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Abstract. The present paper is devoted to the study of the Mehler-Fock transform with index as
the Legendre function of first kind. Continuity property of the Mehler-fock transform on the test
function spaces Λα and Gα is given. Moreover pseudo-differential operator (p.d.o.) with sym-
bol σ(x,τ) ∈ Sm in terms of Mehler-Fock transform is defined and also its continuity property
from test function space Gα into Λα is shown. The Mehler-Fock potential (MF-potential) Ps

σ
is defined on Gα (I) space and it is extended to the space of distribution. Also some properties
of MF-potential are discussed. At the end Sobolev type space Vs,p(I) is defined and it is shown
that MF-potential is an isometry of Vs,p(I) .

1. Introduction

The Mehler-Fock transform was first introduced by F. G. Mehler [13] and then
Mehler’s investigation was substantially completed by V. A. Fock [2] by giving its in-
version and some basic properties related to it. The generalization of the Mehler-Fock
transform in terms of hypergeometric function was constructed by M. N. Olevskii [17]
and N. Ya. Vilenkin [31]. Mehler-Fock transform belongs to a special class of integral
transform, known as index transform. The kernel of the index transform depends on
some of the parameter of special function involved in it. Mehler-Fock transform con-
tains special function Piτ− 1

2
(x) as kernel known as cone function or Mehler function or

Legendre function of zero order. More details about the index transforms can be found
in [33].

The Mehler-Fock transform has some important applications in mathematical phy-
sics and for solving some integral equations etc., [18, 11, 30, 25]. Apart from the appli-
cations area, investigation about this integral transform in the arena of pure mathematics
was carried out by Lebedev [12, 11], Yakubovich and Luchko [34], Srivastava et al.[29]
and many more can be found. Distinct forms of the Mehler-Fock transform were also
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introduced by various authors for instance see [6, 33, 4, 28]. In this paper, we consider
the Mehler-Fock transform defined as [28, 23]:

(Mϕ)(τ) =
∫ ∞

1
Piτ− 1

2
(x)ϕ(x)dx, τ > 0. (1)

Its inversion is given by

ϕ(x) =
∫ ∞

0
τ tanh(πτ)Piτ− 1

2
(x)(Mϕ)(τ)dτ, x > 1, (2)

where Piτ− 1
2
(x) is cone function (Legendre function of first kind), represented in terms

of Gaussian hypergeometric function 2F1 as

Piτ− 1
2
(x) = P0

iτ− 1
2
(x) = 2F1(1/2+ iτ,1/2− iτ;1;(1− x)/2),

and it is an even function of the parameter τ , i.e.

Piτ− 1
2
(x) = P−iτ− 1

2
(x).

The asymptotic representation of Legendre function P− 1
2
(x) is given as [15, p. 171–

173]

P− 1
2
(x) ∼ 1 as x → 1, (3)

P− 1
2
(x) ∼

√
2

π
ln(x)√

x
as x → ∞. (4)

The cone function Piτ− 1
2
(x) is an eigen function for the self adjoint operator Ax as [4]

Ax = (x2 −1)D2
x +2xDx, Dx =

d
dx

(5)

and

AxPiτ− 1
2
(x) = (−1)

(
τ2 +

1
4

)
Piτ− 1

2
(x).

Moreover, for k ∈ N0 , we have

Ak
xPiτ− 1

2
(x) = (−1)k

(
τ2 +

1
4

)k
Piτ− 1

2
(x). (6)

The series representation of Ax is given by

Ak
xϕ(x) =

2k

∑
j=1

p j(x)Dj
xϕ(x), k ∈ N, (7)

where p j(x) is the polynomial of jth degree and p2k(x) = (x2 −1)k .



ZERO-ORDER MEHLER-FOCK TRANSFORM 763

The product formula of the Legendre function [5, p. 112 (Lemma 1.9.10)] is given
by

Piτ− 1
2
(x)Piτ− 1

2
(y) =

∫ ∞

1
K(x,y,z)Piτ− 1

2
(z)dz, (8)

where

K(x,y,z) =

{
1
π (2xyz+1− x2− y2− z2)−

1
2 , z ∈ Ix,y,

0 otherwise,

and

Ix,y =:
(
xy− [(x2−1)(y2−1)]

1
2 , xy+[(x2−1)(y2−1)]

1
2
)
.

Throughout the paper we will consider the Lebesgue space Lp(I), I = (1,∞) as the
class of measurable functions ϕ on I such that

‖ϕ‖Lp(I) =

⎧⎨
⎩

(
∫ ∞
1 |ϕ(x)|pdx)

1
p , for 1 � p < ∞,

ess.sup
x∈I

|ϕ(x)|, for p = ∞.

The present paper is classified into five sections, Section 1 is as introductory in which
a brief introduction about the Mehler-Fock transform of zero order, Legendre function
and its asymptotic behaviour etc., are given. In Section 2, translation and convolution
operators in terms of Mehler-Fock transform is given and their some basic results are
obtained. Section 3 is concerned with basic definitions of the test function spaces Λα
and Gα . Moreover continuity of the differential operator Ax and Mehler-Fock trans-
form on these function spaces have been discussed. In Section 4, symbol class Sm

and pseudo-differential operator (p.d.o.) associated with the Mehler-Fock transform
are defined and proved the continuity of p.d.o. from Gα into Λα . Further in section 5,
Mehler-Fock potential on Gα(I) space is defined and extended on distribution space.
Also Sobolev type space Vs,p(I) is introduced and it is shown that MF-potential is an
isometry of Vs,p(I) . Finally an Lp(I) estimate of MF-potetinal is obtained.

2. The translation and convolution operator in classical framework of
Mehler-Fock transform

Using the inversion formula (2) and product formula (8), the integral representa-
tion of K(x,y,z), x, y, z ∈ I, can be written as:

K(x,y,z) =
∫ ∞

0
τ tanh(πτ) Piτ− 1

2
(x)Piτ− 1

2
(y)Piτ− 1

2
(z) dτ.

The product formula of the kernel (8) leads to define the translation operator for func-
tion ϕ on some suitable function space associated to Mehler-Fock transform as [4, 23]:

(Txϕ)(y) =
∫ ∞

1
K(x,y,z) ϕ(z) dz.
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Consequently, the convolution operator is defined as

(ϕ ∗ψ)(x) =
∫ ∞

1
(Txϕ)(y)ψ(y) dy

=
∫ ∞

1

∫ ∞

1
K(x,y,z) ϕ(z) ψ(y) dy dz. (9)

From [23], we recall operational formula for the translation operator as:

(M(Txϕ))(τ) = Piτ− 1
2
(x)(Mϕ)(τ).

and for the convolution operator as:

(M(ϕ ∗ψ))(τ) = (Mϕ)(τ)(Mψ)(τ). (10)

LEMMA 1. For n ∈ N0 , we have the following inequality∣∣∣ dn

dxn Piτ− 1
2
(x)
∣∣∣� C(n,τ) (x2 −1)−

n
2 P− 1

2
(x), (11)

where

C(n,τ) =
∣∣∣∣Γ(iτ +n+1/2)

Γ(iτ +1/2)

∣∣∣∣. (12)

Also

C(n,τ) �
{Γ(n+1/2)√

π , for τ → 0,

τn, for τ → ∞.
(13)

Proof. We recall from [16, 14.6.3], the following relation

dn

dxn Piτ− 1
2
(x) = (x2 −1)−

n
2 Pn

iτ− 1
2
(x), (14)

here Pn
iτ− 1

2
(x) denotes associated Legendre function of order n ∈ N0 . Now from [1,

(14) p. 157], we have

Pn
iτ− 1

2
(x) =

Γ(iτ +1/2+n)
πΓ(iτ +1/2)

∫ π

0
[x+(x2−1)

1
2 cost]iτ−

1
2 cos(nt)dt. (15)

For n = 0, we see that

P0
iτ− 1

2
(x) = Piτ− 1

2
(x) =

1
π

∫ π

0
[x+(x2−1)

1
2 cost]iτ−

1
2 dt,

which readily yield

|Piτ− 1
2
(x)| � P− 1

2
(x). (16)
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Now from (15) and (16), we have

|Pn
iτ− 1

2
(x)| � C(n,τ)

1
π

∫ π

0
[x+(x2−1)

1
2 cost]−

1
2 dt

� C(n,τ)P− 1
2
(x), (17)

where C(n,τ) is defined as (12). Therefore from (14) and (17), we get the desired result
(11). Further, for large value of τ , we have

C(n,τ) =
∣∣∣∣Γ(iτ +n+1/2)

Γ(iτ +1/2)

∣∣∣∣
=
∣∣(iτ +1/2+n−1

)(
iτ +1/2+n−2

)· · · (iτ +1/2
)∣∣

= τn
[(

1+
[1/2+(n−1)]2

τ2

)(
1+

[1/2+(n−2)]2

τ2

)
· · ·
(
1+

1
4τ2

)] 1
2

� τn as τ → ∞.

Hence we get (13). �
An estimate for the derivative of the Legendre function Piτ− 1

2
(x) with respect to τ

can be viewed from [8] as:

|Dm
τ Piτ− 1

2
(x)| � M [ln(x+(x2−1)

1
2 ]m P− 1

2
(x), (18)

where M > 0 is a constant and m ∈ N0 .

3. The test function spaces

We introduce the following function space Λα analogous to the function space
defined in [7]:

DEFINITION 1. The function space Λα is the space of all infinitely differentiable
complex valued function ϕ(x) , such that

γα ,k(ϕ) = sup
x∈I

|λ−
α (x)Ak

xϕ(x)| < ∞, (19)

where α > 0, k ∈ N0 and λ−
α (x) denotes the continuous function on I , given by

λ−
α (x) =

{
e−

α
x−1 , x ∈ (1,2],

e−α(x−1), x ∈ [2,∞),
(20)

and Ax signifies the differential operator (5).

PROPOSITION 1. The differential operator Ax is continuous linear mapping from
Λα into itself.
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Proof. Proof is simple and thus avoided. �

REMARK 1. As the differential operator is self adjoint, thus we have

〈Axϕ ,ψ〉 = 〈ϕ , Axψ〉,

where ϕ ∈ Λ′
α and ψ ∈ Λα . Here Λ′

α denotes the dual space of Λα . Thus generalized
operator Ax is continuous linear mapping from Λ′

α into itself.

Moreover from (6), (15) and the asymptotic expressions (3), (4), for some τ > 0
we have

γα ,k(Piτ− 1
2
(x)) < ∞.

Thus the kernel Piτ− 1
2
(x) of the Mehler-Fock transform belongs to the function space

Λα .
Next we consider a new test function space defined as:

DEFINITION 2. The function space Gα is the space of all infinitely differentiable
complex valued function ϕ(x) , such that

Γα ,k(ϕ) = sup
x∈I

|λ +
α (x)Ak

xϕ(x)| < ∞, (21)

where α > 0, k ∈ N0 and λ +
α (x) denotes the continuous function on I , given by

λ +
α (x) =

{
e

α
x−1 , x ∈ (1,2],

eα(x−1), x ∈ [2,∞),
(22)

and the differential operator Ax is defined as (5).

Similar to Proposition 1, we remark that the differential operator Ax is also a
continuous linear mapping from Gα into itself.

Moreover for every ϕ ∈ Gα , we have

γα ,k(ϕ) = sup
x∈I

|λ−
α (x)Ak

xϕ(x)|

= sup
x∈I

|(λ−
α (x))2λ +

α (x)Ak
xϕ(x)|,

using (20) and Definition 2, we have

γα ,k(ϕ) � C Γα ,k(ϕ) < ∞.

Since Piτ− 1
2
(x) /∈ Gα . Thus we can say that Gα is proper subspace of Λα .

THEOREM 2. For α > 0 , Mehler-Fock transform is continuous linear mapping
from Gα into Λα .
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Proof. The linearity of the transformation is obvious, thus we prove now its conti-
nuity. Consider ϕ ∈ Gα , then from (1) and the series representation of Ak

τ given as (7),
we get

Ak
τ(Mϕ)(τ) =

2k

∑
j=1

p j(τ)
∫ ∞

1
Dj

τPiτ− 1
2
(x)ϕ(x)dx.

Using the Definition 1, (18) and Definition 2, we have

γα ,k(Mϕ) � M sup
τ∈I

∣∣∣λ−
α (τ)

2k

∑
j=1

p j(τ)
∣∣∣ Γα ,0(ϕ)

∫ ∞

1
[ln(x+(x2−1)

1
2 )] j

P− 1
2
(x)

λ +
α

dx.

From (3) and (4) the asymptotic expressions of P− 1
2
(x) and (22), we have

γα ,k(Mϕ) � M sup
τ∈I

∣∣∣λ−
α (τ)

2k

∑
j=1

p j(τ)
∣∣∣ Γα ,0(ϕ)

[∫ 2

1

ln(x+(x2−1)1/2) j

e
α

x−1
dx

+
∫ ∞

2

√
2

π
[ln(x+(x2−1)1/2)] jln(x)

eα(x−1)√x
dx
]
,

thus for α > 0 both integrals are convergent. Also using (20) for α > 0 the supremum
is bounded. Hence

γα ,k(Mϕ) � C Γα ,0(ϕ),

where C > 0 is a constant. Hence the Theorem is proved. �

4. Pseudo-differential operators in terms of Mehler-Fock transform

The study of pseudo-differential operators (p.d.o.) began with the work of Kohn
[10], Nirenberg [14], Hörmander [9] in terms of Fourier transform. These operators
are extension of partial differential operators and now became a field of independent
research. By using the theory of various integral transforms like Hankel transform,
Fourier-Jacobi transform, Kontorovich-Lebedev transform, Fourier transform etc., pseudo-
differential operators have been constructed and studied on several function and distri-
bution spaces [26, 20, 19, 21, 22, 24, 32].

In this correspondence, the p.d.o. in terms of Mehler-Fock transform of zero order
is defined as [23]:

DEFINITION 3. Let the complex valued function σ(x,τ) ∈ C∞(I ×R+), R+ =
(0,∞) . Then the pseudo-differential operator Pσ is defined as

(Pσ ϕ)(x) =
∫ ∞

0
τ tanh(πτ)Piτ− 1

2
(x)σ(x,τ)(Mϕ)(τ)dτ. (23)

We call complex valued function σ(x,τ) belongs to symbol Sm, m ∈ R, as:
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DEFINITION 4. The function σ(x,τ) : C∞(I ×R+) → C belongs to the symbol
class Sm iff for a,b, l ∈ N0 and m ∈ R,∃ a constant C = Cm,a,b,l > 0, such that

(1+ x)l|Da
xD

b
τ σ(x,τ)| � C

(
1
4

+ τ2
) 1

2 (m−b)

. (24)

THEOREM 3. For α > 0 , the pseudo-differential operator Pσ is a continuous
linear mapping from Gα into Λα .

Proof. Applying Ak
x to (23) and using series representation (7), we get

Ak
x(Pσ ϕ)(x) =

∫ ∞

0
τ tanh(πτ)

2k

∑
j=1

p j(x)Dj
x[Piτ− 1

2
(x)σ(x,τ)](Mϕ)(τ)dτ

=
∫ ∞

0
τ tanh(πτ)

2k

∑
j=1

p j(x)
j

∑
r=0

(
j
r

)
Dr

xPiτ− 1
2
(x)Dj−r

x σ(x,τ)

×(Mϕ)(τ)dτ.

=
2k

∑
j=1

p j(x)
j

∑
r=0

(
j
r

)∫ ∞

0
τ tanh(πτ)Dr

xPiτ− 1
2
(x)Dj−r

x σ(x,τ)

×
(1

4
+ τ2

)−n
(−1)n

[
−
(1

4
+ τ2

)]n
(Mϕ)(τ)dτ. (25)

Invoking (6) and Remark 1, we have[
−
(1

4
+ τ2

)]n
(Mϕ)(τ) =

∫ ∞

1

[
−
(1

4
+ τ2

)]n
Piτ− 1

2
(y)ϕ(y)dy

=
∫ ∞

1
An

yPiτ− 1
2
(y)ϕ(y)dy

=
∫ ∞

1
Piτ− 1

2
(y)An

yϕ(y)dy.

Thus from (16) and Definition 2, we get∣∣∣[−(1
4

+ τ2
)]n

(Mϕ)(τ)
∣∣∣ � Γα ,n(ϕ)

∫ ∞

1

1

λ +
α (y)

P− 1
2
(y)dy.

By using asymptotic expressions (3), (4) and (22) the above integral converges for
α > 0. Thus ∣∣∣[−(1

4
+ τ2

)]n
(Mϕ)(τ)

∣∣∣ � C′ Γα ,n(ϕ), (26)

where C′ > 0 is a constant. Invoking Definition 1, (25) and (26), we have

γα ,k(Pσ ϕ) � C′ Γα ,n(ϕ)sup
x∈I

∣∣∣∣λ−
α (x)

2k

∑
j=1

p j(x)
j

∑
r=0

(
j
r

)∫ ∞

0
τDr

xPiτ− 1
2
(x)

×Dj−r
x σ(x,τ)

(1
4

+ τ2
)−n

dτ. (27)
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Now using (11), (13) and (24), the integral (27) reduces to

γα ,k(Pσ ϕ) � C C′Γα ,n(ϕ)sup
x∈I

∣∣∣∣λ−
α (x)P− 1

2
(x)(1+ x)−l

2k

∑
j=1

p j(x)

×
j

∑
r=0

(
j
r

)
(x2 −1)−

r
2

[Γ(r+1/2)√
π

∫ 1

0
τ
(

1
4

+ τ2
)m

2 (1
4

+ τ2
)−n

dτ

+
∫ ∞

1
τr+1

(
1
4

+ τ2
)m

2 (1
4

+ τ2
)−n

dτ
∣∣∣∣,

the integral converges for r +m+ 2 < 0. Again using (3), (4) and (20) the supremum
is finite for α > 0. Thus

γα ,k(Pσ ϕ) � C′′ Γα ,n(ϕ),

where C′′ > 0 is a constant. This proves the Theorem. �

Special cases

Case (i): If we consider the symbol σ(x,τ) , which can be explicitly represented
as

σ(x,τ) = w1(x)w2(τ),

such that w1(x) �= 0 on I . Then from (23) and (2), we have

(Pσ φ)(x) =
∫ ∞

0
τ tanh(πτ)Piτ− 1

2
(x)w1(x)w2(τ)(Mφ)(τ)dτ(

Pσ φ
w1

)
(x) = M−1[w2(Mφ)(·)](x)

[
M

(
Pσ φ
w1

)]
(τ) = w2(τ)(Mφ)(τ).

Further, if we consider w2(τ) = C as a constant. Then

(
Pσ φ

)
(x) = Cw1(x)φ(x).

Thus from here we can conclude that under certain circumstances pseudo-differential
operator is just a product of two functions and independent of integral form.

Case (ii): If we consider the symbol σ(x,τ)

σ(x,τ) =
∫ ∞

1
Piτ− 1

2
(z)w(x,z)dz, (28)
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where |w(x,z)| < K(x) and K(x) ∈ L1(I) . Then from (23), (28), (8) and (9), we have

(
Pσ φ

)
(x) =

∫ ∞

0
τ tanh(πτ)Piτ− 1

2
(x)

(∫ ∞

1
Piτ− 1

2
(z)w(x,z)dz

)
(Mφ)(τ)dτ

=
∫ ∞

1

∫ ∞

0
τ tanh(πτ)

(∫ ∞

1
K(x,y,z)Piτ− 1

2
(y)dy

)

×w(x,z)
(
Mφ

)
(τ)dτdz

=
∫ ∞

1

∫ ∞

1

(∫ ∞

0
Piτ− 1

2
(y)τ tanh(πτ)

(
Mφ

)
(τ)dτ

)

×K(x,y,z)w(x,z)dydz

=
∫ ∞

1

∫ ∞

1
K(x,y,z)φ(y)w(x,z)dydz

= [φ ∗w(x, ·)](x).
Thus we see that pseudo-differential operator Pσ can be represented in terms of con-
volution of the two functions.

5. Mehler-Fock potential and Sobolev type space

The potential operators have been discussed earlier associated with various integral
transforms like Fourier transform, Jacobi transform, Hankel transform by the authors
Wong [32], Salem et al. [27] and Pathak et al. [20] respectively. In the similar manner
we defined potential operator associated with Mehler-Fock transform as:

For s ∈ R and ϕ ∈ Gα(I) , using (23) the pseudo-differential operator Pσ associ-

ated with the symbol σ(τ) =
(

1
4 + τ2

)− s
2 ∈ S−s is

(
Ps

σ ϕ
)
(x) =

∫ ∞

0
τ tanh(πτ)Piτ− 1

2
(x)
(1

4
+ τ2

)− s
2 (Mϕ)(τ)dτ, (29)

which will be further known as Mehler-Fock potential (MF-potential) operator.

PROPOSITION 4. For α > 0 , the MF-potential operator is a continuous linear
mapping from Gα into Λα .

Proof. The proof can be carried out similar to Theorem 3. �

PROPOSITION 5. Let G be a non-empty set of pseudo-differential operators de-
fined as (29). Then (G,o) forms an abelian group, where “o” denotes composition of
two operators.

Proof. From (29), we see that for t ∈ R

(Pt
σ ϕ)(x) = M−1

[(1
4

+(·)2
)− t

2 (Mϕ)(·)
]
(x) ∈ G
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such that

(Ps
σ oPt

σ ϕ)(x) = (Ps+t
σ ϕ)(x) = (Pt

σ oPs
σ ϕ)(x).

Thus it satisfies the closure, associativity and commutativity properties.
Identity: From (29) and (2), it is clear that (P0

σ ϕ)(x) = ϕ(x) . Now, we have

(Ps
σ oP0

σ ϕ)(x) = (Ps
σ ϕ)(x) = (P0

σ oPs
σ ϕ)(x).

Hence P0
σ ∈ G behaves as the identity.

Inverse: If the pseudo-differential operator

(Qs
σ ϕ)(x) = M−1

[(1
4

+(·)2
) s

2
(Mϕ)(·)

]
(x) ∈ G,

then

(Ps
σ oQs

σ ϕ)(x) = ϕ(x) = (Qs
σ oPs

σ ϕ)(x).

Thus Qs
σ is the inverse element of Ps

σ . Hence (G,o) is an abelian group. �

DEFINITION 5. The MF-potential Ps
σ is defined on Λ′

α as〈
Ps

σ ψ ,ϕ
〉

=
〈
ψ ,Ps

σ ϕ
〉
, ψ ∈ Λ′

α , ϕ ∈ Gα ,

where
〈
ψ ,ϕ

〉
=
∫ ∞
1 ψ(x)ϕ(x)dx .

REMARK 2. In view of the Definition 5 and Proposition 4, it is clear that MF-
potential Ps

σ maps Λ′
α into G ′

α .

PROPOSITION 6. For ψ ∈ Λ′
α , we have

(Ps
σ ψ)(x) = M−1

[(1
4

+(·)2
)− s

2
(Mψ)(·)

]
(x). (30)

Proof. Using Definition 5, proof can be obtained straightforward. �

THEOREM 7. Let ψ ∈ Λ′
α , then

(i) Ps
σ oPt

σ ψ = Ps+t
σ ψ , s, t ∈ R (31)

(ii) P0
σ ψ = ψ .

DEFINITION 6. (The Sobolev type space Vs,p(I)) For s ∈ R and 2 < p < ∞ , the
space Vs,p(I) is the collection of elements ψ ∈ Λ′

α such that P−s
σ ψ is a function in

Lp(I). The norm on Vs,p(I) is equipped with

‖ψ‖Vs,p = ‖P−s
σ ψ‖Lp(I) =

[∫ ∞

1
|P−s

σ ψ |pdx

] 1
p

. (32)

In particular V 0,p(I) = Lp(I) .
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THEOREM 8. Let s ∈ R and 2 < p < ∞ . Then Vs,p(I) is a Banach space with
respect to the norm ‖ · ‖Vs,p .

Proof. It will be sufficient if we could prove that Vs,p(I) is complete. Let ψk, k ∈
N is a Cauchy sequence in Vs,p(I) . Then by Definition 6, the sequence P−s

σ ψk is
a Cauchy sequence in Lp(I) . Since Lp(I) is complete, it implies that there exists a
function ψ ∈ Lp(I) such that

P−s
σ ψk → ψ , as k → ∞.

Let ϕ = Ps
σ ψ then by (31), we have P−s

σ ϕ = ψ . Hence P−s
σ ϕ ∈ Lp(I) which implies

that ϕ ∈Vs,p(I) . Then ψk → ϕ in Vs,p(I) as k→ ∞ . From above fact we can conclude
that Vs,p(I) is complete. Hence Vs,p(I) is Banach space. �

THEOREM 9. The MF-potential Pt
σ is an isometry of V s,p(I) onto V s+t,p(I) and

we have

‖Pt
σ ψ‖Vs+t,p = ‖ψ‖Vs,p ,

where s, t ∈ R , 2 < p < ∞ .

Proof. Let ψ ∈Vs,p(I) . Then by using (32) and (31), we have

‖Pt
σ ψ‖Vs+t,p = ‖P−s−t

σ (Pt
σ ψ)‖Lp(I)

= ‖P−s
σ ψ‖Lp(I)

= ‖ψ‖Vs,p .

Now, let ϕ ∈V s+t,p(I) . Then again using (32) and (31), we have

‖ϕ‖Vs+t,p = ‖P−s−t
σ ϕ‖Lp(I)

= ‖P−t
σ ϕ‖Vs,p .

Thus for each ϕ ∈Vs+t,p(I) , ∃ P−t
σ ϕ ∈Vs,p(I) such that Pt

σ P−t
σ ϕ = ϕ . Hence Pt

σ
is onto. �

REMARK 3. For l,s ∈ R and 2 < p < ∞ , following consequences can be drawn
easily:

(i) P l−s
σ is an isometry of Vs,p onto V l,p ,

(ii) P−l
σ is an isometry of V l,p onto V 0,p ,

(iii) Ps−l
σ is an isometry of V 0,p onto Vs−l,p .

Concluding from above Remarks, we have Ps−l
σ P−l

σ P l−s
σ is an isometry of V s,p

onto Vs−l,p , that is P−l
σ : Vs,p → Vs−l,p is an isometry of V s,p onto Vs−l,p . The

mapping can be represented pictorially as:
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P−l
σ

Vs,p −−−−−−−−−−−−−−−→ Vs−l,p

P l−s
σ

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐�

�⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ps−l

σ

V l,p −−−−−−−−−−−−−−−→ V 0,p

P−l
σ

LEMMA 2. The function space Gα(I) , α > 0 , is contained in Lp(I), 1 � p < ∞ .

Proof. Let us consider ϕ ∈ Gα(I) . Then from (21) and (22), we have

‖ϕ‖Lp(I) =
∫ ∞

1
|ϕ(x)|pdx

� Γα ,0(ϕ)

(∫ ∞

1

1

|λ +
α (x)|p dx

) 1
p

= Γα ,0(ϕ)

(∫ 2

1
e
−α p
x−1 dx+

∫ ∞

2
e−α p(x−1)

) 1
p

,

the integral converges. Therefore

‖ϕ‖Lp(I) � C Γα ,0(ϕ) < ∞,

where C > 0 is a constant. �

THEOREM 10. Let 2 < p < ∞ and s > 2 . Then for ψ ∈ L1(I) , we have

‖Ps
σ ψ‖Lp(I) � C′′‖ψ‖L1(I),

where C′′ > 0 is a constant.

Proof. Let us assume

(1
4

+ τ2
)− s

2 = (Mϕ)(τ). (33)

Thus by an application of inversion formula (2) and (16), we get

|ϕ(x)| � MP− 1
2
(x)
∫ ∞

0
τ
(1

4
+ τ2

)− s
2
dτ,
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the integral converges for s > 2. Thus

‖ϕ‖Lp(I) � C‖P− 1
2
(x)‖Lp(I) � C′, (34)

where C′ > 0 is a constant.
From (2), (10), (33) and (29), we have

(ϕ ∗ψ)(x) =
[
M−1

((1
4

+(·)2
)− s

2 (Mψ)(·)
)]

(x) = (Ps
σ ψ)(x). (35)

Now using [23, Theorem 2.3], (34) and (35), we have

‖Ps
σ ψ‖Lp(I) � C′′ ‖ψ‖L1(I),

where C′′ > 0 is a constant. Hence proved. �

RE F ER EN C ES
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