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COMMUTATORS OF POTENTIAL TYPE OPERATORS
WITH LIPSCHITZ SYMBOLS ON VARIABLE
LEBESGUE SPACES WITH DIFFERENT WEIGHTS

LUCIANA MELCHIORI*, GLADIS PRADOLINI AND WILFREDO RAMOS

(Communicated by J. Soria)

Abstract. We prove that a generalized Fefferman-Phong type condition on a pair of weights u
and v is sufficient for the boundedness of the commutators of potential type operators from L 0

into LZ(') . We also give an improvement of this result in the sense that we not only consider a
variable version of power bump conditions, but also weaker norms related to Musielak-Orlicz
functions.

We consider a wider class of symbols including Lipschitz symbols and some generaliza-
tions.

1. Introduction and main results

In [17], E. Sawyer and R. Wheeden obtained Fefferman-Phong type conditions
on a pair of weights in order to prove boundedness results for the fractional integral
operator I, between Lebesgue spaces with different weights. For the case of one
weight, remarkably simple conditions on the weight characterizing the boundedness of
I, were known to hold (see [13]). Motivated by the results above, in [14], C. Pérez
considered weaker norms than those involved in the Fefferman-Phong type conditions
in [17], and obtained two-weighted boundedness estimates for the potential operator
Tk , formally defined by

/) = [ Klx=3)50)

whenever this integral is finite where the kernel K is a non-negative and locally in-
tegrable function satisfying certain weak growth condition. This article was the mo-
tivation for a great variety of subsequent papers related to this kind of operator. For
example, in [8] and [9], the authors obtained weighted L” inequalities of Fefferman-
Stein type for Tx and for the higher order commutators with BMO symbols associated
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to this operator, respectively, whenever 1 < p < o. If b € LlloC (R") and m € N, the
commutator of order m of Tk is formally defined by

b,
17 5) = [ (b3) =) "Kx =) £ )
whenever this integral is finite. In the multilinear context, similar results were proved in
[1]. For these commutators two-weighted norm inequalities in the spirit of those given
in [14] were proved in [7] in the classical L? context, and in [1 1] on the general setting
of variable Lebesgue spaces.

The commutators of fractional type operators with Lipschitz symbols were studied
by several authors. For instance, in [12] the authors considered unweighted estimates
for the mentioned operator acting between different Lebesgue spaces in the context of
non-doubling measures.

Characterizations of Lipschitz functions via the boundedness of commutators of
fractional integral operators with generalized Lipschitz symbols were given in [15], in
the general setting of variable Lebesgue spaces.

In [2] the authors give weighted L” — L9 estimates for the commutators, with Lip-
schitz symbols, of a great variety of fractional type operators. Later, in [14] certain
extrapolation techniques allow to obtain similar results in variable Lebesgue spaces.

The main aim of this paper is to describe the behavior of the commutators of the
potential type operators T,?’m between variable Lebesgue spaces with different weights,
for a wider class of symbols b including Lipschitz symbols and some generalizations.
Concretely, we prove that a generalized Fefferman-Phong type condition on a pair of

weights u and v is sufficient for the boundedness of the commutator TI};’m, from LY ()

into LZ(') .

When the symbol b belongs to a variable Lipschitz space, we not only consider
variable version of power bump conditions, but also we consider weaker norms related
to Musielak-Orlicz functions. Thus, in this sense, we are providing an improvement.

In the definition of T¢™, the function K belongs to a certain class of kernels that
satisfy that there exists positive constants §, ¢ and 0 < € < 1, with the property that

c

sup  K(x) < K(y)dy,

= ZW/ k k
2k < |x| <2k S(1—g)2k<|y|<28(1+¢€)2

for all k € Z. We shall denote this class by 2.

For example, if K is radial an non-increasing, then K € ©. A basic example
of potential operator with radial and non-increasing kernel K is given by the fractional
integral operator I, , which is the convolution with the kernel K(7) = [1]*7", 0 < @ < n.
There are other important examples such as the Bessel potential Jg 3, ,4 >0 with
kernels K 3 best defined by means of its Fourier transform by

Kp (&)= (A +[E) P/
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and Kp ; is also radial and non-increasing.

Nevertheless, condition ® involves other type of kernels K such as radial and
non-decreasing functions. Moreover, if K is essentially constant on annuli, that is,
K(y) < CK(x) for |y|/2 < |x| < 2|y|, then K € D.

We will be working in a general context that we now introduce.
Let p(-) : R" — [1,0| be a measurable function. For A C R” we define

pa = inf p(x) PA = supp(x).
XEA XEA
For simplicity we denote p~ = pg, and p* = pﬁg@l.
With p'(-) = p(-)/(p(-) — 1) we denote the conjugate exponent of p(-). It is not
hard to prove that (p)~ = (p™) and (p')" = (p~)'.
We say that a(-) : R" — R is globally log-Holder continuous on R” if it satisfies
the following inequalities

C
ox)—a(y)| < —————, x,ye R"
1) = W S e T/ 5D
and
C n
o(x) — 0| < ———— x€R 2)

log(e+[x])’
for some positive constants C and .. It is easy to see that the inequality (2) implies
that lim‘x‘ﬂw a(x) = Olo -

We say that p(-) € Z(R") if 1 < p~ < p™ <« and we denote by Z2'°¢(R") the
set of the exponents p(-) € Z(R") such that 1/p(-) is globally log-Holder continuous.
If p€ Z(R") with p* < o, then p € Z2'°¢(R") if and only if p is globally log-Holder
continuous.

If p(-) € Z(R"), we define the function

70, 1< p(y) <o
at) =
(Pp()(y ) {00'%(1700)(1‘)7 P(Y):w’

for ¢t > 0 and y € R", with the convention -0 = 0, where (1) denote the charac-

teristic function of (1,0). Then the variable exponent Lebesgue space L”()(R") is the
set of the measurable functions f defined on R" such that, for some positive A,

L o £l /2)dx <
A Luxemburg norm can be defined in LP()(R") by taking
Il =it {2505 [ gy e lrl/a)av< 1}

By L/ (')(R”) we denote the space of the functions f such that fyy € LPU)(R") for

loc
every compact set U C R".
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A locally integrable function w defined in R" which is positive almost every-
where is called a weight. For p(-) € Z(R") we define the weighted variable Lebesgue
space L{’v(')(R") as the set of the measurable functions f defined on R” such that
fw e LPUR"), and [|£]| p) = 1wl -

By a cube Q in R"” we shall understand a cube with sides parallel to the coordi-
nate axes. The sidelength of Q is denoted by ¢(Q) and yQ, v > 0, denotes the cube
concentric with Q and with sidelength y¢(Q).

We shall say that A ~ B if there exist two positive constants C; and C, such that
CIB<A<(GB.

We define now the functional related with the space where the symbol b belongs.
We use & to denote the class of all cubes Q in R” with sides parallel to the axes and
consider a functional a : & — [0,0). We say that a satisfies the T.. condition and
we denote by a € T, if there exists a finite positive constant #., such that for every
0,0 € & suchthat Q' C 0,

a(Q') <twa(Q). 3)
We denote the least constant z.. in (3) by ||al|... Clearly, ||a|.. > 1.

Let 0 < p <o and a € T.,. We say that a function b € L] .(R") belongs to the
generalized Lipschitz space £/ if

1 1 ) 1/p
— (= [ p=byld oo 4
0 <Q|/Q' ) < @

where the supremum is taken over all cubes Q C R" and by denote the average ﬁ J. ob
(which sometimes will be denoted by fQ b).

We are now in position to state our main results.
The next theorem gives a two weighted boundedness result between variable

Lebesgue spaces with different exponents for the commutator T,?’m , when the symbol b
belongs to the class .Z/ defined previously. The function K involved in the condition
on the weights is given by

K(r) :/IqK(z)dz.

THEOREM 1.1. Let p(-),q(-) € P'8(R") suchthat 1 < p~ < p(-) <q(-)<q" <
oo, KED and m e NU{0}. Ler 1 < p <oo, a€Ts, and b e ZY. Let R,S be two
constants suchthat R > (p')"/(p')~ and S > q* /q~ . Suppose that (v,w) is any couple

of weights such that v € Lf;(c') (R™) and, for some positive constant K and for every cube

Q’
xoll a0 120v ™ || zrer oWl oty

~
Ixoll ey Nxollzeey  lxollsa)

a(Q)"K(¢(Q)) (5)

Then
T2 : LEO(RY) — LIV (R™).
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More precisely,

e

Lo S KB 11 o ¥ € LEO®?).

In the classical Lebesgue spaces, a proof can be found in [14] for the case m = 0, that
is, Tlg’m =Tg:; and in [7] for m > 1 and b € BMO = .,%1 where a(Q) = 1. In the
variable Lebesgue spaces, when b € BMO the result above was proved in [11].

Let us observe that, if a(Q) = [Q|%/", 0 < &§ < 1, then a € T.. and it is known
that .} := IL(8) coincides with the classical Lipschitz spaces Ag define as the set of
functions b such that

[b(x) =b(y)| < Clx—y|°

for some positive constant C and for every x,y € R”.
On the other hand, if 7(-) € Z2'°¢(R") with r* < o,

n
ﬁ and 0< 8()/ni=1/y—1/r()<1/n,  (6)
in [15, Corollary 3.6] it was proved that the functional a(Q) = |Q|'/7~! || xol| () sat-

isfies the T.. condition and £} = IL(8(-)) are a variable version of the spaces ()
defined above. Indeed, let us observe that the functional above can be written as

1<y<r7<r+<

a(Q) = 101"/ |20l = | xel st »
(see Lemmas 2.5 and 2.6).

In the case that b € L(6(+)), we can improve the theorem above in the sense
that we can introduce other type of norms in the conditions on the weights involving
generalized ®@-functions (G®-functions) (see Section 2 for more information about
G ®-functions). In order to state the results we need some definitions.

The norm associated to a given G®-function ¥ is given by

1/ 1. ) =inf{7L >O:/H‘P (yg@) dx < 1}

and we denote by L (R") the space of functions f such that || f lp(ny <ee-
A corresponding maximal operator associated to ¥ is

xofllw.
M. 1)f(x) = sup e

(7
03x H?CQH\P(~,L)

and, for B(-) € Z(R"), we define the following fractional type version of maximal
above as follows
||XQfH\11(.7L)

. ®)
Ixollw(.r

Mgy w0 f(x) = Zgg I xoll50)

We say that a 3-tuples of G®-functions (A,B,D) satisfy condition % if they
verify
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9. ||?CQ||A(. 1) ||XQ||B(- 1) < ||XQ||D(- 1) Where < means that there exists a positive
constant C such that 9 holds with < replaced by < C.

10. A=Y(x,)B~(x,t) < D!(x,t) where A~! denote the inverse of A (for the
definition of the inverse of a G®-function see Section 2).

11. ||XQHD(. 1 HXQ”D*(. S |O|, where D* is the conjugate function of D (for
the definition of the conjugate of a G®-function see Section 2).

Necessary conditions on D where given in [4, Remark 4.5.8] and [5, Lemma
4.4.5.] in order to verify 11.
We shall give later some examples of G®-functions that satisfy condition .7 .

We can now give our result.

THEOREM 1.2. Let p(-),q(-) € Z¢(R") such that p(-) < q(-), K€D and m
a non-negative integer. Let B(-) be a function such that 1/B(-) =1/p(-)—1/q(-). Let
r(-) € 2'¢(R") and §(-) defined as in (6), such that r.. < r(-) and let b € L(8(-)).
Let (A,B,D) and (E,H,J) G®-functions satisfying condition .7,

My 1) LPO(R") — LPO(R™) (12)

and / /
Mﬁ(.)ﬂ(.@ c LA (')(R") — P (')(R"). (13)

Suppose that (v,w) is any couple of weights such that v € L{;@(R") and, for some
positive constant K and for every cube Q,

ol oo 1207 .oy lxowlle.
HXQHLP(-) ||XQ||A(.7L) HXQHE(.7L)

el 7s0 K(£(Q)) <K (14)

Then
Tem: PO(R") - LY (R,

More precisely,
e

40 S KHfHL5<-> Vi€ Lé’(')(R"),

Let us give some examples of G®-functions that satisfy the hypothesis of the
theorem above.

Notice first that, if we consider p(-) € Z(R") and g(-) with g% < e, then the
function W (x,1) = "™ (log(e +1))4%), x € R, t > 0, is a G®-function. In this case,
the space LY (R") will be denoted by L) (logL)?()(R"). In [10, Proposition 2.5] the
authors proved that the Hardy-Littlewood maximal operator M is bounded in this space
when p(-) € ZP¢(R") with 1 < p~ < p™ <o, and g(-) € P'E8(R"). We say that
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q(-) € 28g(R") if g(-) : R" — R with g+ < co such that, for some positive constant
C, it satisfies the following inequality

c
<
log(e+log(e+1/[x—yl))

lg(x) —q(y)] , for every x,y € R".

REMARK 1.3. Note thatif p(-) € 2'°¢(R") with p™ < e and g(-) € 2°&lo¢(R"),
then (pq)(-) € 2'°2°¢(R") and (q/p)(-) € 2'°¢°¢(R"). Indeed, for every x,y € R",

Ip(x)q(x) — p(y)g)| < [p(X)llg(x) — )|+ lg)|[p(x) — p()]

p* q"
< +
log(e +log(e+1/[x—y[)) log(e+1/|x—y|)
1

< .
~ log(e+log(e+1/|x—yl|))

This gives (pq)(-) € 2"°8°2(R™) . Since (1/p)™ <o, (q/p)(-) € 2"(R™) follows
from the first property.

Examples. Let p(-) € 2'¢(R") with 1 < p~ < pt <o and o > (p/)*/(p')”. The
following G ®-functions satisfy condition .# and the hyphoteses (12) and (13) of the
Theorem 1.2.

EXAMPLE 1.1. The 3-tuple (A;,B;,D;) where A (x,1) =177 (log(e+1)) o7 |
B (x,1) =1V and D (1) =tlog(e +1).

EXAMPLE 1.2. If, in addition, p(-) € 22'°¢(R") with 1 < u~ < u* < e such
that

1/op'()—1/u()>e
for some constant € € (0,1) and v(-) € 2'°¢1°¢(R") then, the example of 3-tuple is

given by (A, Bs,D;) where A, (x,1) = t*® (log(e+1))Y W1 | By (x,1) = (o)) and
D (x,1) = t%0) (log(e 41))*@V®) where o(-) is defined by

o()=1/u()+1/(op) ().

In Section 3 we check these examples.

The paper is organized as follows. In Section 2 we introduce basic definitions
and known results related to Musielak-Orlicz spaces. We also give some bounded-
ness estimates in this context. In Section 3 we prove a key estimate regarding the
L) (log L)) (R™) norm of yg for Q € &, using a series of auxiliary lemmas that we
prove as well. We also discuss the validity of Examples 1.1 and 1.2. Finally, in Section
4 we prove Theorem 1.1 and Theorem 1.2.
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2. Preliminaries

In this section we give some previous definitions and results that we shall be using
throughout this paper.

With .# we denote the set of all Lebesgue real valued, measurable functions on
R".

A convex function y : [0,00) — [0,e0] with w(0) =0, lim,_o+ y(¢) =0 and
limy e W(#) = oo is called a ®-function.

A real function ¥ : R" x [0,e0) — [0,e0] is said to be a generalized ®-function
(G®-function), and we denote ¥ € GO(R"), if ¥(x,7) is Lebesgue-measurable in x
forevery 1 > 0 and ¥(x,-) is a ®@-function for every x € R”".

If ¥ € GO(R"), then the set

LY(R") = {fEJ//:/Rn‘I’(x,|f(x)) dx<w}

defines a Banach function space equipped with the Luxemburg-norm given by

T ::inf{/l ~0: /n‘P G@) dx < 1},

The space L (R") is called a Musielak-Orlicz space.

Let p(-) € Z(R"), then ¥(x,1) = 1) € GO(R"). In this case, the space LY (R")
is the variable exponent Lebesgue space Lp(')(R") defined in the introduction. If we
also consider r(-) with rt < oo, then ¥ (x,7) = 1"¥(log(e+1))"™ € GO(R"). In this
case, the space LY (R") is the space LP()(logL)""") (R") introduced before.

Let ¥ € GP(R"), then for any x € R” we denote by ¥*(x,-) the conjugate func-
tion of W(x,-) which is defined by

Y (x,u) =sup(ru —¥(x,1)), u>0.

>0

For ¥ € G®(R") that verifies that every simple function belongs to L¥" (R"), we have
the following norm conjugate formula,

~ d 15
s, s [ 17s]ds (s)

gl (.0y<

for every function f € L¥(R") (see [4, Corollary 2.7.5]).
The following lemma can be deduced from Lemma 4.4.5 in [5].

LEMMA 2.1. Let y a ®-function, then the following inequality

lzell, el < 1)

holds for every cube Q in R".
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Also we can define ¥~!, the generalized inverse function of ¥, by
Wl (x,r) == inf{u>0:¥Y(x,u) >1}, x€R"t>0.

For example, if p € Z(R") and ¥(x,r) = t?™, we have ¥~ '(x,r) = ¢1/?™) and
W (x,1) = 1P’

Note that, by definition of ¥*, the following generalization of the Young’s in-
equality holds in this context,

v < W(x,v) +¥ (x,u), VxeR"Yvuz=0, (16)

for any ¥ € GO(R"). If we put v ="P"!(x,#) and u = (¥*)~!(x,7) in equation (16)
we obtain

P ) (FF) 7 ) SPYTH(nn)) W (BF) ) <26 (A7)

Moreover, it can be proved that if W,A,© € GD(R") such that ¥(x,-),A(x,-) are
strictly increasing and W' (x,)A~!(x,t) < ©~!(x,t) for every x € R", and for every
t >0, then

O(x,tu) <W(x,1)+Alx,u), VxeR"Vr,u>D0.
The inequality above allows us to prove the following generalized Holder type inequal-

ity in this context. The proof is standard and we omit it.

LEMMA 2.2. Let ¥,A,0 € GO(R") suchthat ¥ (x,-),A(x,-) are strictly increas-
ing and
Y ) A () <O (n,1), VX e RV >0.

Then
18lloc.o) < 1fllwe ) l181la¢ ) (18)
forall f € LY(R") and g € LM(R").

For example, if ©(x,7) = '™, ¥(x,r) = "™ and A(x,r) = 19™) with exponents
s(),p(),q() € Z(R") and 1/s(-) =1/p(-) +1/4(-), we obtain that

I£8lls0) S AN e gl zae - (19)

In the case s(-) = 1 inequality (19) becomes

/Rn el dy < A1l e llellre (20)

and, for a general ¥ € GP(R") such that W(x,-) is strictly increasing, from inequality
(17) we obtain

176015 S 1o e e

which is an extension of the classical Holder inequality (see [4]).

Particularly, when we deal with variable Lebesgue spaces, we have the following
known results that we shall be using along this paper.
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LEMMA 2.3. [4, Lemma 3.4.2] Let p(-) € Z(R") with p™ < oo. Then

Il <€ Fandontyir [ 7 av<c
Rn
Moreover, if either constant equals 1 we can take the other equal to 1 as well.

The following lemma describes some properties of the exponentin Z2'°¢(R").

LEMMA 2.4. Let p(-),q(-) € Z"°¢(R") and ¢ € R such that ¢ > 1/p~, then the
following properties hold:

(@) ep(-) € ZER").

(i) p'() € ZRE(R").
(iil) If o(-) is the exponent defined by 1/oi(-) =1/p(-)+1/q(-), then a(-) € P'°¢(R").
@v) If, in addition, p*,q+ < o, then (pq)(-) € Z'8(R").

The next lemma can be deduced from the Corollary 4.5.9 in [4].

LEMMA 2.5. ([4]) Let p(-) € 2'°¢(R"). Then there exists two positive constants
C,, and C;" such that

10| < Chllxoll o 2ol ey < €710
for every cubes Q C R". Note that we can suppose C;;,CI’;* >1.

Moreover, we have the following result.

LEMMA 2.6. [11, Lemma 2.7] Let p(-),q(-) € 2"¢(R") such that p(-) < q(-).
Suppose that 1/B(-) =1/p(-)—1/q(-), then

~1
1xoll o0 120l gty = X0l 800 »
for every cube Q C R".

Note that Lemma 2.6 implies Lemma 2.5 making the choices B(-) := p(-), q(-) :=p'(*)
and p(-):=1.

The following lemma gives a doubling property for the functional £(Q) := || xo/l,»0)
with p(-) € 21°¢(R").

LEMMA 2.7. [15, Equation (2.11)] If p(-) € 2'°2(R") with p* < o, then there
exists a positive constant C,, such that the inequality

122012000 < Cp 201 120 (22)
holds for every cube Q C R".



COMMUTATORS OF POTENTIAL TYPE OPERATORS 865

By iteration of inequality (22) it is not difficult to prove that

xvoll o S el (23)

holds for every cube O C R", with an appropriate constant depending on ¥ and C,,.

The next theorem is an useful tool in order to prove Theorem 1.1.
THEOREM 2.8. [4, Theorem 7.3.22] If p € P'°¢(R"), then

> lxof o llxegll o < Gpll fll o gl
(0137

forall feLPV) (R, g€ Lr't) (R™) and every family 9 of pairwise disjoint cubes.

Moreover, a similar result considering overlaping families is the following.

LEMMA 2.9. [11, Lemma 3.5] Let p(-) € Z'°¢(R"), d € Z and Qo a dyadic
cube. If we define

O, = {0 dyadic cube : Q C Qg and £(Q) =27},

then

> Ifwsolleo lsxsollye S a0l o 182300 10 (24
(OS2

forevery f € Lp(')(R") and g € Lpl(')(R"), where the implied constant in < does not

loc loc

depend on d.

In order to prove Lemma 3.7 we state the next result that follows from [3, Lemma
5.5]. Recall that fp denotes the average @ fQ f.

LEMMA 2.10. ([3]) Let p(-) € 2"°2(R") with 1 < p~ < pT < oo. Then exists a
constant 0 < v < 1 such that for every cube Q and every function f € LllOC (R™) with
fo#0,

11 20l 000 < 201000 [ fo!l"

The next theorems give boundedness results in Musielak-Orlicz spaces for certain
maximal functions.

THEOREM 2.11. [10, Proposition 2.5] Let p(-) € 2'°¢(R") with 1 < p~ < p* <
o and q(-) € P'°L(R"). Then

M : LV (log L)1) (R") — LP0) (log L)0) (R™).
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THEOREM 2.12. [4, Theorem 7.3.27] Let p(-),s(:),l() € gzlog(Rn) such that
p(-)=s()I(-) and I~ > 1. Then

M, : LPO(R") — LPO(R™).

THEOREM 2.13. [11, Theorem 1.7] Let p(-),q(-) € 2'°¢(R") such that p(-) <
q(-) and r(-) € P8L(R"). Let 5(-) € 21°2(R") and B(-) be two functions such that
1/B()=1/p(:)=1/q(-) and 1 < s~ <sT < p~. Then

M

B().L0) :LP(')(logL)r(')(Rn) . Lq(')(IOgL)r(')(R”).

REMARK 2.14. Since 1/B(:) =1/¢'(:) —1/p'(-), if 1 <5~ <st < (¢')” we

have that

Mg, o) LYO(log L) (R") < 170 (log L) (R™).

ﬁ(')va
The following result establishes that the spaces ZP coincide, for 1 < p < oo,

THEOREM 2.15. [6, Corollary 2] Let 1 < p < o and a € T, then L = £}

and
VA (P BT
sup —— ][ b—>b dx) :sup—][ b—bypldx.
o a(Q) \Jo © o a(Q) Jo ©

The following lemma can be deduced from the proof of Theorem 2.3 in [15] (see
[15, Equation (5.4)], and it will be useful in the proof of Theorem 1.2.

LEMMA 2.16. [15] Let r(-) € 2'°2(R")) with r* < oo such that r.. < r(-),

Ly < << o and 50)ne=1/y=1/r(),

Let b€ 1L(8(-)) then
[b(x) = b(2)| S Jx—2°%

forevery x,z € R".

3. Key auxiliary results

In this section we give some technical lemmas that will be useful in the proof of
the main results.
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3.1. Estimates of ||xQHL,,(.)(10gL)q(.)

n [4] the authors proved that, if p(-) € Z1°¢(R"), then |xoll ) ~ |Q|(/P)e
for any cube Q (see [4, Lemma 4.5.3]). Recall that (1/p)o denotes the average
o7 [. o 1/p(x)dx. We would like to generalize this result to the case of LP0) (log L)40)
norms, that is, estimates of || o|| 120 (1logyat) With p(+),q(+) in certain classes of expo-
nents. Concretely, we prove the following result.

PROPOSITION 3.1. Let p(-) € 2(R") suchthat 1 < p~ < p* < oo and a non-
-negative function q(-) € P'°¢1°2(R"). Then

1010 togyar = 121172 (log(e + 1/10])) @/ Pe,

for every cube Q in R".

REMARK 3.2. In particular, when p(-) = ¢(-) with 1 < p~ < pT < o,
20!l p0) ogryptr = 11" /P2 log(e+1/|0)) (25)
and if, in addition, ¢(-) =0,
ol o) = Q[ /7)o (26)
Since y(r) =tlog(e +1) is an invertible Young function, is easy to see that

HXQHLlogL . ‘Q“Og(@—i— l/‘QD (27)

In order to achieve Proposition 3.1 we need the following lemmas.

LEMMA 3.3. Let q(-) € 2'°2°¢(R") and let Q be a cube in R". Then, for every
x,yeQ,
(log(e+1/]0])*™ = (log(e+1/]0]))*"

Proof. 1t is enough to show that there exists a positive constant C such that

(log(e +1/]Q)la¥-10)l < ¢,

or equivalenty
exp(lq(x) —g(y)[log(log(e+1/Q]))] < C. (28)
Since ¢(+) € '°glog(R"),

exp(la(x)~ 40 Toglogle + 1/101)) < exp (C B OEC IO o
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Since x,y € Q, there exists a constant C, > 1 such that |x —y| < C,|Q|"/". Then

1 1
log | e+1lo (e—i-i))glo <e+lo <e+—>).
g( AT VTR T

If we prove that

log <e+10g (e—i— |Q>) < xlog (e—l—log <e+ W)) (30)

for some positive constant k then, by (29), we conclude (28).
Let us prove inequality (30). Note that, since C, > 1,

o
lo e+—) lo (e—f— ><lo (Cne—i— 1 )
g( ol ) ~ Mg ) S ¢ ARG
1 1
< log (G )1°g<e+cnQ|1/")+1°g<e+ch|1/")

1 1
< (1+1ogC,)1 il :
(1 loC)log <e+C IQI/"> e <e+Cn|Q1/")

Thus, by similar argument, since x; > 1,

1 1
log|e+log| e+ — <log|e+xkilog| e+ ———
g( g( QI)) g( 1g( cn|Q1/">)
1
<(1+10gK1)10g<€+10g<€+W)>

=Kl 1 .
= Klog <e+ og(e—i—c Q|1/”)>

Let o(-) and 6(-) be two functions with 0 < &~ < o0t <e0and 0 <0~ <O < oo
and x € R", we denote

O () (1) = 17 (log(e +1)) 1.

Note that, for every fixed x € R", q);éc ),000) (+) is a Young function, then it is not difficult

to prove that
Oy (0 (1) = 1177 (log(e +1)) 00/t (31)

(see, for example, [16]). If, in addition, ¢~ > 1,
D000 (1) =17 W (log(e+1)) =0/ (@71, (32)

The constants involved in equations (31) and (32) only depend on the extremes of the
exponents ¢(-) and 0(-).
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LEMMA 3.4. Let p(-) € 2(R") such that 1 < p(+) < pt < e and a non-
-negative function q(-) € 2'°¢1°2(R"). Then for every cube Q C R" we have

g (/10D f¢ L (1/10])dx

/p)g

Proof. Let Q C R" a cube. Since

<ph <o and O<(q/p)Q< tpt

1
S /g S S/p)e ST

by equation (31) with a(-) :=1/(1/p)p and 0(-) :==(¢/p)o/(1/p)g, we have

< oo,

0" g (1/10) = (1/10) 7 (log(e + (1/]0]))) /P)e. (33)

Wng g
Given x € Q, define the mappings

h(z) := (1/]0])* (log(e + (1/|Q1)))~@/Ple

and
gx(z) := (1/]0)) /7™ (log(e + (1/1Q1)))

for z > 0. Note that, as functions of z, the mappings /& and g, are convex. Thus, by
(33) and applying Jensen’s inequality twice we have that

¢—1

1 1
1 ~h — < Wl — ) a
(1/2)@%35( /1o <<p>Q> ]{2 (P(X)> )
:iéungwmﬂ<mge+uﬂgm>qmedx
49 y
= X - d Y dvd
fo((2),) x<ffg( o) e
(1/]0])Y/rt)
Sdvd
ffl% (e+ 1/]QD)a00)
From Remark (1.3) we can apply Lemma 3.3 with ¢(-) := (¢/p)(:) to obtain that

= (1/1ep"/r™)
¢m=ﬁi’f§§§(l/@|) ][(log(e+l/|Q| ][¢ (1/1Q])dx

where we have used equation (31) with ¢a(-) := p(-) and 6(-) :=¢q(-). O
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LEMMA 3.5. Let p(-),q(+) suchthat 1 < p~ < pt <o and 0 < g~ < q" < oo
and let Q be a cube in R". Then for every t > 0,

' < 7[ o 7[ (logle+1)™osL  (1)dx.

Proof. It is enough to prove the case ¢ > 0. Since, by equation (31),

t1/p(x) /7' (x) ¢
91.q00®) O () (1) = =
p(x),q(x) P'(%),4(x) (log(e -+ t))Q(x)/P(x) (]()g(e + [))‘I(x)/l’/(x) (log(e + t))‘](x) ’

then, by Jensen’s inequality, we have

1
7[ 9oix dx_t][ (log(e+0))109 1 (1) "

>t — )
fo(log(e +t))‘1(")¢p,(x)7q(x) (t)dx
Proof of Proposition 3.1. Let Q be a cube in R", define

() = 2000, o (1/1QD), xR

and

8(x) = xo(x)(logle + 1/10))" o1 (1/10). xR

Note that Hf||L,, J(logryat) S 1 and gl ) () (log L)~/ (p()-1) S C, with G, a positive con-
stant independent of Q. Indeed since by (31),

[ Sunato () = /Q Optat (91t g0 (1/101)) =
the estimation for f is clear. Note that, for x € Q, by (31),
log(e +g(x)) = log [e + (log(e+1/10))" g, L, ., (1/10])]
log [+ (log(e + 1/1Q))"/7(1/]Q)) /79|
> log (e-+(1/]0])/7¥)) >

1

(p})+ log (e +1/10]) 2 log(e + 1/]0]),

since (p’)* < c. Thus we have that

gpl(x) < gp() .,
/Q(log(e+g))q(x>/(p(x>l) xN/Q(10g(e+1/|Q|))q(x>/(p(x)1) *
s ][ (log(e+1/10]) ™07 g < 1
0
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since p'(x) —1/(p(x)—1)—1=0.
By Lemma 3.5 with 7 := 1/|Q| we have

LS 101 f 0y o1/ 101 f (lox(e +1/10D) 65,1101t
= ][ fdx Xo(x)g(x)dx. (34)
0" Jre

We can apply Holder’s inequality (21) with the functions W(x,7) := t?) (log(e +1))4%)
and W* (x,1) := 17’ (log(e + 1)) 4/ (P()=1) (see equation (32)), to obtain

15ff@ﬂﬂ&dbmmgwﬂkhwm%gwmmm)

< ”fQXQ”LP ) (log L)4( ”Mf”Lp ) (log L)4( 5 Hf”LI’(')(logL)fI(') 5 17 (35)
where we have used Theorem 2 11.
Since f,, f(x)dx = fQ 400 (1/1Q1) dx > 0, from equation (35) we obain that

0l ][Q (log(e +1/]Q1))* ¢,;(1x)7q(x)(1/lQ|)dx < %016 gogy
1
AV

By Lemma 3.4 we can estimate the right-hand side of inequality (36) using equation
(31) as follow

(36)

1 1
~ |g|/Ple (a/p)o
JCQ 1/|Q|) ¢_11 (q/p)Q(1/|Q|) - ‘Q| (10g(€+1/|Q|))
Mg g

In order to estimate the left-hand side of inequality (36), if x € O, by Jensen’s inequality
and Lemma 3.3,

(log(e +1/]Q1))% < ][Q(log(e+ 1/10))*™) dy = (log(e + 1/10]))*™

Thus by Lemma 3.4 we have
0 f (log(e+1/1QD)M g (/1)) dx

> [0](log(e + 1/]Q])) ][ 07%  (1/1QD) dx
2 10l1ogle +1/1Q))% 0™ 0 (1/10])
(l/l’) (l/l’)
> [0(log(e + 1/]Q])% |0 (/)¢ (log(e + 1/]0]))~ /P
~ 0|1/ (log(e + 1/[Q])@/Pe. DO
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COROLLARY 3.6. Let p(-) € 2'°¢(R") with p* < o and let Q be a cube in R".
Then

égwmmsmwmy

Proof. From the proof of Proposition 3.1, by using inequality (35) replacing p(-)
and ¢(-) by p'(-) and 0, respectively, we have

xQII,,/<.>][Q(1/|Q|)1/”'<") dx S 1. (37)
Since

/(1/|Q|)1/P’(x)dx:/‘Q|1/P(x)—ldx:][|Q|l/p(x)dx
0] 0 0

by (37) we obtain that

_@M@fwwmwiL
o Jo

Thus, by Lemma 2.5,

7[QQ|1/p<x>dx§|IJcQ||p<->' 5

We now show that the Examples 1.1 and 1.2 satisfy the hypotheses of Theorem
1.2.

Letussee 1.1. For p(-) € 2"°2(R") with 1 < p~ < pT <eoand o> (p')7/(p')~,
Ay (x,1) =197 (log(e 41))°P' ™) | By (x,1) = 1P ™) and D (1) =tlog(e+1).

If we define s(-) := (op’)'(-) and I(-) := p(-)/s(-), by Lemma 2.4(ii) and (iv),
s(-),1(-) € 2'°2(R"). Moreover, [~ > 1. In fact, since ¢ > (p')*/(p")~,

(P) =) <o) =(op)”

which implies that

and then

Yoy S

Thus, we can apply Theorem 2.12 and Theorem 2.13 to obtain that

M

Loy LPORY) — LPO(R™).

and

M (LPO(RY) — LPO(RM),

B(-),LeP) ()
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respectively. Condition 11 it follows from Lemma 2.1. By Remark 3.2,

HXQHAI(.7L) ||XQ||BI(.7L) = HXQHLGP’(-)(logL)GP’(-) HXQ”L(GP’)’(-)
~|0|M/ePe10g(e + 1/]0])]0|/ P e = |Q|log(e + 1/|0])
= HZQHLlogL = HXQHDI(L)y

by equation (27), and thus condition 9 is satisfied. Condition 10 follows from the fact
that, by equation (31),

A_l(x t)B_l(x t) ~ wtl/(ﬁp')’(ﬂ —
AR Jog (e +1) log(e+1)

! 1

~ Dy (1).

Let us now see 1.2. Recall that for p(-) € 2"°¢(R") with 1 < p~ < pT < o and
o> (p)T/(P) ", u(-) € 2"°2(R") suchthat 1 < u~ < ut < oo and

1/op'(-)—1/u() > ¢, (38)

for some constant € € (0,1) and v(-) € P"°8(R"), Ay(x,1) = t*&) (log(e 4-1)) VIR
By(x,1) = 197V ™) and D,(x,1) = 10 (log(e +1))*WY®) where af-) is defined by
Va()=1/u()+1/(op’) ().
Note that, by Lemma 2.4(iii), o(-) € gzlog(R"). Moreover, 1 < o~ < at < oo,
In fact, by inequality (38),
1 1 1 1 1
—=—+ < + —e=1-¢.

() ut) (ep)() op'() (op)()
Thus, = > 1/(1 —¢€) > 1. Also,
ITIOICI040
p()+(ep) ()

Then, by Remark 1.3, (av)(-),(uv)(:) € 2'°¢1°¢(R"), Thus, by Proposition 3.1 and
equation (26), we have

<pt <oo.

o(-)

1004y .y 1221, .2y = 1201 ) ogy v QN oy
~ |0|(/We log(e + 1/]0])) e[|/ ("o
~ 10| ™ (log(e+1/]Q1))" == [|x0ll Lat) tog 1 av)
= ||XQHD2(~,L)'
Then 9 holds. On the other hand, by equation (31),

1/u(x 1/a(x
MO ey o 1Y D5 (x.1),

Az—l(xJ)Bz_l(xJ) ~ W ~ (10g(e+t))v(x) ~
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thus 10 holds. Note that, by Lemma 2.11 with p(:) := o(-) and ¢(-) := (av)(+),
M : L%0) (log L) @V)O)(R") — L*C) (log L)(*V)0)(R™). Thus, by duality (see equation
(15)), we have that

ol 2ol 5 el o0 / ()] dx

nggz

/\g ) dx
Dy (L)
=[0| sup

terg / 1g(x)|dx
llgllpy(.0y<1 0

<[Q] sup ||XQM8||D2(.7L) <10l

lgllpy(.0)<1

HgHD L)\l

DZ('ﬂL)

Then condition 11 holds.

3.2. Estimates in L(5(+))
We now give some previous estimates for the symbol functions we are interested

in.

LEMMA 3.7. Let k be a positive integer and p(-) € P8(R") with 1 < p~ <
pt <oo. Let a€ T.. and b € £} . Then, for every cube Q C R",

1 20(b—b0)"||
1xoll 1r0)

, k
L0 < (a@) bl ) - (39)

Proof. Let Q be a fixed cube. By Lemma 2.10 there exist a constant 0 < v < 1
independent of Q such that forall f € L} (R"),

ol 1"l p0 S (1F10)" el o - (40)

We now put f(x) = (b(x) —bo)¥/V . Noticing that k/v > 1, by Theorem 2.15, we
have

o= (G o) [0 o) |
=40 (s07a / |b<x>—bg|dx)]ks [a@)16l]". O

LEMMA 3.8. Let a € T.. and b € £}, then the following inequality
b3 — bl < llalla(30) ] 4.

holds for every cube Q C R".
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Proof. Let Q be a fixed cube. Then, by 7., condition (3), we have that

b3g — ol < |bsg — bagl + |b2g — bo|

1 / 1
< — b(x) — b3 dx—l——/bx—bz dx

1 / 1
< — b(x) — b3 dx+—/ b(x) — bap|dx
<a(30) [l gy +a20) bl 41 < lall.aB30) It . O

In the proof of Theorem 1.2 we shall use the following pointwise estimate for

bel(s()).

LEMMA 3.9. Let r(-) € P'°¢(R") with re < r(-) <1t < oo and §(-) be defined
asin (6) and b € L(6(-)). Let Q be a cube in R" and z € kQ for some positive integer
k. Then

1b(2) ~bol S lIxoll, s, -

Proof. Note that if x € Q and z € kQ for some positive integer k, then we have
|z—x| < |Q|"/". Thus by Lemma 2.16 and Corollary 3.6 we obtain

O

~bgl < f\b |dx<f|z A dx<][\Q|5 xS lollys-

4. Proof of main results

In this section we present the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Since v € L ()(R”) implies that the set of bounded func-

loc
tions with compact support is dense in L} ¢ )(R"), it is enough to show that

e

190) 5 Hf”L{,’()

for each non-negative bounded function with compact support f. Moreover, by duality
(see equation (15)) this is equivalent to prove that

1T ) e)ga) S 1710

for all non-negative bounded functions with compact support f,g with ||g||,») < 1.
Let K be the function defined by

K(t)= sup K(x),

1<|x| <21



876 L. MELCHIORI, G. PRADOLINI AND W. RAMOS

for every ¢ > 0. It was proved in [7, Proof of Theorem 2.2] that, if K € ®, we can
estimate the commutator as follows

727 1) ZK( D)3 () b6~ bl ot [ Ib(0) = bl ).

Jj=0

where the sum is taken over all dyadic cubes of R". Hence
1T (e s
S ZK ( ) Y, |, @)~ bel'f(z)dz / [b(x) = bol™ g(x)w(x)dx. (41)
o

Let us denote s(-) := Rp/(+) and I(-) := Sq(-). Since (p')" <R(p’)” and ¢~ < Sq~
then ()" < p~ and (I')™ < (¢™)’. Let u,v be two constants such that

(YT <u<p” and It <v<(qh),
and o(-),7(-) defined by
1 1 1 1 1 1
m=m+ﬁ and m=m+;

Observe that, by Lemma 2.4, @(-),7(-) € 2'°¢(R") since s(-),I(-) € 2'°¢(R"). Using
Holder’s inequality (20) twice and Lemma 2.5, we can estimate (41) by a multiple of

zK( )2 3/ 10lb = bollll lsof o

sl lxsoll o0

201t —bol™ || v lX0gwll <00
lxoll =0 Ixoll =0
Notice that, by Lemmas 3.7 and 3.8, we have
Ixs0lb = bol |l oy  [1301b = bsol |l | [lxs0lb30 —bol |l ot
1230l o) ~ 1230l o) 30l 00

< (lalla30) ] ) -

Thus, since a € T.., we can estimate (42) as follows

/ T2 f(x) [w(x)g(x) dx
< EK( ) 2 301 (Jlall.a30) 1l 21 ) s/l o0

1230ll 00
=i | xo8wll =)
<10l (lalh-a(@) Il )" " H 2

m = f(Q)) 1230 f g0t | o 108wl 120
< |b|™ a3QmK< 30 0 . (43)
| ”j"l%" 30) y ) Pe 12301700 ol %ol =0

x |0 (42)
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Since g has compact support and w € Lf;;’c (R™),

11 ”XQgWHLT _
0= |xollz+

Let C;, C;, C;* and G; be the constants provided by Lemma 2.7, Lemma 2.5 and
Theorem 2.8 respectively. If o > C;C;C;*G; and k € Z, it follows that, if for some
dyadic cube Q,

ot < 1208l ’ (a4

1ol <0

then Q is contained in dyadic cubes satisfying this condition, which are maximal with
respect to the inclusion. Thus, for each integer k there is a family of maximal non-
overlapping dyadic cubes {Qy ;}jcz satisfying (44). Let Q;Q j be the dyadic cube con-

taining Qi ; with sidelength 2¢(Q ;). Then, by maximality and Lemma 2.7, we have

20 PO 2 P W
2 P

For k € Z we define the set

Cr = {Qdyadic s ok < 1208wl <) < ak+1}.
HXQHLr(z)

L) k+1

Cfakga

70) HXQZ,_/- 70)

Then every dyadic cube Q for which ||xogwl|,«() /X0l =) # O belongs to exactly
one ¢ . Furthermore, if Q € %%, it follows that Q C Oy, ; for some j. Then, from (43)
and 7., condition (3), we obtain that

[ g as
[/ ol ”
S IIbIIZ}J >y a(3Q)’"K< (2Q)> 30| 130l ot 0| 208wl =0

keZ.0ct; 1230l L0t) xollz<

L(Q .
Shiz, 3 a3 oy (1) poje ey

(k,j)EZXTZ Q€6 :0C O j HX3QHLw(l)
H%Qk#,’g 1
Sl > S a (30 )"
(k,j)EZXT H X0k 0
= (1@ 30/l o0
« 3 x(12)pgo/etlen. 5
0€%;:0C 0 30l ot)

If we show that there is a constant Cx such that, for any dyadic cube Qy,

lseof [l o0

||%3Qo || Lo()
(46)

5 ("9 ol erlin < cifis + enenney
0:0C0) 30l et
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with &,8 the numbers provided by condition © and K(r) = fIZ\ <
we obtain that

/ T2 () w(x)g (x) dx
Rn

S 1161’ > a(30c,)"CkK(8(1+€)(0x ;)30
(k.j)EZXZ

K(z)dz, from (45)

% HmQ"*J’f Lo0) Hka‘ng

L) (47)

HmQh.f L00) HXQ’”'

L)

Let ¥ = max{3,5(1 +¢)}. Note that K is an increasing function. From (47), by
Lemma 2.7, T., condition (3), Holder’s inequality and Lemma 2.6 we have that

/ T2 £ (x) w(x)g (x) dx
Rn

Slelg Y a(y0r ;)" K(v£(Qx ;)| YOk ] nyQk‘jf 120 mek‘jgw L0
(k,J)EZXZ HX'YQ/;,_/ Lo0) HX'YQA',_/ 170
Sl Y a(rQu)"R((Qu) 7Qu| i W N
(k,j)EZXZ H%)/Qkﬁj u H%ka,_,- L50)
e ’v |01
HZYQA'J v "XVQk~f zo

Thus, by Fefferman-Phong type condition (5) on the weights we obtain

/ T2 £ x) w(x)g (x) dx
Rn

H%ka,_,-fVH” HXYQk‘jg o 1| e

<xlbly X 1Ol
(k,j)EZXT. HX’YQA',_/

v IXVQkﬁj La()

u H%)/Qkﬁj

Let B(-) defined as in Lemma 2.6. Then, by this lemma, the last sum is equivalent to

s,

K[15]'g > |Qk,j||7%

HXYQk‘jg
H YOk,
(k.J)EZXT. ’X)/Qkﬁj

\4
. (48)
)
v “ZYQk,_/

u v

For each k, j € Z we can consider the sets

D= |J O and Fy; = Ok ;\(Qk ;N Dys1).
JEZ
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Thus {Fy j}(x jjezxz is a disjoint family of sets which satisfy

I1
|Ok,j N Dir1| < E|Qk,j| (49)
for some positive constant I'T < o, and
100l < 1| (50)
k,j 1— H/(X kol

Deferring the proof of these inequalities for the moment, we can estimate (48) to obtain

/ T () w(x)g (x) dx
Rn

< m ) HXYQk‘jvau
Sxlolly X el ||X

H YQkﬁj ()
(k,j)EZXZ HXVQ/@, . LB

|z,

H%)’Qk,

SK||B]'g /RHMLH (fV)0)dyMp () v(8) () S K (1Bl [[Mpe (f9) ] e Mg (@) e
SB[Vl

where we have used that by Theorem 2.12, My : LPC)(R") < LPC)(R™) since p~ > i,
and by Remark 2.14, Mg v : LY O(R") — LP'O(R") since (¢')~ > v (see (7) and
(8) for the definition of this maximal operatos).

To prove (49), note that if for some &, j,i € Z, O j N Qk+1,i 7 O then, by maxi-
mality and the fact that o > 1, Q11 S Ok, Thus

10k N Dist| =[Ok N Qrrri| = |U(QujNQisri)| = Y 1Okl
i€Z i€Z 20541,/ S0k, j
g C; HXQkJrll ‘r(-) Hka+l,i LT/(') ?
le+1 iCOk,j

where the constant C; is provided by Lemma 2.5. On the other hand, by maximality
and the property (44) of the cubes Q1 ; and Oy ; we have

Hka S Hka z
(i) ok ! L0 ang (i) ’7“ < Crok. (51)
HkaHJ 170) Hkaj
Then, by (51)(i) we have
|0k, N Diy1| < Cf HXQHU 170) HXQHL,,' 170)
le+lzCQk
* o —(k+1
< Cra (k+1) H%Qkﬂ,g %Qk, H%Qkﬂ,%Qm 170) (52)

i Qk+l iCOk,j



880 L. MELCHIORI, G. PRADOLINI AND W. RAMOS

Note that, by Theorem 2.8, the following inequality holds

<Gq H"HLT(-) Hh”LT’(-) )

’%Qk+ll ) Hka+l,ih

i€Z 70
for every r € L*)(R") and h € L¥()(R"). Applying this with r := gwxo,,; and h:=
X0;; We can estimate (52) as follows

|0k N Dis1| < Crom FHV G, 8WXow; ||, H%Qk, L0
Then, by (51)(ii), we obtain that
|0k Dy < Cro FDCrak Gy X0, HXQA/ L0

< Ciat ok GiCr 0 = 10

where the constant C;* is provided by Lemma 2.5. This gives (49). Finally,

F i i iND, iND IT
Fiejl _ 190\ Qi N D)l _ | 1@k O D] -0 >0

0cjl |0k |0k

since, o > I1, and we obtain (50).
In order to complete the proof we must show that (46) holds. In fact, if £(Qp) =
2~% with dy € Z, by Lemma 2.5 we have

0:0CQ ||X3QHLw(-)
<Y K@@ > £ 230l Lot X301 o) -
d=dy 0CQp:((Q)=27¢

Thus, applying Lemma 2.9 with f and g := x3¢,, we obtain that

= (U0 230/l o 7 (n—d—1\n—dn
S & (U2 ) oo Bt < g, iy 3 F2 2
0:0CQ 3QliLe0) d>dy

S 11300 o0 12300 || o) K(8(1+€)£(Q0)),

where the last estimate follows as in [14]. This proves (46) and concludes the proof of
Theorem 1.1. [

Proof of Theorem 1.2. We use the same technique as in the proof of the Theorem
1.1 to obtain that

[ rohetrgto) d
= ZK( ) Z ‘b bQ|jf(Z)dZ/Qb(x)—me_jg(x)w(x)dx.
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Hence, by Lemma 3.9,

[ e somstias s SR (P ) xelia 01 [ s f stmiac

(53)

Thus, given some constant o larger than 2" and proceeding as in [ 14, proof of theorem
2.1], for each k € Z there exists a family of maximal non-overlaping dyadic cubes
{O,j} jez, the Calderén-Zygmund cubes, such that we can estimate (53) by a multiple
of

Y R0 |xou

(k.j)EZXT

|Ok | f(z)dz ][ g2(2)w(z)dz, (54)
n/8() YOk, YOk,

where ¥y = max{3,0(1+¢€)} with &, the numbers provided by condition ©. By
condition .% and Holder’s inequality we have

f(2)dz < HXYQ"ff‘ H%ka, HXYQ‘*-"fVHB(',L) HXYQ""’WIHA@L)
70kj HXYQk j HXYQM D (L HXYQ"J’ B(-.L) nyg’” A(-L)
and
Hx')/Qkfng HXYij HxYQkfg‘ HXYQMWH
. e@mazs <
70k j H?C)'ij HXVQM J(L HXYQ’” HXVQ'” E(-L)

Then from (54) and by Fefferman-Phong type condltlon (14) on the Welghts we have

T f () [w(x)g (x) dx

Rn
- (ka, HXQM Qk,HXYQMfVH HXYQMV_IHA(.7L)
(k,j)ELXZL H?CkaJ H%VQ;U ACL)

o], WWMH(@

HXYQ’” H(-L) ‘XYQ"J ‘E(~,L)

H%)/Qkﬁjva H%)’ijg ’ HXVij

<KoY |0l

L o P I o

Let B(-) be defined as in Lemma 2.6. Then, by this lemma, the last sum is equivalent
to

HXYQ’”g ’H(~7L)

[z,

Y |Qk,j|’+M X

H YQkﬁj ()
(k.J)EZXZ ‘nyk‘j sl LB

HXVQ’” H(-L)
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We shall use the following properties of Calderén-Zygmund cubes. For each integers &
and j we can consider the sets Dy = U ez Ox,j and Fy j = O j \ (Qk,j N Di+1). Thus
{Fx,j} (k.j)ezxz 1s a disjoint family of sets which satisfy

1
|Ok.j| < —r |Fr -

z
Then
nyQkavHBL HXVQ"‘ngHL
/ Txf(x)g()wx)dx Sk Y |Fijl = HXYQM B() =
n o L
(k,J)EZXTZ HXYQk,j B(-L) HXYQk,j H(-L)

S & [[Mpy ()| oo 1Moy (@) o S w100

where we have used the hyphotesis (12) and (13). O
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