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MONOTONICITY PATTERNS AND FUNCTIONAL INEQUALITIES
FOR CLASSICAL AND GENERALIZED WRIGHT FUNCTIONS
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(Communicated by S. Varosanec)

Abstract. Our aim in this paper is to present the completely monotonicity and convexity prop-
erties for the Wright function. As a consequences of these results, we present some functional
inequalities. Moreover, we derive the monotonicity and log-convexity results for the generalized
Wright functions. As applications, we present several new inequalities (like Turdn type inequal-
ities) and we prove some geometric properties for the four—parametric Mittag—Leffler functions.

1. Introduction

Special functions like Mittag-Leffler functions and Wright functions E, g(z) and
W p(z) are frequently used in the solution of linear partial fractional differential equa-
tions, the number theory regarding the asymptotic of the number of some special par-
titions of the natural numbers and in the boundary—value problems for the fractional
diffusion-wave equation, that is, the linear partial integro-differential equation obtained
from the classical diffusion or wave equation by replacing the first- or second order
time derivative by a fractional derivative of order ¢« with 0 < o < 2. It was found that
the corresponding Green functions can be represented in terms of the Wright function.
This special function is related to modified Bessel functions of the first kind, and thus
their properties can be useful in problems of mathematical physics.

The special case of Fox-Wright function which we consider in this paper, is the
Wright function which is defined by the series representation, valid in the whole com-
plex plane

oo Zk

Wop(2) :%M’

a>—-1,B€C. (1)

It is an entire function of order 1/(1+ o), which has been known also as generalized
Bessel function.

Our aim in this paper is twofold: on one hand it is to prove the complete mono-
tonicity properties for the Wright function W, g(—z) for o, >,0 and 0 <z < 1.
As a consequence, we derive some functional inequalities as well as lower and upper
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bounds for the Wright function. On the other hand, by using the complete monotonicity
property for the classical Wright function we obtain the complete monotonicity for the
generalized Wright function, and consequently we get also the monotonicity property
for the four—parametric Mittag—Leffler function. This paper is a continuation of the
author results on Turdn type and related inequalities for different class of special func-
tions, cf. [4, 6,7, 8,9, 10, 11, 13, 15].

The paper is organized as follows: In section 2, we present new integral represen-
tation for the Wright function. Moreover, we derive some monotonicity and convexity
results for the function z — W, g(—z). As a consequence, we establish a number of
functional inequalities. In section 3, the monotonicity property for generalized Wright
function is proved. As applications, we prove several new inequalities for this func-
tions. In particular, we gave some Turdn type inequalities for the generalized Wright
function. Finally, in section 4, we apply some of our main results of Section 3 with a
view to deriving some new inequalities for the four—parametric Mittag—Leffler function.

Each of the following definitions will be used in our investigation.

DEFINITION 1. A function f: (0,00) CR — R is said to be completely monotonic
if f has derivatives of all orders and satisfies the following inequalities:

(—1)"f"W(x) >0, (x>0, and ne N={1,2,3,..}).

DEFINITION 2. A function f: [a,h] CR — R is said to be log-convex if its natural
logarithm log f is convex, that is, for all x,y € [a,b] and o € [0,1] we have

flox+ (1= a)y) < [F]*[F )]

If the above inequality is reversed then f is called a log-concave function. It is also
known that if g is differentiable, then f is log-convex (log-concave) if and only if f’/f
is increasing (decreasing).

2. The Wright functions: monotonicity patterns and functional inequalities

In the next Lemma we present new integral representation for the Wright function
Wm/} (2)-

LEMMA 1. Let B > o > 0. Then the the Wright function W, g(z) has the follow-
ing integral representation

1
Wap(2) = cap /0 (1= /@)B-olyy, (a)d, 2 € R, @)

where Cap = m. In particular,

1 1
Wao+1(2) = E/O We,o(2t)dt.
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Proof. By using the definition of the Wright function W, g(z), we get
1 1 (zt)*
| — l/oyB—a—1 :/ 1/ po (@)
|t o an = [ 1 - Emrwwww
— - l_tl/a ﬁ—a—ltkdt) 'k
,Zg)k!l"((x+k(x) </o ( ) ¢

= - 1— B—o—1 O(k+0(71d k
O‘Z ¢ KT (o + ko) (/ (1= )¢

B(f—o,0k+ ) ,
_(xz KT (o + ket)

a,ﬁ( )

- b
Ca,B

where B(x,y) is the Beta function defined by B(x,y) = [y ¥ (1 — 1)’ ldr = Fr(gi(yy))
Finally, letting in (2) the value B = oc+ 1 we obtain the integral representation for the

Wright function Wy ¢41(z). O

LEMMA 2. Let o0 > 0 and B > x*, where x* ~ 1.461632144... is the abscissa of
the minimum of the Gamma function, then the function W, g (—z2) is non—negative for
all z€ (0,1).

Proof. Let ui(z) = WIM, we get
Wo.p(—2) = uo(2) —m1(2) + 3 (= 1)'ui(z). (3)

k=2

Elementary calculations reveal that for 0 <z < 1, and k > 2

wii(@) __ T(ak+Ble  _ T(ak+B)

we(z)  (k+D(ak+B+a)  T(ak+B+a) @

From the previous inequality and using the fact that z — T'(z) is increasing on (x*,oo)
we deduce that ”’;—EZ()Z) < 1. Therefore, for fixed 0 < z < 1, the sequence k — uy(z) is

decreasing with regards k > 2 and u; tends to 0 as k — oo. From (3) and since the
Gamma function is increasing on (x*,e0), we have

Waﬁ(_Z) >up(z) —ui(z) = % _ ﬁ
1 1
> TE) Thra) "

The proof of Lemma 2 is complete. [
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THEOREM 1. Let B > o > x*. Then, the function z — Wa’ﬁ (2) =Wop(—2) is
completely monotonic and log-convex on (0,1). Furthermore, the following inequali-
ties

¥ v . 2
Wa,ﬁ+2a(Z)Wa,ﬁ (2) — (Wa,ﬁJra(Z)) 20,0<z<1, o)
_ e,
. e T(B+a)
WWﬁ(Z)>W’O<Z<I’ (6)

are valid.

Proof. By using the differentiation formula

d

d_ZWa,ﬁ (2) = Wa,ﬁJra(Z)» (N
Lemma 1 and Lemma 2, we have for n € N and 8 > o >0,

(n)

v 1 5
(—l)"<Wa7ﬁ(z)> :Ca’ﬁ/o (1 _tl/a)ﬁiailtha7a+na(Zl)dt >0,

for all z € (0,1). Thus, the function z — Waﬁ (z) is completely monotonic and con-
sequently is log-convex, since every completely monotonic function is log—convex,
see [16, p.167]. Now, focus on the Turdn type inequality (1). Since the function
2+ Wy p(2) is log-convex on (0, 1), it follows that the function z+— W&.p (2)/Wo.p(2)
is increasing on (0,1). Thus

W 5@\ Wapraa@Wap(s) - (Wam (Z)>2 y
Wa,[}(z) B ==

772
W [3(2)
Next, to prove the inequality (6), we set

F(z) =log (F(ﬁ)Waﬁ (z)) and G(z) =z.

By usnig the fact that z — W(;_ﬁ (z)/Wep(2) is increasing on (0,e) and monotone
form of I’Hospital’s rule [1], we deduce that the function z — F(z)/G(z) = (F(z) —
F(0))/(G(z) — G(0)) is increasing on (0,1), and consequently

F r

—=2 > lim F'(z) = —&.
G(z) ~ x—0 I'la+p)
This completes the proof of the Theorem 1. [J

THEOREM 2. The following inequalities hold true:
a. For B—a > 1 and z > 0, we have:

o)z

r(m)) el — |
)/

Wep(2) < ( ®)

Z
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b. For B—o >2 and 7> 0, we have:

Wa7ﬁ+1(Z)Wa7ﬁ,1 (2) < T(B— ali(?);((;)_ ot 1) Wa,a+1(Z)Wa,ﬁ (2). )

In particular, we get
2Wa, a+3( ) < W, a+2(7) (10)

Proof. a. In [5, Theorem 6.1], the author it was proved that

() .
Wy p(a) < e 250 (an
“P S T(B)
In view of (2) and (11), we obtain
W (2) < o /1(1 f1/ypa—1 T g, (12)
ST o

Now, recall the Chebyshev integral inequality [12, p. 40]: if f,g: [a,b] — R are
synchoronous (both increasing or decreasing) integrable functions, and p : [a,b] — R
is a positive integrable function, then

[ pswar [ prga< [Cpoa [Cposogoa a3

Note that if f and g are asynchronous (one is decreasing and the other is increasing),
then (13) is reversed. For this consider the functions p, f,g : [0,1] — R defined by:

CaB o (o)

p(t)=1, f(t) = (1—YB=2=Tand g(r) = eTRa1™,

Since the function f is decreasing and g increasing if B — o > 1. On the other hand,
we have

T'(2a)
Occa B ~ T(a) 1 _ TQRa)(e ™ —1)
/ 70) (5B~ .00 = f g and /0 R

So, using the Chebyshev inequality (13) we get inequality (8).
b. Another use of the Chebyshev integral inequality (13), thatis p,f,g:[0,1] — R
defined by:

p(t) = Waa(@), f(t) = copii(1—1"*)P~% and g(t) = co 5y (1 —1"/*)P 772,

Observe that the functions f and g are decreasing on (0,c0) for all § — a > 2. Fur-
thermore, by using the Chebyshev inequality (13) and the integral representation (2) we
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have
Wa,ﬁJrl(Z)Wa,ﬁfl(Z)
1 1
< (/0 Wa,a(zt)dt> . (Ca7/3+lca,[3—1/0 (1 _tl/a)2ﬁ2a2Wa,a(Zt)dt>

1 1
< (/0 Wa,a(zt)dt> . (Ca,ﬁJrlCoc,ﬁl/O (1 _tl/a)ﬁ_a_IWa,a(Zt)dt>

_ OCupi1Cap-1

Coc,ﬁ

(14)

Wo,a+1 (Z)Wm/} (2),

and consequently (9) as well. Finally, setting in (9) the value § = o +2 we deduce that
the inequality (10) is hold true. [J

In order to establish a bilateral functional inequalities for Wy, g(z), we need the
Fox—Wright function ,'¥,(z) defined by

} _ i MY, T(a; + oyk) i
k=0 H;I'zl F(bl + ﬁ]k> k!

Z 15
P (blvﬁl)v'“v(bl]vﬁl]) ( )

where z,a;,bj € C, 04,B; € R for i € {1,...,p} and j € {1,...,q}. The series (15)
converges absolutely and uniformly for all bounded |z|, z € C when

q 14
1+ Y Bi—> 0 >0.
=1 i=1

We note that the inequality (18) in the next Theorem complements and improve
the inequality (6).

THEOREM 3. Let B > o > 0. The following inequalities hold true:

Co)T(B) , — el
(R i < o [ |9 < (i) - (P cem

B) s S \FB) rB+a)
(16)
I'(a)
1 (2a)(1 — ™)

wes < (ray) | Targrar ) < an

rp) .

. el"(or+[3)
a,plZ /W,O<Z<1. (18)

Proof. We recall that Pogany and Srivastava it was proved in [14, Theorem 4] and
[14, eq. (22)] that for all ,'%¥, satisfying

Vi > vy and Wi < woyn, (19)
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the two—sided inequality

~1 X (a ) ) """ (’1 ) ) X
Woe‘l/lll/() a < pqu (bigll) (b:;;;p) :| < Yo — (1 _el I)V’l; (20)
holds true for all x € R. Here
1T F(aj + Oij)
Y = — , j€4{1,2,3}.
7,1, + gy * < 127
In our case, we have
IN'la) I'2a) I'3a)
= s = d = =
o TE) VT MY T TR 20

On the other hand, due to log—convexity property of the Gamma function I'(z), the

ratios z — I'(z+a)/T(z) is increasing on (0,) when a > 0. Thus implies that the
following inequality:

I'(z+a) o I'(z+a+b)

(z) = T(z+b) ’

holds for all a,b,z > 0. Letting z =20, a=o and b= — o > 0 in (12) we get
Y1 > yy. This proves the left-hand side of inequality (19). Now, we consider the
function f : (0,00) — R defined by:

21

T (z+2a)
fa(z) = TTa+z)
Thus, ,
o9 — (o) e 200 - 20+ 0, 22

where y(z) =T"(z)/T'(z) is the Euler digamma function. By using the Legendre’s

formula
ltZ—l _ d
2) ——7/+/0 1

where 7 is the Euler—Mascheroni constant, we have

fo(2)
f o (Z)

where gq(t) = 1+12% —2t% t € [0,1]. Thus g, (t) = 20¢* 1 (t* — 1) < 0, for all

€ [0,1], consequently the function 7 — gy (¢) is decreasing on [0,1] and satisfies
ga(0) =1 and gq(1) = 0. So, the function z — fy(z) is decreasing on (0,%0). In
particular f(B) < fo (o), which implies the right hand side of (19). Then,

(o) — el
() e m [ ]« () - (25) o

1 tZ 1
= [ Fsatva, (23
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for all z € R. Now, we prove the inequality (17) From the integral representation (2)
and (11), we have

Wa.[}(Z)gca—ﬁ/ ( 1/0()[5 =1, (( ))thl‘
' 0

INa)
_ Cap < (@)/TQ2a))" ! ayB—a—1n
T T(a) & n! /0 (1= teymecieran
_ acaﬁ i /F 20)z)" /0 (1 _t)ﬁfafltoerafldt
- acaﬁ BB —o,on+o)(T'(a)/T(2a)z)" (23)
- T(o) 2 n!
1 i T(an+a)(T(a)/T(20)z)"
- I(a) & nT(on+ P)

| (o) | T()
(o) [(ﬁ,a) F(Za)z}

So, by the right hand side of inequality (16) and (25) we deduce that the inequality (17)
holds true for all z > 0. Similar arguments would lead us to prove the inequality (18).
By means of the integral representation (2) and the inequality (6) we have

ICOCOCJ3 /1 1/o\B—a—1 - )
> OF _ I'2a)
aﬁ(z)/ (@) Jo (L—17%) e dt

_ Cap i (-T(a)/T(2ex)z)" /Ol(l_tl/a)ﬁ,afltndt (26)

MNo) = n!
1 (o) I'a)
- ml\yl [(ﬁ,a) ‘ B F(Za)z}'

Combining the left hand side of inequality (16) and (26) we obtain the inequality (18).
This evidently completes the proof of Theorem 3. [

3. The generalized Wright functions: monotonicity patterns and functional
inequalities

n [2], the authors introduced the definition of the generalized Wright function

Wgﬁ( 7):
1O N (V)n 4
Waﬁ(Z)_,,:Z()(G)nr(an+ﬂ) (XGRB %O-ZE(C (27)
where

=1(t+1)..(t+n—-1),
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is a Pochhammer symbol. The function ng (z) is an entire function of order 1/(1+ a)
and has the following integral representatidn [2, Theorem 2, eq. (34)]
(o)

1
W (@) = m/o 1 1= 1) Y Wy g (at)dt, (28)

where o > —1,,7,0,z € C and R(o) > R(y) > 0.

THEOREM 4. The following assertions are true:

a. The function 7 — Wg’g (z) is completely monotonic and log—convex on (0, 1), for all

o,v,06 >0 such that B > oo > x* and ¢ > Y. Moreover; the following inequalities hold

true: -y -
W, g ()W, 5 (v)
WO (xpy) > —2BwP g cxiy <, (29)
(]
Y+1 12612, \ o7 Y rilotl
G—HWO{; e @OWag(2) - E.(Wo{;;;* (2))>>0,0<z<1, (30)
-t
Wi >4 ze(0,1). 31)
P r(B)

b. The function ¢ — ngg (z) is log—convex on (0,°0). Moreover, the following Turdn
type inequality

2
W E@WE @ - (Wi @) >0, (32

holds true.

Proof. a. From Theorem 1 and integral representation of the generalized Wright

function ng(z), we deduce that the function z — Wg:g (z) is completely monotonic

on (0,1) and consequently is log—convex. By using the Kimberling’s result [3], we
obtain the inequality (29). Now, we prove the inequality (30). Since the function z —
ng(z) is log—convex on (0,1) we have z — (ng(z))’/ng(z) is increasing on

(0,1). So, by using the differentiation formula [2, Theorem 19]

d v.0 Y y+1l,0+1
2 Vap& = gWapia (), (33)

we get

<<WJ’;§ <z>>’>/ e QW5 @) — & (W50 @)
: = >0,  (34)

o(o+1) " o, f+20 o,B o2 \a,B+a
W0 CHBIE

which can be derived easily the inequality (30). Now, we prove the inequality (31).

Let Fi(z) = log [F(ﬁ)ng (z)} and G (z) = z. Again by using the monotone form of
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I’Hospital’s rule, we deduce that the function Fi(z)/G;(z) = (Fi(z) — F1(0)) /(G (z) —
G,(0)) is increasing on (0, 1), and consequently

o ARG __T(B)

1 - - )
=0 G (2) ol'(f+a)
which completes the proof of inequality (31).

b. For convenience, let us write A,(0) = ) W Since the function v’ is com-

'L (an+p)°
pletely monotonic on (0,0) we get

9*logA,(0)]/d6” =y (0) — v/ (6 +n) >0,
for all n > 0. So, using the fact that sums of log—convex functions are log—convex too,
we deduce that the function o — ng(z) is log—convex on (0,0), for z > 0. Now,
focus the Turdn type inequality (32). Since ¢ — ng(z) is log—convex on (0,o0) for
z > 0, it follows that for 01,0, > 0, ¢ € [0,1], we have

t 1—t1
we e < wig @] [wige]

Choosing 61 =0, 0, = 0+ 2 and ¢ = 1 /2, the above inequality reduces to the Turdn
type inequality (32). The proof of Theorem 4 is thus completed. [J

THEOREM 5. Let B,0,6 >0 and y> 0. Then, the following Turdn type inequal-

ity
Wyo W)/+2 o Y Wy+1,6 2 >0 35
WD (Wl @) 0 (35)

holds true for all z > 0.

Proof. For convenience, let us write K(y) = (( ))Wy g( 7). By applying the Cauchy
product series, we find that

K2(y+1)—K(pK(y+2) = ZZS,kT,ku (36)
k=0 j=0

where Tj; = ((2j —k) — )I(y+ j))T(y+(k—j)+1) and 6;x = 1/(j!(k— j)'T' (o +
(o +k— )T(oj+ B)T(a(k—j)+ B)). If k is even, then

k/2—1 k/2+1
Z@kT/k— Z Ok Tjx+ Z OjxTjx+ 0k, Ti g

k/2—1 k/2—1

= > 8uTit Y, 8aTiju+0i,Te,
j=0 j=0 o
[(k=1)/2]

= 2 O (T./}k + Tkaf,k> = O Ly +k/2)T (7 +k/2+ 1),
Jj=0
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where, as usual, [k] denotes the greatest integer part of k € R. Similarly, if & is odd,
then

[(k=1)/2]
Eéjk ik = 2 5]k< /k“l‘Tk /k) 6§7kl"(y+k/2)1“(y+k/2+l).

Therefore,

K(y+1) = K(y)K(y+2)

= [(k=1)/2]
= 2 G (T,-,k + Tk—j,k) = 8y T(y+k/2)T(y+k/2+1).
k=0 j=0

Simplifying, we find that
Tjk+ Tiju = (k=2)((2) —k) = DI(y+ )Ty + (k=) <0,

for k <k—j (i.e [(k—1)/2] > j), which evidently completes the proof of Theorem
5. 0

THEOREM 6. Let B > o >0 and ¢ >y > 0. Then the following inequalities hold

true:
T(y) 1 7.1) I'(y) Y 12
Foye <1 R e (1-L2a-dh) zer 67
G 1 Y LQXZ
o 1 o
Wy (2) > m) e 0 <z < 1. (39)

Proof. In our case, we have yy = (—y,llll (o—+1)) and yp = o +2)) Since

o >y, we get ¥ > Yo and 14/12 < Yoya, and consequently the conditions (19) hold.
Then, by using (20) we deduce that the inequality (37) holds true. Next, we prove the
inequality (38). Combining the inequality (11) and the representation integral of the
generalized Wright function (28), we get

' [(o) - - OEE 2t
Wyﬁ() (ﬁ)F(Y)F(G—y)/o (N1 =)oV T ¥ gy
= (o tn-1/y _ no-1-1[ % <(r(ﬁ)/r(ﬁ+a))z>
e h T X . di
ot e (@)
TTBIo-1 % o /Oﬂ (1-0)°" Ly
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By+mo ) ((F(B)/T(B+0)z)"

n!

_ I(o) T+ >(( (B)/T(B+))z)"
TR 2, ot

_ Io)
e Lo v

Combining this equation with the right hand side of inequalities (37), we obtain (38).
It remains to prove (39). The integral representation (28) of the function ng (z) and

inequality (31) yields that

W5 (2)

1 )
/ (1= e T B Y gy
0

= (= (T(B)/T(B+a))"

1
e b g n, d
o) = (~@@)rBro) o
"o 7 nl /0”+ 1= " ar
__ L)y o | _T®)
A e T B+ a)

From the above inequality and the left hand side of inequalities (37) we deduce (39) for
all0<z<1and B> a>0and 6 > y>0. The proof of Theorem 6 is complete. [

REMARK 1. We point out that the inequality (39) complements and improve the
inequality (31). Since e* > ¢~ * for all z > 0, we deduce that the inequality (39) is better
than (31).

THEOREM 7. The following inequalities hold true:
a. Forall z7>0,0<y<1and 6 —y>1, we have

(B - a)Wa,ﬁfa(Z) -1 _wh
FBoae s 0

b. Forall z>0,0<y<1 and 6 —y> 2, we have

Wy 5(2) <

I'(c —y)T(c+ 1) (c—1) Vo
I(o)l(y)I'(c—y+ 1) (G—y—])Waﬁ( >Waﬁ( 7). (41

Wap @Wrg () <
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Proof. a. By again using the Chebyshev integral inequality (13), we consider the

functions p, f,g : [0,1] — R defined by
p(t)=1, f(t) = (B(c —7,y) (1 =) 714" and g(t) = Wo.p(2t).

Observe that the function f(¢) is decreasing and g(¢) is increasing on [0,1], if 0 < y <

1 and o — v > 1. On the other hand, we have

[ v sarar =
and
[ )= [ Wep-alen)'a
1 1
=2 (W“’“(Z) e a))
—W2 (),

So, the integral representation (28) completes the proof of inequality (40).
b. For the proof of inequality (41), we consider the functions p, f,g : [0,1]
defined by

Pt = Wop(a1), £0) = (1) 7" and g(t) = (1—1)° 727,

Thus,
F(MI(c—y+1)  yo
‘/p T(o+1) Wei @)
A p(t)g(t) = F(Y)g((g __1)/)_ I)WJZE_I(Z),
and

/P t)dt = /Waﬁ 2t)d aﬁ(zt) i(Wa’ﬁ(Z)_ﬁ)

—— R

On the other hand, the functions f(¢) and g(¢) are decreasing on [0,1] if 0 < y < 1

and o — y > 2. Therefore, the Chebyshev integral inequality (13) yields that

Clc—y+DI(c—y—1) o o
Loyt et Dyt owys () -

(o) ([ o)
</ We,p (2t dt) (/0 (1—1)%°~ 27‘2t27‘2Wa,,3(zt)) dt
( | 1(1 0

< (/ W p(at dt) : G_y_lly_lWa_ﬁ(Zl)) dt
, Ve :

)
)
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The proof of Theorem 7 is complete. [J

REMARK 2. We note that the results obtained in section 3 are not a generalizations
of the results obtained in section 2. except Theorem 4, assertion a. and equations
(29), (30) and (31). Indeed, the results in section 2 follow by using the new integral
representation (2) and the results of section 3 follow by using the integral representation
(28) which is different from the integral representation (2). Then, in the same way we
obtain that the function W; By(z) admits this integral representation

1
WIG(E) = cap [ (1= WG, “2)

which is a generalization of (2), and consequently we can obtain the generalization of
our results from section 2.

4. Applications: monotonicity patterns and functional inequalities for the
four-parametric Mittag—Leffler functions

The Mittag-Leffler functions with 2n parameters are defined for B; € R (B3 +
..+B2+£0) and B; € C (j=1,...,n € N) by the series

k

—, zeC. (43)
)= & T, #B)

When n = 1, the definition in (43) coincides with the definition of the two—parametric
Mittag—Leffler function

o z
En =Ep = ——— z€C, (44)
(Bﬁ)l(z) B,ﬂ(z) k:EOF(ﬁ —|—kB) z

and similarly for n = 2, where E(g g),(z) coincides with the four—parametric Mittag—
Leffler function

oo Zk

E )=FE . ) =
02 = Envpiants©) = 20 B3 T s 48

,z€C, (45)

and is closer by its properties to the Wright function Wp g(z) defined by
o k

- <
W p(2) = ,ZO KIT(B + kB))

,z€C. (46)

The generalized 2n— parametric Mittag-Leffler function Eg p),(z) can be represented
in terms of the Fox—Wright hypergeometric function ,'¥,(z) by

Egp), () =1'¥n z} ,zeC. 47)
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Letting Y =1 in definition (27) of the generalized Wright function, we obtain that
Lo
Waﬁ (2) = F(G)Ea,[};l,o(z)a (43)

and consequently we obtain the following assertions for the four—parametric Mittag—
Leffler function Ey g.1 5(2):

THEOREM 8. a. The function z+— Eq g1 6(—2) = Eaﬁ;hg(z) is completely mono-
tonic and log—convex on (0,1) for all B > o0 > x* and © > 1. Furthermore, the fol-
lowing inequalities hold true:

. I'(o v .
Ea,[};l,o(x+Y) = (%) 'Eaﬁ;l.,G(X)Eaﬁ;l,G(y)’ O<x+y<l. (49)
2 . . 1/ 2
G—HEa,ﬁ+2a;3,o+2(Z)Ea,ﬁ;I,U(Z) o <Ea,ﬁ+a;2,o+1(z)> >20,0<z<1. (50
g
. e oT(B+oa)
Eaﬁ;l,c(z) = rig),0<z< 1. 51)

b. The function 6 +— T'(0)Eq g.1,5(2) is log-convex on (0,) for all z,ct, 3 > 0. More-
over, the following Turdn type inequality

2
Ea,ﬁ;1,0+2(Z)Ea,[3;l,0(Z) - (Eoc,[};l,oﬂ(z)) =0,

o+1

holds true for all z, o, 3 > 0.
c. Let B> o >0 and 6 > 1. Then, the following inequality

holds true for all z > 0.
d. Let B>a>0and 6 > 1. Then

N

I'o—1
Eaﬁ;l,c-&-l(Z)Emﬁ;l,c—l(Z) ( ) )Ea,[};l,2(z)Ea7/};l,c(Z)a

S T(o)(o-2

holds for all z >0 and ¢ > 3.
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