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FRACTIONAL ORDER HARDY–TYPE INEQUALITY

IN FRACTIONAL h–DISCRETE CALCULUS

SERIKBOL SHAIMARDAN

Abstract. We investigate the power weights fractional order Hardy-type inequality in the follow-
ing form: ⎛
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for 0 < α < 1 and 1 < p < ∞ in fractional h -discrete calculus, where C = 2
1
p α−1

(p−pα)
1
p

. For

h -fractional function we prove a discrete analogue of above inequality in fractional h-discrete
calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in
this case.
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[24] V. LAKSHMIKANTHAM AND A. S. VATSALA, Basic theory of fractional differential equations, Non-

linear Anal., 69, 8 (2008), 2677–2682.
[25] R. L. MAGIN, Fractional calculus in bioengineering, Begell House, 2006.
[26] A. B. MALINOWSKA AND D. F. M. TORRES,Generalized natural boundary conditions for fractional

variational problems in terms of the Caputo derivative, Comput. Math. Appl. 59, 9 (2010), 3110–3116.
[27] K. S. MILLER, AND B. ROSS, Fractional difference calculus. Univalent functions, fractional calcu-
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