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CHARACTERIZATION OF OPERATOR CONVEX
FUNCTIONS BY CERTAIN OPERATOR INEQUALITIES

HIROYUKI OSAKA, YUKIHIRO TSURUMI AND SHUHEI WADA

(Communicated by I. Peri¢)

Abstract. For A € (0,1), let y be a non-constant, non-negative, continuous function on (0,eo)
and let Ty (y) be the set of all non-trivial operator means ¢ such that an inequality

V(AV,B) < y(A)oy(B)
holds for all A,B € B(H)"" . Then we have:
1. y is a decreasing operator convex function if and only if

D(y)={o|lha<o<V,}

2. y is an operator convex function which is not a decreasing function if and only if

Ly (w)={Vi}.

The first result is a weighted version of Ando and Hiai’s characterization of an operator mono-
tone decreasing function and these two results imply each other.

1. Introduction

A bounded operator A, acting on a Hilbert space H is said to be positive if
(Ax,x) > 0 for all x € H. We denote this by A > 0. Let B(H)" be the set of all
positive operators on H, and let B(H) ™ be the set of all positive invertible operators
on H.

A real-valued function f on (0,c0) is called operator monotone if 0 < A < B
implies f(A) < f(B). The two functions f(t) =¢* (s € [0,1]) and f(z) = logt are
well known examples of operator monotone functions.

In [8], Kubo and Ando developed an axiomatic theory concerning operator con-
nections and means for pairs of positive operators. That is, a binary operation ¢ acting
on the class of positive operators, (A,B) — A0B, is called an operator connection if the
following requirements are fulfilled:

(I) If A< C and B <D, then AcB < CoD.
(I) C(AGB)C < (CAC)o(CBC).
Mathematics subject classification (2010): 47A64, 47A63.
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) If A, \ A and B, \ B, then A,0B, \ A0B.
An operator mean is a connection satisfying the normalization condition:
Iv) 1ol =1.

Kubo and Ando showed that an affine order-isomorphism exists from the class
of operator connections onto the class of positive operator monotone functions, by the
correspondence ¢ — f5(t) = 1lo(t1).

It is well known that if f : (0,00) — (0,0) is operator monotone, then the trans-

pose f'(1) =1f(L), the adjoint f*(r) = ﬁ, and the dual f+ = % are also operator

monotone ([8]). Furthermore, we call f symmetric if f = f and self-adjointif f = f*.
It was shown in [8] that if f is symmetric with f(1) = 1, then the corresponding op-
erator mean exists between the harmonic mean ! and the arithmetic mean V. That is,
<o < V.

Let f be a non-negative continuous function f on (0,e0). It is said that f is
operator convex if f(AVB) < f(A)Vf(B) holds for all A,B € B(H)"". Itis also said
that f is operator monotone decreasing if A,B € B(H)™ satisfy A < B, then f(A) >
f(B) holds. It is known [1] that f is operator monotone decreasing if and only if it
is operator convex and numerically non-increasing. It is also well known that f is
operator monotone if and only if it is operator cancave (i.e., —f is operator convex).

In [1], Ando and Hiai gave a characterization of an operator monotone decreasing
function by means of certain operator inequalities. In this paper, we show a weighted
version of this result. To do this, for a non-negative continuous function y on (0,co)
and A € (0, 1), we consider the set T'; () of operator means ¢ such that the inequality

Y(AV,B) < y(A)oy(B)

holds for all A,B € B(H)*™ . Our main results (Theorem 3.2) are the following:
(1) v is a decreasing operator convex function if and only if

D(y)={c|h<o<V,}.
(2) vy is an operator convex function which is not a decreasing function if and only
if
Do (w) ={Vai}-
The first result is a weighted version of Ando and Hiai’s characterization of an
operator monotone decreasing function and these two results imply each other.

2. A-weighted means and operator convexity

From the theory of operator means, an operator mean ¢ is identified with an
operator monotone function ¢ +— 1ot on (0,0). Specifically, a non-negative value
d(lot)

dt =1
weight of ¢. Since 1 < 1ot <t forall r > 1, we have

d(1ot) < i r—1
dt li=1 St r—1

often indicates some properties of o (see [2]). We call this value the

1.
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DEFINITION 2.1. Let A € [0,1]. An operator mean o is called A -weighted if

d(lot)
dt =1

and is called non-trivial if the weight of ¢ isin (0,1).

Note that ¢ is the left trivial mean (AcB = A) if A =0 and the right trivial mean
(AoB)=Bif A =1.
In the rest of the paper, we consider a continuous function y satisfying

W(AV,B) < y(A)ow(B) 2.1)
forall A,B € B(H)"™" and for a certain operator mean ¢ . From the following result, it
is natural to assume that y is operator convex.

PROPOSITION 2.2. Let W be a non-negative continuous function on (0,e0). Then
the following are equivalent:
(1) y is operator convex;
(2) w(AV,B) < w(A)V, w(B) forall A,B € B(H)™™ and forall A € (0,1);
(3) w(AV,;B) < w(A)V, w(B) forall A,B € B(H)™™ and for some A € (0,1);
(4) w(AV,B) < y(A)oy(B) forall A,B € B(H)™ and for some A € (0,1) and

for some non-trivial operator mean ©.

Proof. Tt is sufficient to show (4) — (1). For every A,B € B(H)™™", we define
sequences by
A() = A, B() = B,

Ay = (A1 V122Bu1)Va (A1 Vi Byy),
B,=A+B—A,
for n > 1. Since
Ayl [ 22(1=2) AP+ (1-2)%] [Aus
B,| 7L2+(1—7L)2 2A(1=2) | |Ba

[ 2a(1-2) A+ (1-2)?])"[A
_[x2+(1—x)2 22(1-1) | [B]

g RO [ ]

the sequences {A,} and {B,} have the same limit AVB in the operator norm topology.

@ . We define sequences {A(} and {B™} by

Put y=

t=
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Al .— (A("_I)VlfyB("_l))VY(A(n_I)V),B(n_l)),

B™ = y(A) + y(B) — A,

These sequences tend to W (A)Vy(B) using the same argument as in the preceding
sequence.
It follows from the assumption that

V(An)

V((An-1V1-2Bn-1)Va(An-1V3Bu-1))
(An-1Vi_3Bn-1) 0 W(Ay-1VyBy-1)
(A
(B

NN

n=1V1-2Bn—1) Vy W(Ay-1VBy1)

n—1VaAn—1) Vy (A1 V3 By_1)
(V(Bu-1)oY(An-1)) Vy (W(An-1)0W(Bu-1))
(W(B1-1)Vyy(An-1)) Vy (W(An-1)VyW(Bu1))

(WA )Viy¥(Bu1)) Vy (WA 1)Vyp(B,1)) <A,

v
v
v

NN N

which implies that

W(AVB) = lim y(A,) < lim A" = y(A)Vy(B),

n—oo n—so0
where lim,,_,.. is the limit in the operator norm topology. [l

PROPOSITION 2.3. For A € (0,1), let ¥ be a non-negative, non-constant, con-
tinuous function on (0,0) and let ¢ be a non-trivial operator mean. Suppose that

V(AV,B) < y(A)oy(B)
forall A,Be B(H)™ . Then, ¢ is A-weighted.
LEMMA 2.4. For A € [0,1], let y be a non-negative continuous function on

(0,00) with a non-zero derivative at 1 and let & be a non-trivial operator mean. Sup-
pose that

W(AY,1B) < y(A)oy(B)
forall A,B € B(H)"". Then, o is A-weighted.

d(lot)
dt t=

WAV, B) < y(A)V,y(B)

Proof. Put y= " It follows from the fact ¢ < Vy that the inequality

holds forall A,B € B(H)*™"

Thus, it is sufficient to show the case ¢ = V. Moreover, since y'(1) # 0 and
v is operator convex by Proposition 2.2, we may assume that y(1) = 1 and hence
y(t) >0 forall t > 0.
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By assumption, the inequality

loy(r) —loy(l) _ y((1-A)+1A4) —y(1)
r—1 - r—1

holds for all # > 1, which implies that

. loy(r)—loy(l) d dy
1 =—(lot — —
tlﬁl t—1 dt( or) =1 dt li=1 dt lr=1
We also obtain
. loy(r)—loy(l) d dy
1 =—(lot — —
tlTnll t—1 dt( or) =1 dt li=1 dt lr=1
Therefore, dt(lat) dy| v l,Which implies the desired result. [

g dr di

=1 1=

Proof of Proposition 2.3. By Proposition 2.2, it is clear that y is operator convex
and is differentiable at 1. The case when y has a non-zero derivative at 1 is discussed
in Lemma 2.4. Therefore, we only consider the case when y has a zero derivative at
1. Considering the scalar multiple, we may assume that y(1) = 1.

d(lot .
Put o(t) =y(t+1)—1and y= (dt ) g We show that ¢ and V, satisfy the
t=
assumption of Lemma 2.4.
From the facts that y is a non-negative operator convex function and ‘2‘;’ =0,

¢ is a non-negative operator convex function with ¢(0) = 0. Thus, it follows from
[3] that ¢ can be written as ¢(r) = f(¢) by using a non-negative operator monotone
function f on (0,e). If f =0, then y =1 on [1,e), which implies ¥ =1 on (0,c0)
This contradicts the assumption. Therefore, f # 0 and

do df
°r — (1) + =L
dt li=1 F)+ dt =1

Furthermore,

©(AV,B)=y(AV,B+1)—1

=y((A+ 1)V, (B+1))—1
<y(A+1ow(B+1)—1
<YyA+1)Vyp(B+1)—1

= ¢(A)Vy9(B)

for A,B > 0. Now, it is obtained that ¢ and V satisfy the assumption of Lemma 2.4.
Hence, Vy is A-weighted, namely y=24. O

Now, we can characterize a non-negative operator convex function on (0,e0).
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COROLLARY 2.5. For A € (0,1), let ¥ be a non-constant, non-negative, contin-
uous function on (0,e0) and let T') (y) be the set of all non-trivial operator means ©
such that inequality (2.1) holds for all A,B € B(H)*™. Then, y is an operator convex
function if and only if

{ola<o< Vit 2T(y) 2{V .}

COROLLARY 2.6. For A € (0,1), let ¢ be a positive operator concave function
on (0,e0) with non-zero derivative at 1 and ¢(1) =1 and let ¢ be a non-trivial oper-
ator mean. Then, the following are equivalent:

(1) o is A-weighted;
(2) ¢(A)od(B) < ¢(AV,B) forall A,B € B(H)++;

(3) ¢*(A!3B) < ¢*(A)o*¢*(B) forall A,B € B(H)* ", where ¢*(x) = (¢(x 1)~

Proof. (1) — (2): Because o is A-weighted, we have o < V. This means that

¢(A)09(B) < ¢(A)V20(B) < 9(AV,B).

The last inequality follows from the operator concavity of ¢.

(2) — (1): Note that, because ¢ is non-constant positive operator concave on

1
(0,00), m is non-constant operator convex with a non-zero derivative at 1. From the
assumptions,
9(4)'o"9(B)”" > ¢(aV,B) !

holds for all A,B >0, where ¢* is the adjoint of &, so that Ac*B = (A~'cB~!)~!.
Hence, o* is A -weighted by Proposition 2.3. Because

d d

o is A-weighted.

(2) = (3):

We have

0(AV,B) > ¢(A)o¢(B) forall A,B € B(H)*
& 0" (A1, B) < 0" (A)o"¢*(B) forall A, B B(H)*". O

Because ¢ is operator concave, equivalently operator monotone, ¢* is operator
monotone and so operator concave, with ¢*(1) = 1.
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3. Characterization of operator convex functions

The following is a weighted version of [1, Theorem 2.1].

PROPOSITION 3.1. For A € (0,1), let ¥ be a non-negative continuous function
on (0,0). Then, the following conditions are equivalent:

(1) W is operator monotone decreasing;

(2) w(AV,B) < y(A)oy(B) forall A,B € B(H)"" and for all A-weighted opera-
tor means o ;

(3) W(AV;B) < w(A)#, y(B) forall A,B€B(H)™";

(4) w(AV,;B) < y(A)oy(B) forall A,B € B(H)™ and for some A -weighted op-
erator mean ¢ # V,,

1

where A#; B =AY (A=1BA=1) A1

Proof. We first demonstrate (1) — (2). It is sufficient to prove the case y > 0.

Since a mapping ¢ — ﬁ is an operator concave function on (0,0), we have

1 < 1 v 1
w(AV,B) ~ w(A) " y(B)

for A,B € B(H)"". This implies w(AV;B) < w(A)!, w(B) < w(A)oy(B).
The implications of (2) — (3) — (4) are trivial. Lastly, we demonstrate (4) —
(1). By Proposition 2.2, the operator convexity of  is obtained. Therefore, we have

(AV;LB—i—AVl_;LB)
2

V(AVB) =y

1
< FW(AVLB) + S y(AV, ;. B)

< y(A)Ty(B)

< oI—

forall A,B € B(H)"™™, where T is a symmetric operator mean such that 17 =
From the assumption ¢ <V, there exists 7o > 0 such that

lot+tol
- -

lotg+tgol  1Vyt0+1,V; 1 1+ ¢
1710 = 042-0 - /10-12-0 al _ 42-0’

which signifies that 7 < V. It follows from [, Theorem 2.1] that y is operator mono-
tone decreasing. [J

Combining the above results, our main theorem is obtained:
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THEOREM 3.2. For A € (0,1), let W be a non-constant, non-negative, continu-
ous function on (0,°0) and let T (y) be the set of all non-trivial operator means ©
such that the inequality

V(AV;B) < y(A)oy(B)

holds for all A,B € B(H)"*. Then, the following holds:
(1) v is a decreasing operator convex function if and only if

L(y)={o| L <o <V}

(2) y is an operator convex function which is not a decreasing function if and only
if
D (w) ={Vai}.

Proof. From (2) in Proposition 3.1 and Proposition 2.3, the first statement is true.
Next, we present the second one. Assume ¥ is operator convex and is not decreasing.
Then a relation T, (y) 2 {V, } holds by Proposition 2.2. If T, (v)\{V,} # 0, then
v is decreasing by (4) in Proposition 3.1, which contradicts the assumption. Hence,
L (W)\(V3} = 0.

Conversely, if T (y) = {V,}, then y is operator convex by Proposition 2.2.
From the first statement in this theorem, the operator convex function y with I'; (y) #
{0 | !4 <o <V,} isnotadecreasing function. [

It is known that a non-negative operator convex function y on [0,e0) with y(0) =
0 and y(1) =1 is strictly increasing. Therefore, the following is a direct result of the
preceding theorem.

COROLLARY 3.3. Let A € (0,1), and let G be a non-trivial operator mean. Sup-
pose that \ is a non-negative operator convex function on [0,00), with y(0) =0 and
y(1) = 1. Then, the following are equivalent:

1. o= V}L N
2. y(AV,B) < y(A)oy(B) forall A,B€ B(H)*™".

REMARK 3.4. In Theorem 3.2, the first statement implies the second one and can
be proven using Corollary 3.3 and the arguments from the proof of [1, Theorem 2.1].
Thus, these three statements (two statements in Theorem 3.2 and Corollary 3.3) are
equivalent.

4. Matrix 2-convex functions

If v is a non-negative 2-convex function on [0,e0) with w(0) =0, then v is a
C?-function on (0,0), by [7] (Cf. [4, Theorem 2.4.2]). Recall that y is said to be
2-convex if forall A,B € M>(C)* and A € [0,1] y(AA+ (1 —2A)B) < Ay(A)+ (1 —
A)y(B). Moreover, if y is non-constant, then it is strictly monotone increasing on
(0,00). Indeed, by [11, Theorem 2.2] there exists a monotone function f on (0,c0),
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such that y(r) =1 f(r) forall r > 0. Let us show that f(r) >0 for all 7 > 0. Assume
on the contrary that f(#y) = 0 for some 7y > 0. Then, since f is monotone, we have
f(@) =0 forall t € (0,5]. By [4, Theorem 2.4.2] (or [6, Theorem 6.6.52 (2)]), ¥ is
linear on (0,e0) so that y is constant zero, a contradiction. Then, for any 0 < x| < x7,
we have

v(x1) =x1f(x1) <x1f(x2)
<xnf(x)=vy(x).

Using this, we present an extension of Corollary 3.3.

PROPOSITION 4.1. Let A € (0,1), and let 6 be a non-trivial operator mean.
Suppose that y is a non-negative operator 2-convex function on [0,e0), with y(0) =0
and (1) = 1. Then, the following are equivalent:

(1) 6=Vy;
(2) w(AV,;B) < y(A)owy(B) for all positive definite 2 x 2 matrices A,B.

Proof. Ttis sufficient to demonstrate (2) — (1). From the argument in Proposition
2.2, it follows that y is a 2-convex function. Let P,Q be orthogonal projections in
M,(C) with PAQ = 0. Applying the inequality in the assumption to Ag := P+ €l
and B¢ := Q + €I, for an arbitrary € > 0, we obtain

V(Ae Vi Be) < y(Ae) 0 y(Be).

Because A; V), Be =PV, Q+¢elgy — PV, Q, W(A¢ V) Be) > y(PV, Q) ase—0
in the operator norm topology. Furthermore, because w(A:) \, W(P) = P, y(B¢) \,
v(Q) =0 as € — 0 in the strong operator topology and the operator mean is continuous
in it under the downward convergence, we have

y(PV, Q)<PoO. 4.1
Furthermore, P ¢ Q = aP + bQ by [8, Theorem 3.7], where a = inf f5(x), b =
lim )

X—>00 X

Choose two orthogonal projections as

P 10 0= cos? cosBsinO
©1o0]’ " |cos@sin® sin’6

, with fs denoting the representing function on (0,ce) corresponding to G .

} (0<9<g)

in the realization of the 2 x 2 matrix algebra in B(H). Then, PAQ =0 and

B (1—24)+2Acos?0 AcosOsin
V(P Vi Q>_W<{ AcosBsinb Asin’ @

Because y is continuous, letting 6 — 0 gives (4.1) as

‘ CTa=a)+a0)\ o] _ . [atb0
é‘%"’(PVlQ)_"’q 0 OD_{ookéli%PGQ_[o o]'
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Comparing the (1,1)-entries of both sides of the above inequality, we find that
I1<a+b. 4.2)

Furthermore, because fs is an operator monotone function, there exists a positive
Radon measure t on [0,e] such that

(t+1)x
—lox=a+bx+ T du(r),
fo) = tox=atber [ EEaua)
where a = lir(r)1+ fo(x) and b = lim ﬂ‘Tw Therefore,
X— X—o0

fc(l):a+b+/(0m)du(t): 1,

and hence y =0, by (4.2). Then, we have
fo(x)=a+bx, l=a+b.

It follows from Proposition 2.3 that A =b. [

Similarly, we have the following characterization of the A -weighted harmonic
mean.

PROPOSITION 4.2. Let y be a non-negative continuous function on [0,e0) with
y(1) =1 and limy_... Y(x) = +oo, and assume that A € (0,1). If a non-trivial operator
mean O satisfies

v(AWB) = y(A)oy(B)
for all positive definite 2 x 2 matrices A,B, then ¢ =!.

Proof. We have y(A!;B) > y(A)oy(B) for positive definite 2 x 2 matrices A, B
< Y (AV,B) < y*(A)o*y*(B) for positive definite 2 x 2 matrices A, B, where 6™ is
the adjoint of o, so that Ac*B = (A~'6B~1)~! and y*(x) = (y(x~!))~!. Thus, y*
is 2-convex by Proposition 2.2. Because y*(0) = lim,_o y*(x) =0 and y*(1) =1,
we have 6* =V, by Proposition 4.1. Therefore, o =!;. [
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