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APPROXIMATION BY MARCINKIEWICZ

Θ–MEANS OF DOUBLE WALSH–FOURIER SERIES

ISTVÁN BLAHOTA, KÁROLY NAGY AND GEORGE TEPHNADZE

Abstract. In this article we discuss the behaviour of Θ -means of quadratical partial sums of
double Walsh series of a function in Lp(G2) (1 � p � ∞ ). In case p = ∞ by Lp(G2) we mean
C , the collection of continuous functions on G2 . We present the rate of the approximation by
Θ -means, in particular, in Lip(α , p), where α > 0 and 1 � p � ∞ .

Our main theorem generalizes two result of Nagy on Nörlund means and weighted means
of the cubical partial sums of double Walsh-Fourier series [15, 16]. Specifically, we give the two-
dimensional analogue of the two results of Móricz, Siddiqi on Nörlund means [14] and Móricz,
Rhoades on weighted means [12].
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