .

Take R̃1
.=R1 and suppose that we have now chosen the rectangles R̃1, R̃2, . . . , R̃i−1 .

We select R̃i to be the first rectangle Rk occurring after R̃i−1 so that∣∣∣∣∣
i−1⋃
j=1

R̃ j ∩Rk

∣∣∣∣∣< 1
2
|Rk|, i = 2,3, . . . ,N.

Thus, R̃i enjoys the property that∣∣∣∣∣
i−1⋃
j=1

R̃ j ∩ R̃i

∣∣∣∣∣< 1
2
|R̃i|. (4.2)

Set Ω .=
⋃N

i=1 R̃i . We claim that

M⋃
i=1

Ri ⊂
{

x ∈ R
n : M m−1

R (1Ω,1Ω)(x) >
1
22

}
. (4.3)

Indeed, choose any point x inside a rectangle Rj that is not one of the selected rectan-
gles R̃i . Then, there exists a unique J � N such that∣∣∣∣∣

J⋃
j=1

R̃ j ∩Rj

∣∣∣∣∣� 1
2
|Rj|.
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Since, |Pl(R̃i)|� |Pl(Rj)| for l = 1,2, . . . ,m̂ and i = 1,2, . . . ,J , if R̃i∩Rj �= /0 , we have

Pl(R̃i)∩Pl(Rj) = Pl(Rj).

Therefore, we obtain

J⋃
j=1

R̃ j ∩Rj =
J⋃

j=1

(
m̂

∏
i=1

Pl(Rj)

)
×
(

n

∏
l=m̂+1

Pl(R̃i)∩Pl(Rj)

)

=

(
m̂

∏
i=1

Pl(Rj)

)
×

J⋃
i=1

(
n

∏
l=m̂+1

Pl(R̃i)∩Pl(Rj)

)
.

Hence, ∣∣∣∣∣
J⋃

i=1

(
n

∏
l=m̂+1

Pl(R̃i)∩Pl(Rj)

)∣∣∣∣∣� 1
2

∣∣∣∣∣
n

∏
l=m̂+1

Pl(Rj)

∣∣∣∣∣ .
Thanks to the fact that |Pm̂+1(Rj)| < |Pm̂(Rj)| , this implies that∣∣∣∣∣

K⋃
i=1

R̃i ∩R

∣∣∣∣∣� 1
2
|R|,

where R is a unique dyadic rectangle containing x and satisfies

|P1(R)| = |P2(R)| = . . . = |Pm̂(R)| = |Pm̂+1(Rj)|.
This proves (4.3), by the reason that such R should belong to Rm−1 . From this, we get

ν�ω

(
M⋃

i=1

Ri

)1/p

� ν�ω ({x ∈ R
n : M m−1

R (1Ω,1Ω)(x) > 1/22})1/p (4.4)

� C
2

∏
j=1

‖1Ω‖Lp j (Rn,Uj),

where Uj = M m−1
R M m−2

R . . .M 1
Rω j . Set E(R̃1) = R̃1 . For i = 2,3, . . . ,N , set

E(R̃i) = R̃i \
i−1⋃
j=1

R̃ j.

Then, the sets E(R̃i) are pairwise disjoint and by (4.2), it holds that

|E(R̃i)| � 1
2
|R̃i|, i = 1,2, . . . ,N. (4.5)

Thus,
2

∏
j=1

‖1Ω‖Lp j (Rn,Uj) =
2

∏
j=1

Uj(Ω)
1
p j �

2

∏
j=1

(
N

∑
i=1

Uj(R̃i)

) 1
p j

.
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Hence by (4.1), one may obtain that

2

∏
j=1

(
N

∑
i=1

Uj(R̃i)

) 1
p j

×1

�
2

∏
j=1

(
N

∑
i=1

Uj(R̃i)

) 1
p j

×
2

∏
j=1

1
t|R̃i|

∫
R̃i

| f j(y)|dy

� 1
t2

2

∏
j=1

(
N

∑
i=1

Uj(R̃i)
(

1

|R̃i|
∫

R̃i

| f j(y)|dy

)p j
) 1

p j

.

Note that

N

∑
i=1

Uj(R̃i)
(

1

|R̃i|
∫

R̃i

| f j(y)|dy

)p j

=
N

∑
i=1

(
1

|R̃i|
∫

R̃i

| f j|dy

(
1

|R̃i|
∫

R̃i

Ujdy

) 1
p j

)p j

|R̃i|

� 2
N

∑
i=1

(
1

|R̃i|
∫

R̃i

| f j|W
1
p j
j dy

)p j

|E(R̃i)|

� 2
∫

Rn
(Mm[ f jW

1/p j
j ])p jdy

� C
∫

Rn
| f j|p jWjdx.

Combining them together with (4.4) ,we have

ν�ω

(
M⋃

i=1

Ri

)1/p

� C
t2

2

∏
j=1

(∫
Rn

| f j|p jWjdx

)
,

where we have used (4.5), and the Lp -boundedness of Mm . Altogether, we obtain the
desired result. �
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