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FRACTIONAL MAGNETIC SOBOLEV
INEQUALITIES WITH TWO VARIABLES

Z. GUO AND M. MELGAARD

(Communicated by I. Peri¢)

Abstract. A fractional magnetic Sobolev inequality with two variables and critical exponents is
considered in this paper, and the best constant in the inequality is determined. As an application
of the inequality, we establish an existence result for the ground state solutions to a fractional
magnetic critical system.

1. Introduction

Fractional magnetic problems are new. There are only a few results in the litera-
ture, such as [1, 2, 3, 4, 6, 9]. The so-called fractional magnetic Laplacian, which will
be defined below and denoted (—A)%, can be considered as a fractional counterpart of
the magnetic Laplacian (V —iA)?, with A : RV — RV being a vector potential. The
motivations for this kind of problems rely essentially on the Lévy-Khintchine formula
for the generator of a semigroup associated to a general Lévy process, which is more
appropriate for some mathematical models in finance. For more details, we refer to
d’Avenia and Squassina [4] and Ichinose [9].

Ambrosio and D’ Avenia [2] studied a nonlinear fractional Schrédinger equation
with magnetic field and a subcritical nonlinearity. Using variational methods and Lju-
sternick-Schnirelmann category, they got existence and multiplicity of solutions when
the parameter is small. Binlin, Squassina and Xia [3] considered a singularly perturbed
fractional Schrodinger equations involving critical frequency and critical growth in the
presence of a magnetic field. Via variational methods, they obtained the existence of
mountain pass solutions u, which tend to the trivial solution as € — 0. Fiscella, Pina-
monti and Vecchi [6] investigated the existence of multiple solutions for a boundary
value problem driven by the fractional magnetic Laplacian with a subcritical nonlinear
term, under two different sets of conditions on the nonlinear term which are dual in a
suitable sense. In a recent paper, d’Avenia and Squassina [4] proved the existence of
solutions to (—A)$u+u = |u|P~2u in R? for the subcritical and critical cases; therein
(—A)} is defined by the mid-point prescription (see below).

Mathematics subject classification (2010): 35R11, 35B25, 35B33, 35J61.
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In the present paper, we study a fractional magnetic Sobolev inequality with two

variables )
Ao (L, (sl + s + 21 )
RN

‘e—i(x—y)'j'olA((1—9)x+9y)d9u(x) —uly)

1.1
<[, — drdy (1.1
2

‘ 2

)eﬂ(x ¥)oJo A(1-0)x+6y)d6 )_V(y))

+ /RZN | — y|N+2s

where 0 < s < 1,N > 45,2} := ﬂ is fractional Sobolev critical exponent, Uy, L,

o,B,y>0,A: RN —RVNisa magnetlc vector potential which is a continuous function
with locally bounded gradient, A; 4 is a constant and u € D% (RY,C). Here D (RY,C)
is the completion of C*(RY,C) with respect to the so-called magnetic Gagliardo semi-
norm [-]ps given by

dxdy,

) 1
s e [ [0, () ()
[u]ps = > /RZN X — y[N+2s dxdy

N5 = (/]RN - |CC|1(3i(2§1)d§)

The scalar product in D% (RY,C) is

:

where

. -1
exs (e—z(x—y)'joA((1—9)x+9y)d6u(x) _ u(y)>
<uaV>Dj,‘ = RG/RZN x — y|N+2s

. (e—i<x—y>~./3A((1—9>x+ey>dev(x) _ v@)) dxdy.

Although [] p;, 1s a seminorm, by fractional magnetic Sobolev embeddings (see Lemma
3.5 in [4]), we can view []ps as a norm |- [|p; := []p; in space D5 (RN,C). As
Proposition 2.1 and 2.2 in [4], we can verify that D} (R",C) is a Hilbert space.

The fractional magnetic inequality is related to fractional magnetic Laplacian de-
fined by

u(x) _ei(xfy)'folA((176)x+6y)d6u(y>d RN
y, xeR".

—A)u(x) =cyy lim
( )A ( ) N, e—0* e (x) |x_y|N+2s

For N =3 and with mid-point presciption, the fractional magnetic Laplacian was stud-
ied in [4]. More precisely, d’ Avenia and Squassina [4] considered the operator

(—A)Au( )—CN\ lim u(x) l(x y)A(Xﬂ)u y)

dy, xeR3.
N
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The operator (—A) treated in this paper can be regarded as a modification of the
above-mentioned operator involving mid-point prescription.

Let Z5(RN,C) := D5 (RY,C) x D5 (R",C), endowed with norm ||(u7v)H_2@X =
HuH%z + Hv||%)2. For similicity, we denote |ul>: := ([gn \u|2§)1/2§. Setting Sy =
¢N,sAs.4/2, then (1.1) is equivalent to the following minimization problem

11, )15
Si= inf Zi - (1.2)
(u,v)e24 (RN ,C) 2% 2% BY) 27
(u,v);IZ(O,O) (fRN (.ul‘u| +‘LL2‘V‘ +z’|u‘a‘v‘ ))
which can also be characterized as:
&zgwwm@, (1.3)

where A : RY — RY is a continuous magnetic vector potential with locally bounded
gradient, and

J = {(um) e%ﬁ(RN,C):/RN (u1\u|2§+uzlvl2?+Mu\°‘lvl’3) = 1}. (1.4)

For the special case without magnetic fields, i.e., A = 0, it was shown in [7] that, under
the condition

(H) = with o+ f =27,

Il<oa,B<2, if 45 <N <6s,
o,pB>1, if N> 6s,

So is attained by (U,V), which is radially symmetric decreasing with the following
decay condition
Ux),V(x) < C(1L+ x>, (1.5)

Our main result reads as follows:

THEOREM 1.1. If Condition (H) holds and A : RN — RN is a continuous func-
tion with locally bounded gradient, then S is achieved by a nontrivial element (Uy,Vy)
€ Z5(RV,C).

As an application, we study the existence of ground state solutions to the following
fractional magnetic critical system in a bounded set Q of RV

(—A)j‘u—llu:,ul\u|2§’2u—|—g—£/|u\°"2u|v|ﬁ,
(=A)3v = Aov = piolvs v+ BEuf v/ 2, (1.6)
u,v) € I4(Q,C) :=D; ,C) x D ,C),

Z5(Q,C) :=D5(Q,C) x D (Q,C

where Q is an open bounded Lipschitz domainin RV, 0 <s < 1,N >4s, A1, A2, 11, l2,
o,B,7y>0,A:RY — RV is a magnetic vector potential,

D}(Q,C):={ue D (RY,C):u=0 ae.in Q)
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equipped with the seminorm

1
2 2

o ‘e—i(x—y>~./'01A<<1—e>x+9y>d9u(x) —u(y)
5
S = - dXd ’
[ullps @) ) /RZN\(QCXQC) |x — y|N+2s g
and Q° is the complement of Q in RY. Since u =0 a.e. in Q°,
A0 )
dxd
/]RZN\(QCXQC) |x - y|N+2S g
‘efi(xfy%folA((1*9>x+93’)d9u(x) —u(y) ‘2
= /RZN x— y[NF2s dxdy.
We just denote HI/LHD;‘(Q) by

1
)e—i(x—y)'jblA((l—(—))x+6y)d6u(x) _ u(y))z :

CN,s
Julog = | 52 [, e dxdy

THEOREM 1.2. If Condition (H) holds, A : RN — RN is a continuous function
with locally bounded gradient and o ((—A)} —A1),0((—A) — A2) C (0,4-e0), where
o(+) is the spectrum of (-) in L*(RN,C), then the system (1.6) possesses a nontrivial
ground state solution.

2. Preliminaries
We begin with the following diamagnetic inequality.
LEMMA 2.1. (Diamagnetic inequality) For any u € H5(RN,C), we have
[[u(x)| — |u(x)|| < ‘e_i("_y)'-[olA((l_e)”e”deu(x) —u(y)|, forae x,yeRN (2.1)

and

[

oy, < Il (2.2)

which means |u| € D§(RV | R).

Proof. Fora.e. x,y € RV, it holds

. -1 _
Re (e 0o ALO=OR0098 i3] ) < ) ().
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Then, we have

()] = )| = O + )P — 200 ()
<) P+ ()] = 2Re (0 BAC 04000y (1))
2

b

= [t A= O 00a0y ) ()

which implies (2.1) and (2.2). O

The following lemma follows from Theorem 6.5 and Corollary 7.2 in [5] and
Lemma 2.1.

LEMMA 2.2. (Fractional magnetic Sobolev embeddings) The embedding
D%(RN,C) — L% (R, C)
is continuous. For any bounded domain Q in RN, the embedding
D (Q,C) — LP(Q,C)
is compact for 1 < p < 2%.

The fractional magnetic Laplacian (—A) : D5 (RY,C) — D;*(RV,C) is defined
by duality as

. -1
S e (e—z(x—y)'joA((1—9)x+9y)d9u(x) _ u(y)>
() = SRe [ e

: (e—i(x—y)'folA((1—9)X+9Y)d9v(x) - v(y)>dxdy

e, (u(x) _ ei(xfy)folA((lfe)erGy)dGu(y))
_7 G/RZN |x_y|N+2s

. (V(x> _ ei(x—y>~f01A<<176>x+ey)dev(y)>dxdy.

3. Proof of Theorem 1.1

Analogously to Lemma 4.6 in [4], we have the following lemma.

LEMMA 3.1. If Condition (H) holds, then Sy = Sp.
Proof. By (1.3) and (1.4), for any € > 0, there exists u,v € C(RY,R) such that

g <Sobes [ (b + el +21“0P) = 1. @)
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For any € > 0, consider the scaling

g (x) = e>N/2y (g) o ve(x) =Ny, (g) , xeRM

Then we have
, : 2
exs ’e—ts(x—y)JOlA[e((l—@)x+9y)]d9u(x) _ u(y)’

2 _
ey, = — -~ ey dxdy

and the following invariance of scaling holds true:

[[(uesve)ll zg = [1(u,v)ll 7,

lueloy = lulzy,  [veloy = [v]az,

[ el el = [ puiel?.
RN RN

A direct computation yields that

2 2
(e, ve)ll g5 — 11w, v) 1

ens JRe ((1 _ e—is(x—y)~j'0'A[e((l—@)x+9y)]d9)u(x)u(y)>

2 Jrw [ox — y|N+2s dxdy
- JRe ((1 _ e—ie(x—y),/gA[e((1—e)x+ey)]de)v(x)v(y)>
T o PENIESE dxdy
(1 —cos <e(x—y)~f01A[s((1 )+ 9y)}d9>>
=CNs /RZN x|V

~(u(x)u(y) +v(x)v(y))dxdy
=ICNs /2N Ye(x,y)dxdy
R

:CN,S/ Té‘ ()C,y)dXdy,
KxK

where K is compact support of |u| + |v|. Obviously, Ye(x,y) — 0 ae. in R?V as
€ — 0. Noticing that A is locally bounded, for x,y € K, we get that

1
1 —cos <£(x—y) / Ale((1-0)x+ 9y)]d0> < Clx—y|%
0
By the boundedness of u and v, for x,y € K, we have

C .
o, df x—yl <1,
IYe(x,y)| < {lx i

o -y =1
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Then, there exists a suitable constant C > 0 such that

. 1 1
el < Cmin{ i e i), woek.

The estimate

/ b(x,y)dxdy
KxK

-/ b(x,y)dxdy+ b(x,y)dxdy
(KxK)N{|x—y|<1} (KxK)N{|x—y|>1}

1 1
c/ —__d +c/ ——d
(i<t} JeV 2B (1) J2VB

< oo,

shows that b € L' (K x K). It follows from Lebesgue’s Dominated Convergence Theo-
rem that lim, o H(u&vg)H_z@X = H(u,v)||%jOY Thus, by (3.1), we derive that

. 2 2
Sa < lim (e, ve)|[ 2 = l.v)]13 < So+-e,
which implies that S4 < Sp. Lemma 2.1 guarantees the opposite inequality. [

Proof of Theorem 1.1. Since Sy is achieved by nontrivial element (U,V) €
Z5(RN R), the proof is completed by Lemma 3.1.  [J

4. Proof of Theorem 1.2

Define
)15 = ul3 o — 15
SA(Q) = ( )elélvf(g o (A 2,Q 2,Q .
u,v)ev, s * * b3
DT (o (ualul® + gl + Alulo]v]9)) 3

Similar to Lemma 2.4 (iv) in [8], we have:

LEMMA 4.1. S4(Q) is achieved by nontrivial element (u,v) € Z3(Q,C) if and
only if system (1.6) possesses a nontrivial ground state solution.

Choose 6 > 0 satisfying B4 C Q and consider
ue(x) == N(x)Ve(x),  velx) :=n(x)Ve(x),

where 1 is a cut-off function such that n|g; =1 and n|p;, =0,

Ue(x) = e "T°U (’gﬁ) L Ve)=e Y (g) .

Here, (U,V) € Z5(RY,R) attains Sy and satisfies (1.5). Then:
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LEMMA 4.2.
lue By < 1UeliBy +0("%), (4.1)
Vel < [IVellp, +0(™>), (4.2)
2 2 2%
|u5|2;‘,ﬂ 2 |U€|2§’RN + O(SN) = |U‘2;’RN + 0(8N)a (43)
2 % %
‘VS‘Z* > |V£‘2* RN + 0(8N) = ‘V‘2§7RN + O(SN)» (4.4)
/ Wb > / uevE v o) = / uvB + o(eV), 4.5)
Q RN
Ce® +0(eN=%), if N> 4s,
luel3.0. Vel3.0 > { Ce®[Ine[+O0(e%),  if N=4s, (4.6)
CeN=25 1 0(e%), if N <4s,

where C is a positive constant relevant to s.

Et)

Proof. Noticing that || - [|ps and |- |, gy are invariant under the scaling, the “=
signs in (4.3) —(4.5) follows. It is easy to see that the sign “>" in (4.3) —(4.6) hold.
For the sign “<” in (4.1) and (4.2), we are inspired by Proposition 21 in [10].

Claim 1. We have that

t\)lo;

\ug(x)—ug(y)|gCeN%%|x—y|7VxERN7yGB with [x—y| < 4.7)

In fact, for x € RY and y € B§ with [x—y| < g, suppose that z is any point on the
segment joining x and y, thatis, z=rtx+ (1 —¢)y for some 7 € [0,1]. Then,

)

5

o)
|zl = [y+t(x—y)| = [y| —tlx—y[ > 5—t§ >

It follows from Ug(z) < ce— 7" (1+ %)23‘71\1 that

Ve (2)| =|Ue(2) VN (2) + 1 (2) VU (2)]
2(@ YL )
((1 IZI> N2S+2|ZI< +IZI> (N=25)= 1)

0 ¢

<ce" 7 (1 +%) (1+ |Z|) e
N-—2s

<Ce 7,

which yields that

N_2s
Jue (x) — ue ()| = [Vue(2)[|x — y[ < Ce ™7 e —y].
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Claim 2. The following inequality holds true:
e (x) — ue(y)] < Ce™ = min{1, [x—y|}, Vx,y € BS. (4.8)

Indeed, for x,y € B§ with |[x —y| < g, (4.8) follows directly from (4.7). For x,y € B

with |x —y| > g, since Ug(x) < ce 5" (1+ ‘%‘)23‘71\1

, we see that

N—-2s .
ug(x) <Ug(x) <Ce 2, Vx € Bj. 4.9)
Then,

—2s

e (x) — e (v)| < e (x) + ue(y) < Ce 2,

which implies that (4.8).
Claim 3. For any x,y € B, there exists C > 0 such that

‘e_i(x_y)'-[olA((l_e)”ey)deug(x) — U (y)‘ < ce' min{1,|x—y|}. (4.10)
Since A is locally bounded, there exists C > 0 such that
e RHAI-000040 _t| < Cmin{1, v v}, (4.11)
Then, by (4.11), (4.9) and Claim 2, we derive that
’e—i(xfywo'A((l—e)x+ey>deu£ (%) — e (y)‘
< [ BAUI=0x05090 1 g (1)) + e () — e ()|
<Ce" 7 min{1,|x—y|},

which proves (4.10).
It follows from Claim 3 and 7| B, =0 that

—i(x—y)- fOIA((lfe)erey)deug () — e(y) |2

|e
dxd
/stXst x|V Y
- min{1, [x—y|*}
<ceV 25/ — -~ dxd
= R PR [ T (4.12)
2
N-2 x—y 1
<Ce S</|x|<25 ‘x_y‘N+2stdY+ x| <28 |x_y|N+2dedy>
[x—y|<1 [x—y|>1
=0(eN %),

Set

. 1)
L=1(x,y) ERzNIXEBg,yEB% and [x —y| < 5},

. )
G= {(x,y) ERzN:xEBg,yEBg and [x —y| > 5}
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For (x,y) € L, by (4.9), (4.11) and Claim 1, we have
‘efi(xfy)-folA((lfe)er(-)y)dGug (x) — ug(y)’
< ’e—i(x—y)'j'ol ((1-8)x+86y) de‘ e (x) — e (y)|
I )e—i(x—y)~_f01A((1—9)x+9y) _ 1‘ g ()| (4.13)

N—2s
< Jue (x) — ue(y)| + Clx—yle 2
N—-2s
<Ce 7 |x—yl.

Then, by (4.13), we obtain that

2
‘ —i(x—y)-JLA((1- 6)x+6y)d6u8(x)_u8(y) "
/ x—yV2s Y
—y? 4.14)
N-2 x| (
scem s / W<s To—ymam Uy
w-yl<$
:O(SN_ZS).
By (4.9), we see that
0 2s—N N_og 2s—N
Ue (U (y) < Ce~ 2 <1+|if—|) e =c<1+|z—|) (4.15)

forany x ¢ RV and y € By . For (x,y) € G, by (4.9) and (4.15), we deduce that

. . 2
‘e—t(x—y)~_[0lA((1—9)x+9y)d9u8 (x) — ug(y)’ .
G ‘x_y‘NJrZ\' Y
. . 2
‘e—z(x—y)'jolA((1—9)x+9y)d9U£(x) _ Ug(y)’ Ny
<
o x—yV2s Y

‘Us(y) — Ms(y)‘z
G ‘x_y‘N+2s

. 2/ ‘e—i(x—)’)'folA((l—e)x+9y)d9U£ (x) _ U (y)HUs (y) — ug(y)| dvdy
|x_y|N+2s

dxdy

‘e—i(x—y)'j'olA((1—9)x+9y)d9U8 (x) — Ue(y) 2

<

o x—yV2s dxdy

Uz (y) Ue(y) + UZ(y)

G — ‘N+2\dXd +4/ |x YN dxdy

+4
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‘e—i(x—y)'j'olA((1—9)x+9y)d9U8 (x) — Ue(y) 2
< dxd
o ey Y
1
N—2s
+Ce /\X\<56 - y‘N+2stdy

‘ —i(x—y)-fg A((1— 9)x+ey)deUe(x)_U£(y) dxd
/ |x_y|N+2s 4

+C8N_2s/ dC ‘€|_N_2Sd§
gl<s " Jigl>$

:

+C8N/ 14 C])N+25q ~N-254
IR A

‘e—i(x—y)'j'olA((1—9)x+9y)d9U£ (x) — Ug(y)’2

Sk e — y[Nras e
+CeNB eV / SV ag
l<2
‘e_i(x_y).j'olA((1—9)x+9y)d9Ug (x) — Ug(y))2
i e oy 06" )
It follows from (4.12), (4.14) and (4.16) that
' o~ i) Jo A((1-6)x+6y)do ue(x) — ue(y) |2
/]R " [ — y[Ni2s dxdy
‘ i) o A(1=6)x+63)d0 17 () — () |2
:/35th3 [ — y[Ni2s dxdy
‘e_,-(x_y).folA((l—9)x+9y)d6u8(x) —ue(y) ‘2
* /B%ng e — |2 o
A0 88 4, (1) ()
+2/]L [x — y|[N+2s dxdy

2

e—i(x—y)'j'olA((1—9)x+9y)d6u8(x) —ue(y)
+2/G oy dxdy

713

(4.16)
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' . 2
< ‘e““‘”'-/olA<<1—9)X+‘9Y>d9 Ue(x) = Ue (y)’ dxd
< /35ng x— y|N+2s Y
2
‘ —i(x—y) fo ((1-6)x+6y)do Ug ()C) - US (y) ) N—2s
+2/ |x_y|N+2s dXdy+0(8 )
. 2
‘ o—i0=)-Jo A((1-6)x+06y)d0 Ue(x) — Ue (y)) N-2s

g /RZN |x_y|N+2s dxdy+0(€ )7

which proves (4.1). Similarly, (4.2) holds. [

REMARK 4.3. The result above has an analogue in Lemma 4.1 in [7].

Next we establish:

LEMMA 4.4.

UellB5 < U1+ O(e?), (4.17)
IVellds < VI3 +O(e?). (4.18)

Proof. We only prove (4.17). It is checked that

. 1 2
, e Wcy ’eﬂ(ﬂ)'f“ A0y (3) - U ()
1Uellpy, = ) /RZN X — y[N s dxdy
. 2
Crs ’e*lS(X*yHolA[S((I*G)H@y)]dey (x)—U 0,)‘ N
T e e — y|V2s Y
CN s Uz(x) + Uz(y)
=N [ 2T W) g
2 R2N ‘x_y‘NJrZ\' Y
Gy [ W@UG)eos (=)~ 3 Ale((1 - 0)x -+ 6y)]do)
2 Jrev [ — yNF2s dxdy.
Since ||U/||? Dy = =2 [ Hlf(v\)"’ 200 4ydy, we have
Vel — 1V 13
exs [ 2UDUD) [1 —cos (s(x —y) - JlAle((1 - 0)x+ Gy)]deﬂ "
=S y

2 Jrov x — y|N+2s

= / Ye (x,y)dxdy = / Ye (x, y)dxdy,
R2V KxK
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where K is the compact support of U. For € small and x,y € K, it follows from the
local boundedness of A that

1 —cos <£(x—y) . /OlA[S((l —0)x+ Oy)}de) <Cex -y~

Moreover, noticing that |x — y| is bounded for x,y € K, we have

1 - cos (8(x—y) : /OIA[S((I Ot 6y)]d0> <Ce.

Therefore, since U and V are bounded, there exists C > 0 such that
G iflx—y|< 1
V-5 y )
e <4 R
F—y[NF2s mx=y =1

Then,

Ye(x,y)dxdy
KxK

= Ye(x,y)dxdy + Ye(x,y)dxdy
(KxK)N{|x—y|<1} (KxK)N{|]x—y|>1}

1 1
<C"Sz/d / e +C£2/d Ly
K é {|C‘<1}‘C‘N72+25 C K é {|C‘>1}‘C‘N+2'\ C

=0(e?). O
Similar to Lemma 4.2 in [7], we obtain the following lemma.
LEMMA 4.5. If 6((—A)} — A1), 0((—A)} — A2) C (0,4-c0), then

$a(€) < min {1 */¥8,2,(Q), 175 5,1,(@)},

where 2 ‘ 2
lul3, — Al g
) ueD} (Q,C)\{0} |”\2;f79

With these preparations we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 4.2, 4.4 and 3.1, we have

eIy — Aluel5 g + [IvellDy —2A2lvelsq
< A ) A 5

2

2t 2% %

(e 32 g + pialvel3E g+ 7 o ugvf )
U3+ VI, —Ce* +0(e?) + 0(e">) (4.19)

= 2

2% 2% 2F

(iU o+ B2V I o+ 7 o U9V + 0())
<So = Sa.
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Choose a minimizing sequence {(up,v,)} for S4(Q) normalized by

25 25 o, (B _
“l‘un‘z;’g‘kuﬂvn‘z;,g‘kq’ Q|“n‘ |Vn‘ =1,

ie.,
I (un7v,,)||%j}§ -4 ‘Mn‘%7g - ?Lz\vn@p =S4(Q)+0(1). (4.20)

Noticing that {u,} and {v,} are bounded in D (€,C), Lemma 2.2 ensures that there
exist two subsequences-still denoted by {u,} and {v,}-such that

up —u, vy, —v weaklyin D} (Q,C)
Uy — u, v, — v stronglyin L*(Q,C),

Up —u, vy — v ae.on Q,

with
23 25 al, B
.‘11"4|2§,Q+H2‘V‘2;,Q+7 Q|M| [P < 1.

Denoting wy, := u, —u and z, :=v, —v, then w, = 0, z, — 0 weakly in D} (Q,C)
and w, — 0,z, — 0 a.e. on Q. By (4.20), we get that

Sa(Q) + Mlunl3 o+ Ao lval3 0 +0(1) = || (1w, v) 154 = Sa-
It follows from (4.19) that 44 \u|%g +2/2‘V‘%’Q >S4 —S4(Q) > 0, and then,
1(ttn, v ) 155 =54 (Q) + Alunl3 g + Aalval3 o +o(1)
>S4(Q) +A«1|u|%7g +7LQM%’Q >0,
which implies that (u,v) # (0,0). Since w, — 0, z, — 0 weakly in D%(Q,C), we
obtain that ) 5 )
ol = il + el +0(1),
2 2 2
IvallZs = llzall3s + vl +o(1).

Thus, by (4.20), we have
Sa(Q) = lwallpy + el — Al o + lzallpy + VI3 —A2lv3o+o(1).  (4.21)
A Wallpy T [[#lipg — A1tz o T [[Znlipy T IIVIiDy — A21VI2,Q T O0L)- :
The Brezis-Lieb Lemma yields
_ 25 25 o B
1—”1‘”"‘“’"‘2;79+I~12‘V+Zn‘2;f7g+7 Q|”‘|'Wn‘ v+ zal
_ 25 2 o). B
—#1‘u|2§7g+ﬂ2“"2;79+7 Q|"‘| vl
25 25 a, B
+“1‘Wn‘2;’g+“2|zn|2§’g+y Q‘Wn| |zn|” +o(1).

Noticing that
2 2
pilul3 o+ salv o v [l vlP <1
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and

25 25 o, |B
ﬂl|wn‘2;7g+”2‘zn‘2;7g+7 Q|Wn‘ |zn|” <1,
we derive that

2
25 25 o), B %
1< .U1|u‘2;7g+li2|"|2§7g+7 QM Iv|

2
¥

2% 2% s
+ (b el B 7 f bnllnl) 7 o)
‘ ‘ Q (4.22)

2
2 2 %
< (i ot sy [ pi?)
1 2
+ -l +o(1),

Then, (4.21), (4.22) and (4.19) guarantee that

2 2 2 2
lull3, — MaluBo+ v —AahBo

2
%

2% 2%
<5x(60) (sl o+ bl b [ ol

(221 o 2l + ot

%

2 2
<3u() (sl g+ b Bt [ ) (1),
which, together with (u,v) # (0,0), means that

[l By = Arlul3 o+ [VI5s = A2lv3 o

2 gSA(Q)~
2 2 %
(#1|M\2%7Q+#2|V|2}79+Yf9\”|°‘|V|’3> §

Hence, S4(Q2) is achieved by (u,v). We next show that (#,v) can not be the type of
(u,0) or (0,v). Suppose by contradiction that S4(€2) is achieved by (u,0). Then,

”MH%)Y _xl‘”@.g —2/2*
SA@) = =S S (),
1y ul3s g

which contradicts Lemma 4.5. Therefore, (u,v) cannot be of the type (#,0). Similarly,
it cannot be of the type (0,v). By invoking Lemma 4.1, we prove that system (1.6) has
a nontrivial ground state solution (u,v). O
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