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HIGHER-DIMENSIONAL WEIGHTED KNOPP TYPE INEQUALITIES

FAYOU ZHAO AND LIQIN MA

(Communicated by L. E. Persson)

Abstract. We give a necessary and sufficient condition on weight pairs for a class of higher-
dimensional weighted Knopp type inequalities to hold. The corresponding result for the multi-
variate adjoint Hardy type operator is obtained.

1. Introduction

The classical one-dimensional Knopp inequality [3, Theorem 335, p.250]

/Omexp (%/Oxlnf(t)dt> dxge/owf(x)dx, for £ >0 1)

can be regarded as a continuous analogue of Carleman’s inequality, where the discrete
Carleman inequality [3, Theorem 334, p.249] is of the form

(alag---ak)l/kgeZak, for all a; > 0, )
1 k=1

M

k

and the constant e in (1) and (2) is the best possible.
The Knopp inequality is closely connected with the classical Hardy inequality

| (}C/Oxf(t)dtydxg (%)p/:fp(x)dx 3)

provided that f > 0 and 1 < p < eo. We usually denote by H the one-dimensional
Hardy operator of the form

HO)@ =+ [ fdr, x>0,

In fact, the one-dimensional Knopp inequality can be obtained when we replace f by
the function f /P in (3) and let p tend to infinity. From this observation, the Knopp
inequality may be regarded as a limit case (as p — o) of the Hardy inequality.
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620 F. ZHAO AND L. Ma
There are a whole slew of n-dimensional analogues of the Hardy operator. Here

are two natural extensions. We now let x = (x1,x2) € R% := (0,0) x (0,0) and dx =
dxdx, . Pachpatte [6] considered the two-dimensional Hardy operator given by

P xm/ / fO)dy, f>0

and proved that

2p
L )y as< (S25) [ s @

for 1 < p < eo. Taking p — oo and replacing f by fl/l’ in (4), Heinig, Kerman, and
Krbec [5] characterized two positive weights (here and in what follows, a weight w will
be a nonnegative locally integrable function) # and v for the following inequality

/ u(x)exp (P2(log f)) (x)dx < C / V() f(x)dx, )
R2 RZ
to hold if and only if for any oy, 0 > 0,
sup  y1y5? / / xy o) 00) 0 g < oo, ©6)
y1>0,y,>0 Y1 Jn

where w(x) = u(x)exp(P?(log(1/v)))(x). The authors [5] also pointed out that the
higher-dimensional result carries over in the same way. Precisely, the result similar to
(5) and (6) is also valid for the n-dimensional Hardy operator P" defined by

1 X1 Xn
= HZlek/o /0 f)dy, f>0, (7)

where x; >0 (1 <k<n), x=(x1,...,%), y=1,---,yn) and dy =dy; - - -dyy.
As another high-dimensional extension of the one-dimensional Hardy operator,
Christ and Grafakos [1] introduced the n-dimensional averaging operator on the ball

P"f(x)

Hf(x) = B 0 =) |/0‘x‘ y)dy, xe€R"\{0}, (8)

defined for positive functions f on R”, where B(0,r) is the ball of radius r > 0 cen-
tered at the origin in R”. In [1] they proved that for 1 < p < e

/n (A f(x))Pdx < (%)p/nfp(x)dx. 9)

There are many different ways to obtain the inequality (9) and to show the constant
(p/(p—1))? is sharp, see [2] and [4]. Dribek, Heinig and Kufner [2] obtained the
characterization for the n-dimensional Knopp inequality

[, u)exp(# (tog ) (9)ax < C [ v(x)f(x)dx
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with two positive weights « and v on R", which holds if and only if

w0 W)
sup?
>0 Jzr X[
where w(x) = u(x)exp(7 (log(1/v)))(x).
Throughout the paper we shall use the following notations: m € Z, ny € Z
for 1 <k<m, x=(x1,...,%p) ERM X ... XR™ y=(y1,...,ym) ERM x ... x R"™
and dy = dyy, - --dy; . The operators defined by (7) and (8) turn out to be enormously
different. For P"(f), f is defined on the rectangle [0,x;] x [0,x2] X ... X [0,x,] in
R". While, for 7 (f), f is defined on the n-dimensional Euclidean ball B(0, |x|). To
generalize these two kinds of operators, Lu, Yan and Zhao [7] gave the definition of the
Hardy operator .77, on higher-dimensional product spaces, where

(H 1B(0, |xx])| >/0|x1| '/B(mxml)f(y)dy, f>0,

and [T |x;| # 0. They [7] established the boundedness inequality for .7, on L” with
i=1
1< p<eoo:

o s trmsiorass (GE5) 7 L frion

Also, it is easy to check that

tim (,(£1/7)())" = exp(i (10g 1)) ().

p—oo

Inspired by the above work, it is natural to ask whether we can give a characteriza-
tion for the weighted multi-dimensional Knopp type inequality on higher-dimensional
product spaces. In this paper, we confirm this question and formulate our results as
follows.

THEOREM 1. Let f, U, V be positive measurable functions defined on R™ x
.. X R"™_ Define W by

W (x) = U(x) exp(#,(log %)) (x).
Then the inequality
/n o [ U@ exp (o (log f)) (¥)dx < C; / o[ V@ fEde  10)
R™ Rnm R™M

holds if and only if for any oy, ...,0, >0,

i W)
Ay = su t"kak/ / —dx< oo, 1
1 p H ¢ ‘X1‘>tl ‘Xm|>tm nj a]+1) ( )

1>0,1<k<m | Ly lxl
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Let oy > 0 for 1 < k < m. We define the analogous adjoint Hardy type operator

oy (f)(x)
H( 1BO: i) "k)/ﬂvl\mo \>”'/R"W\B<0| ) - D
- i TR [BO [y DI

A similar characterization is given for the higher-dimensional Knopp inequality with
the operator J¢ .

THEOREM 2. Let f, U, V be positive measurable functions defined on R™ x
x R™ . Define W* by

1
W*(x) =U(x)exp (%’j,;‘ (log V)) (x).
Then the inequality
/ [ U@exp( (logf) Wdx <G [ [ VfEdx  (12)
R Rrm R Rrm
holds if and only if for any ay,..., 04 >0
m _ W*
Ay:= sup ]z "‘k/ / %dx<oo. (13)
13>0,1<k<m j—1 b |<n Y| <tm Hj:l o[

Especially, when m =1 and n; = n, then .7£]* is the analogous adjoint Hardy type
operator JZ* given by

AN =TBORE[ Su) a0,

NG A Lk
) [B(O, [y ")
From Theorem 2, we have

COROLLARY 1. Let f, U, V be positive measurable functions defined on R".
The inequality

U(x)exp (A" (log ) (dx < C5 | V(x)f(x)dx
R’l R’l
holds if and only if for any o > 0,
Az = supf"‘/| Wn(_xo)t dx < oo,

>0 X< x|

e W*(x) =U(x)exp (%”* (log %)) (x).

It should be pointed out that Corollary 1 is new since it does not seem to have
previously appeared in the literature. We will give the proof of Theorem 1 in Section 2
and of Theorem 2 in Section 3.



WEIGHTED KNOPP TYPE INEQUALITIES 623

2. Proof of Theorem 1

Proof. For simplicity we only provide the proof in the case m = 2. The case m >3
presents only notational differences and does not require any new ideas.

We firstly assume that (11) holds and we shall prove (10). Writing Vf =g, we
find that (10) is equivalent to

Lo Wex)exp (Hallogg) (dr <t [ glx)a (14)
R”l+"2 Rn1+n2

where x = (x1,x2) € R x R™ dx = dxpdx;, and R"™2 = R™ x R™. To shorten
notation, write B(r) = B(0,r) for r > 0. By changing variables, we can write the left
hand side of (14) as

1
W (x)ex / / lo xz,xzdzdz)dx.
Joors W60 "(vnlvnz i) Iy g8l balza)dzadzy

. N/2 . . .
Here and in what follows, vy = 1-(1”7/\,/2) is the volume of the unit ball in RV and
wy—1 = Nvy denotes the area of the unite sphere Xy_; for any positive integer N > 2.

An easy calculation shows that for any o, 0p > 0

1
Viy Vi

/ / log(|z1|"™ |z2|*? )dzadz1 = — (01 + 0).
B(1) JB(1)

Hence the left hand side of (14) becomes

2

1
(0‘1+°‘2)/ W (x)ex / / lo II S| dzdzy |d
¢ - (x)exp (1) JB() g(] 11zl g(jx1]z1, |x2|z2))dzadzy |dx

an V"Z i=1

e(al +05)

< LW ([ ]l el baka)dzada ) dx
Vi, Vi, JRU™ B(1) JB(1)

where the last estimate follows by Jensen’s inequality. Furthermore, the last integral
above can be written in the polar coordinates form:

fo ke e

112
></ / [1s" %" g (t1512), 125225 dsadsidtrdtdo (2h)d o (2)d o (xh)d o (x)).
0 J0 =

/ / 0" W (X 0xdy) (15)
0 0

11 ny—1 11 ny—1

By Fubini’s Theorem and substitution #;s; = r;, we see that

o0 poo  pl 1 2
/0 /0 /O/OHt,-"”fls,-""a’*""*lW(tlx/l,tlez)g(tlslzll,t2s21/2)dszds1dt2dt1
i=1

S )
. o Iy 2
:/ / //Hl’i"’ L% g (r12), nb)W | —x), =xb | dsadsidrydr
o Jo Jo Jo i} s 82



624 F. ZHAO AND L. MA

o ri
(substituting — = 1;, ds; = ——'2d1',-)

l

- 2
—/ / / / "O"+""_1’L'_" %lo (112, bW (X, 1oxh)drdtdrydry .

2 =1

Substituting into (15) shows that
W (x) ex <7/ / logg )’Ia}’2)d}’2d}’1) dx
/R"l*"z TTizt [B(el)| Jvil<lal Jal<iol

061+062
—1 —1 / / npo no o
/ / / / / / M T R g(rZy, g ) M M %2
vnlan "1 1 n2 1 "1 1 n2 1

gy 1W(T1x1,’[2x2) , , , ,
/ / (o) gyaloa+D) dndtidrydrido(x;)do(x))do(zy)do(z))

elanto)
= g X
an Vng ,/]R"1+”2 ( )

W(y1,y2)
X foeg [ \x2|"2a2/ / ydyadyr | dx
( il allel [y 110Dy, 02D

e(al +062)
[ s,
Vi Vi, R™M T2

where in the last inequality we have used the condition (11).
Conversely, suppose that (14) holds, we shall show that (11) holds for the case
m = 2. Fixing 1,1 > 0, for x = (x1,x;) € R""™_ we take the piecewise function

Mgy Ixi| <11, x| <1,

( ) tl—nle—n2(1+a2)‘x2|—n2(l+a2)t2n2a2 |x1| < 1, |X2| > 1,
X) = —

8 tz—nze—n1(1+061)‘xl| n1(1+a1)t1n1a1 |x1| > t17 |X2| < t2,

efn1(1+061)7n2(1+062)‘x1|—nl(1+al)|X2‘_"2(1"‘0‘2)1‘1”105112”20‘2 |X1| > 1, |X2| > 1.

Obviously, g is radial and the right hand side of (14) is
c1/ / / / s I "z—lg(sl7S2)dS2ds1d0'(xl2)dg(x/l)

”l 1 )12 1

L) T oo ooty 0o poo 2 .
=C1 Wy —1 Wpy—1 (/ / —|—/ / —|—/ / —|—/ / )Hsin’_ g(s1,82)dsrdsy
0 0 0 1% n 0 n 1) i—1

e 2(lto)  om(ltor)  pm(l4on)-m(1+0p)
=CVn Vn, | 1+ + +

(05) [04] (04K0%)
=:Cy(n1,n,01,00).
Hence, the left hand side of (14) satisfies

Ci(ni,ny,00,00)

;/ W (x)ex <7/ / y17y2)dy2dYI>d
R T12_, |B(x)| Jvil<inl IY2\<|X2\
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L et

/ / e 1"2 llogg(rl,rg)drzdr1> dsydsdo(xy)do(x])

)11 1 n2 1

X ex
p <S1n1S2n2

-

where
I (x)
L(x
(X
Ly(x}
and

[ St sotaot)

"11"21/l

(5]
/ / Hs,"f W (s1x],525)E (s1,52)dsadsy,

1
//Hs DT W (51, 5035 E (51, 52)ds»dssy

tzj

(5]
//Hs T W (51, 5035 E (51,52 )ds»dsy

oo oo 2
= [ [Tl Wb s,
5t

niny 51 psy 2 o
E(s1,52) = exp /o/oHrl logg(ry,r2)drdr

Since each integral fz

31"152”2

on _ Li(x},x5)do(xy)do(x)) is positive, we have

Ci(ni,n2,00,00) / / 4(x],X5)do (xX)do (x)).

)11 1 )12 1

It is enough to estimate the term

Split the integral [

S1 82 L) 1 52 s1 [ S1 52
bbb b= Ll b=l
0 Jo 0 Jo 0 Jn t JO o Jn

and write

Ei(s1,52) =exp (

2
E>(s1,52) =ex
2(s1,52) ep(}}_[lk/

2

[1

k=1

52

/ / (X)) do () do (X,).

”l 1 )12 1

into four parts,

n 1 2 o B B
sn_li/o /0 H”?' "og(n "1 "z)drzd"1>7

82
Hr"z 110g( —ny ,—na(1+00) 2—n2(1+0£2) £"2%)drydr
1) i=

625

)
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E3(S1,S2) =exp ( rln'_llog(tz_"ze_nl(1+a1)"1_"1(1+a1)11n1m)d"zd”l> ,

fis [
il Sk Jo i
2
n 2 n
E4(S1aS2) = eXp (H TkA/ / H IOg (He 1+O(, 1+0¢1) ,OC,) drzdr1>
k=15 Ju Jn i

We have

oo oo 4
/o ni—1 n 1
Li(x7,x5) :/ / sitsy W (s51X],52%5 H (51,82)ds2ds;.
n Jn k=1

It is easy to get

tnltnz
El(Sl,Sz) = exp <ﬁ( nilogt —l’llegtz)) .
172

An elementary calculation shows that

ny np
EQ(Sl,SQ) = exp (SnlSn2 (nllogtl +nylogty +( ny — 1)(1 + OCQ))
152
1 \™M
+ (S—l> (—nllogtl +ny0plogty —ny(op + 1)logsy + (1 —np) (1 + ocg))> ,
1
ny_np
E3(s1,52) =exp (s"'s'” (nzlogtz +nylogty + (np — 1)(1+ al))
152

th\"
+ <S—2> (—nalogty +nyoylogty —ni (o + 1)logsy + (1 —np)(1 "’O‘l))) ,
2

2

E4(s1,52) = exp <Z(n,-(x,- logt; —ni(oy + 1) logs; + (1 —n;) (1 + OCi))
=1

fge 2
+s£'1S2nz (Z(l —n) (14 04) — nilogti)
1°2 =1

n\", &

+ (S_1> (Z(n, — 1)(1 + O(i) +nylogt +n2(oc2 + l)logsz — o0 logtz)
1 i=1
2

tH\"
+ (S—2> (E(nl —1)(1+ o) +nplogtr +ny(oy + 1)logs; —njoy 10gt1)> .
2 i=1

From these estimates we obtain that
nyog np0n

0

S1n1(051+1)S2}12(O(2+1)

X exp ((%)l (n1— 1)(1+ o) + (%)2 (n2— 1)(1 +a2)) .

Ex(sy,s7) = 62,2:1(1—"1')(1-*-06:')

~
Il ES
-
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Clearly we have

[ ] nhaddotdot)
an 1 n2 1

> (1= "z)(1+0¢1)t"10¢1tn20¢2 / W (x1,x2)
[x1|>t x| 210 ‘x1|n1 (oq+1) \x ‘nz (op+1)

d)Cdel
and this implies (11) by taking the supremum over all 71,7, > 0. O
3. Proof of Theorem 2

Proof. Theorem 2 can be proved in a similar way as Theorem 1. Hence, we only
point out some differences of the corresponding relations. It is easy to conclude that
(12) is equivalent to

/Rnﬁnz W*(x1,x2) exp (5" (logg)) (x1,x2)dx < C3/ g(xi,x)dx.  (16)

RrR™M +ny

Assume that (13) holds. For any o, 0 > 0,

oo / / log(|z1" [z2|") ng o
———-dzdzy = —+ —
Opy—10ny—1 Sy 21 |2 21 |21]" I-HXI‘Z ‘n2+0£2 o o’

then by using Jensen’s inequality, the integral becomes

Loy, W' (122 exp (85 (log)) (11, 32)dx

log(|z1|" [z2|"2g(|x1 |21, [x2]22))
. om W f\zﬂ}l f\zﬂ}l [ [T [z 2 T2 dzpdz d
=e % 2 X1,X2)€X X
RO ( Ly 2) p w,,lflwnzfl
00
My n (04X X121, |X2|
e wm m_HR2 / / / s(l 1|a1‘" 2 2)dzgdzldx.
Opy— 1Oy 1 — 21 izt Jz1| ™ 22|

By a similar argument as in Theorem 1, the last integral above is expressed by the polar
coordinates form:
J

o ke ey

//t1"1_1t2"2_1W*(tlx/17t2x’2) (17)
ny—1 0 0
/ / Hs"’ 1=Gig (11512, 1222 dsadsi diadin d6 (25)do (2,)d o () do ().

)1271 ny—1

Interchanging the order of integration and changing variables #;s; = r;, one has

o oo poo  poo 2
/0 /0 /1 /1 Htiniilsiniiliaiw*(tlx/l,lzx/z)g(tlslzll,tzszz/z)dSzdSldthtl
i=1

o0 poo  poo  poo 2
S T S r rn
=/ / / / [Tri tsi ' %g(rzl, rndy)W* | —=x|, =x) ) dsadsidradr
0o Jo J1 | ] S1 852
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ri
(substltutmg — =1, ds;i = pdri)
1

2

e[

= rn’_l oc,,L.oc, ! rlz/,rzz/ w* Tlx/,szl dtydtidrdry.
8 1 2 1 2

Substituting into (17) 1mphes that

/Rnﬁrn2 w* (xh)CQ)eXp(%* (logg)) (xl ,)Q)dx

_n_n o O
< e / foo oy
-1 P 3,

Jy [t e
W —1Wn, ny—1 Zy,-170 JO
W*(‘L’lxl,rzxz)

XH”k O(k/ / i= 1 e dtydtdrydrido(Zh)do(2))do(xh)do (x))
=1 2

"1 1 ny—1

_mom oo
=e o] %) 71 2
Wy —1Wpy—1

(Yh)’z)
L (bl [y ) ax
R+ l<bel Jval<hel [y |ya 27 *

o n 000
<e @ @ 7A2/ g(x)dx,
Wy —1 Wy —1 R

which conclude that (16) holds under the assumption of A, < eo.
On the other hand, we take the radial piecewise function

e 2t My %2 g [T x| 2T x| <1y, || <1,
glx) = e Mm% | x| x| > 1, | <6,
el T % [T o | T2 x| < 1y, || > 1o,
1% %|x |7O{lin1 |XQ‘70627"2 |x1| > 11, x| >t
with 11,/ > 0 and x = (x1,x,) € Rutn2
Obviously, the right hand side of (16) is

Cz/ / //srl”fls;z*lg(sl7S2)dszds1d6(x/2)d0'(x'1)
p Zn2,1 0 JO

nlfl

€2 Wy —1Wpy—1 , _
ny 2 (6 2
o0

=:Cy(ny,nz,00,00).

+2e7141)

Similar arguments as that of proof of Theorem 1, we have

Cy(ny,np,00,00) 2/ / Ji(s1,82)do(xy)do(x)),
n2 1

Zq 1

where Ji(s1,s2) is

o2 1=lgyml o
Ji(s1,52) = //s1 W(slxl,szxz)exp(alazsl 55

L L ) ean s
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4
—/ / sy lgm 1W (s1x], 82X H (s1,82)dsrds;.

By the tedious calculations without any technique, we obtain that
4 -0, —0 o [¢5)
o_m_m M t t
[TAss = 8 et (2- (1) (2)7),
=1 S1 1 IS2 2 2 S1 52

holds and then we have

Cz(nl,nz,al,az)Z/ / S1,S2)d6(x/2)d6(x/l)
an 1 )12 1
> ra @ *“2/ / _ Wraw)
e XodXq.
~ len Sl o [ 2o

Thus, we finish the proof by taking the supremum over all 71,2, > 0. [0
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