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Abstract. We completely describe the boundedness and compactness of Stević-Sharma type op-
erator Tψ1 ,ψ2,ϕ from the Besov spaces Bp (1 < p < ∞) into the weighted-type space H∞

μ or the
little weighted-type space H∞

μ ,0 .

1. Introduction

Let D = {z∈C : |z|< 1} denote the open unit disc in the complex plane C , H(D)
the space of all analytic functions on D and S(D) the set of all analytic self-maps on
D .

For ψ ∈H(D) and ϕ ∈ S(D) , the multiplication, composition, differentiation, and
weighted composition operator on H(D) are defined respectively as follows:

(Mψ f )(z) = ψ(z) f (z);
(Cϕ f )(z) = ( f ◦ϕ)(z) = f (ϕ(z));
Df (z) = f ′(z);
Wψ,ϕ f (z) = (ψCϕ) f (z) = ψ(z) f (ϕ(z)),

for z ∈ D and f ∈ H(D) . The differentiation operator is a typical example of an un-
bounded linear operator on many spaces of functions. This is even true on the space
of differentiable functions with the max-norm of C[a;b] , so no analyticity. Weighted
composition operators have been extensively studied recently. As a combination of
composition operators and multiplication operators, weighted composition operators
arise naturally. For example, surjective isometries on Hardy spaces Hp and Bergman
spaces Ap , 1 < p < ∞ , p �= 2, are given by weighted composition operators.

Having studied above mentioned operators, some experts proposed studying their
products, nowadays called product-type operators. Attention of the experts seems has
been focused first on some product type-operators including the differentiation operator
(see, e.g., [4, 7, 8, 9, 12, 22, 25, 28, 29, 30, 34, 35, 37, 39]). For some later results, see,
e.g. [5, 14, 15, 47]. After these investigations, it was a natural question to generalize

Mathematics subject classification (2010): 47B38, 47B33, 46E15, 30H05.
Keywords and phrases: Besov space, weighted-type space, Stević-Sharma type operator.
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many of these product-type operators. For ψ1,ψ2 ∈ H(D) and ϕ denotes an analytic
self-map of D , let

Tψ1,ψ2,ϕ f (z) = ψ1(z) f (ϕ(z))+ ψ2(z) f ′(ϕ(z)), f ∈ H(D).

The operator Tψ1,ψ2,ϕ was studied by S. Stević and co-workers for the first time in [40].
The boundedness and compactness of Tψ1,ψ2,ϕ have been extensively studied in many
spaces of analytic functions in the unit disc for example, in [16, 39, 44]. This opera-
tor is related to the various products of multiplication, composition, and differentiation
operators. For example, all the products of composition, multiplication, and differenti-
ation operator can be obtained from the operator Tψ1,ψ2,ϕ by some suitable choices of
functions ψ1,ψ2 . More specifically we have

MψCϕD = T0,ψ,ϕ ; MψDCϕ = T0,ψϕ ′,ϕ ; CϕMψD = T0,ψ◦ϕ,ϕ ;

DMψCϕ = Tψ ′,ψϕ,ϕ ;CϕDMψ = Tψ ′◦ϕ,ψϕ,ϕ ; DCϕMψ = Tψ ′◦ϕϕ ′,(ψ◦ϕ)ϕ ′,ϕ . (1)

Furthermore, by using this operator all possible difference operators of product-type
operators in (1) can also be obtained. For example

Mψ4CϕD−Mψ5DCϕ = T0,ψ4,−ψ5ϕ ′,ϕ ,

CϕMψ4D−CϕDMψ5 = T−ψ ′
5◦ϕ,(ψ4−ψ5)◦ϕ,ϕ ,

DMψ4Cϕ −DCϕMψ5 = Tψ ′
4−ϕ ′ψ5◦ϕ,ϕ ′(ψ4−ψ5◦ϕ),ϕ ,

etc., where ψ4,ψ5 ∈ H(D) .
For a fixed positive continuous function μ on D , the weighted-type space H∞

μ
(see, for example, [24]) consists of all f ∈ H(D) such that

‖ f‖H∞
μ = sup{μ(z) | f (z)| : z ∈ D} < ∞.

The little weighted-type space H∞
μ,0 is a subspace of H∞

μ consisting of all f ∈ H(D)
such that

lim
|z|→1

μ(z) | f (z)| = 0.

Let A denote the area measure on D normalized by the condition dA(D) = 1 and
let 1 < p < ∞ . The analytic Besov space Bp is the Banach space consisting of the
analytic functions f on D such that

(bp( f ))p :=
∫

D

| f ′(z)|p(1−|z|2)p−2dA(z) < ∞,

with Besov norm ‖ f‖Bp = | f (0)|+ bp( f ). For p = 2, Bp is the classical Dirichlet
space D . An equivalent norm, called the Dirichlet norm, is defined as

‖ f‖D =
(
| f (0)|2 +

∫
D

| f ′(z)|2dA(z)
)1/2

.

The Besov spaces are Möbius invariant and the Dirichlet space is the unique Möbius
invariant Hilbert space that is continuously embedded in the Bloch space. It is well
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known (see, e.g., [41]) that if 1 < p < q < ∞ , then Bp ⊂ Bq ⊂VMOA ⊂ BMOA ⊂ B ,
where B is the Bloch space defined as the set of analytic functions f on D such that

‖ f‖ = | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < ∞.

The Bloch space is widely regarded as the limit of Bp as p → ∞ , since for 1 < p < ∞ ,
an analytic function f belongs to Bp if and only if the function z 
→ (1−|z|2)| f ′(z)| is
in Lp(dλ ) , where dλ is the conformally invariant area measure

dλ (z) =
dA(z)

(1−|z|2)2 .

Moreover, Bp is continuously embedded in Bq and BMOA is continuously embedded
in the Bloch space B . The Besov spaces Bp are contained in the Hardy space H2 .
Another noteworthy property of the Besov spaces is that the polynomials are dense in
Bp . We recommend to the interested reader [49] for an in-depth study on the spaces
BMOA , VMOA , and the analytic Besov spaces Bp .

Product-type operators on some spaces of analytic functions on the unit disk or the
unit ball have become a subject of increasing interest in the last fifteen years (see, e.g.,
the following representative papers:[6, 10, 13, 17, 18, 19, 23, 26, 27, 31, 32, 36, 38, 42,
45, 46], and the related references therein).

Our work is motivated by the above work. We investigate the boundedness and
compactness of the operator Tψ1,ψ2,ϕ from the Besov spaces Bp (1 < p < ∞) into the
weighted-type space H∞

μ or the little weighted-type space H∞
μ,0 . The paper is partially

motivated by paper [2] where the weighted composition operators are studied between
the related spaces. The paper is also partially motivated by paper [11] where the integral
operators are studied between the Besov space and the Bloch-type space. Throughout
the paper, constants are often given without computing their exact values, and the value
of a constant C may change from one occurrence to the next.

2. Background

In this section we introduce some notation and recall some well-known results that
will be used throughout the paper. Note that by Theorem 9 in [49], the functions in Bp

satisfy the following Lipschitz-type condition.

LEMMA 1. There is a constant C > 0 only dependent on p such that for all f ∈
Bp ,

| f (z)− f (w)| � C‖ f‖Bp (ρ(z,w))1−1/p , for z, w ∈ D,

where ρ(z,w) denotes the hyperbolic distance between z and w. In particular,

| f (z)− f (0)| � C‖ f‖Bp

(
1
2

log
1+ |z|
1−|z|

)1−1/p

, for z ∈ D.

By Proposition 4.3.8 in [48] it is easy to get that the following lemma.
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LEMMA 2. There is a constant C > 0 only dependent on p such that for all f ∈
Bp ,

| f ′(z)| � C
1−|z|2 ‖ f‖Bp , for z ∈ D.

The following lemma can be proved by using Lemma 4.2.2 in [48].

LEMMA 3. (1) For 1/2 < |w| < 1 , put

fw(z) =
(

log
2

1−|w|2
)−1/p(

log
2

1−wz

)
, z ∈ D,

then fw ∈ Bp , moreover there is a positive constant C such that

sup
1/2<|w|<1

‖ fw‖Bp � C.

(2) For w ∈ D , put

gw(z) =
(1−|w|2)2z

1−wz
+w|w|2, z ∈ D,

then gw ∈ Bp , moreover there is a positive constant C such that

sup
w∈D

‖gw‖Bp � C.

(3) For w ∈ D , put

hw(z) =
(1−|w|2)2z
(1−wz)2 , z ∈ D,

then hw ∈ Bp , moreover there is a positive constant C such that

sup
w∈D

‖hw‖Bp � C.

Proof. The test function fw in (1) comes from [11]. We only prove that (2) holds.

The proof of (3) is very similar to that of (2) . Since for w ∈ D , g′w(z) = (1−|w|2)2
(1−wz)2 , we

have by using Lemma 4.2.2 in [48] for t = p−2, c = p
∫

D

|g′w(z)|p(1−|z|2)p−2dA(z) =
∫

D

(1−|w|2)2p

|1−wz|2p (1−|z|2)p−2dA(z)

= (1−|w|2)2p
∫

D

(1−|z|2)p−2

|1−wz|2p dA(z) � C(1−|w|2)2p 1
(1−|w|2)p � C.

Thus gw ∈ Bp ,
sup
w∈D

‖gw‖Bp � 1+C1/p. �

The following criterion for the compactness follows by standard arguments (see,
e.g., the proofs of the corresponding lemmas in [41, Lemma 2.10]). The details will not
be pursued here.
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LEMMA 4. Suppose ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D) . Then Tψ1,ψ2,ϕ : Bp → H∞
μ is

compact if and only if Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded and for any bounded sequence

{ fn} in Bp which converges to zero uniformly on compact subsets of D as n → ∞ , we
have ‖Tψ1,ψ2,ϕ fn‖H∞

μ → 0 as n → ∞ .

The following lemma can be proved similar to Lemma 1 in [20] (see, also [21]).
The details are omitted.

LEMMA 5. A closed set K in H∞
μ,0 is compact if and only if it is bounded and

satisfies
lim
|z|→1

sup
f∈K

μ(z)| f (z)| = 0.

3. The boundedness of the operator Tψ1,ψ2,ϕ : Bp → H∞
μ (or H∞

μ,0)

First we consider the boundedness of the operator Tψ1,ψ2,ϕ : Bp → H∞
μ .

THEOREM 1. Suppose ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D) . Then the following state-
ments are equivalent:

(a) Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded;

(b) ψ1 ∈ H∞
μ ,

sup
z∈D

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

< ∞, (2)

and

sup
z∈D

μ(z)|ψ2(z)|
1−|ϕ(z)|2 < ∞. (3)

Proof. (b) ⇒ (a). First assume that ψ1 ∈ H∞
μ , (2), and (3) hold. Then for every

z ∈ D , f ∈ Bp , by Lemmas 1 and 2 we have

μ(z)
∣∣Tψ1,ψ2,ϕ f (z)

∣∣ = μ(z)|ψ1(z) f (ϕ(z))+ ψ2(z) f ′(ϕ(z))|
� μ(z)|ψ1(z)|| f (ϕ(z))|+ μ(z)|ψ2(z)|| f ′(ϕ(z))|

� C‖ f‖Bpμ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

+
Cμ(z)|ψ2(z)|
1−|ϕ(z)|2 ‖ f‖Bp

� C‖ f‖Bp . (4)

On the other hand, by Lemmas 1 and 2 we have∣∣(Tψ1,ψ2,ϕ f
)
(0)
∣∣= ∣∣ψ1(0) f (ϕ(0))+ ψ2(0) f ′(ϕ(0))

∣∣
� C

(
|ψ1(0)|

(
1
2

log
1+ |ϕ(0)|
1−|ϕ(0)|

)1−1/p

+
|ψ2(0)|

1−|ϕ(0)|2
)
‖ f‖Bp . (5)
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Applying conditions (4) and (5), we deduce that the operator Tψ1,ψ2,ϕ : Bp → H∞
μ is

bounded.
(a) ⇒ (b) . Now assume that Tψ1,ψ2,ϕ : Bp → H∞

μ is bounded. That means that
there exists a constant C such that

‖Tψ1,ψ2,ϕ f‖H∞
μ � C‖ f‖Bp ,

for all f ∈ Bp . For f (z) = 1 ∈ Bp , we have

K1 := sup
z∈D

μ(z)|ψ1(z)| < ∞, (6)

that is, ψ1 ∈ H∞
μ . For f (z) = z ∈ Bp , we have

sup
z∈D

μ(z)|ψ1(z)ϕ(z)+ ψ2(z)| < ∞. (7)

From (6), the triangle inequality, and the boundedness of the function ϕ(z) , we have

K2 := sup
z∈D

μ(z)|ψ2(z)| < ∞. (8)

By taking the function fw defined in Lemma 3, we get

f ′w(z) =
(

log
2

1−|w|2
)−1/p w

1−wz
, z ∈ D.

For a ∈ D such that 1/2 < |ϕ(a)| , we have

fϕ(a)(ϕ(a)) =
(

log
2

1−|ϕ(a)|2
)1−1/p

.

Hence we obtain that

sup
1/2<|ϕ(a)|

μ(a)

∣∣∣∣∣ψ1(a)
(

log
2

1−|ϕ(a)|2
)1−1/p

+ ψ2(a)
(

log
2

1−|ϕ(a)|2
)−1/p ϕ(a)

1−|ϕ(a)|2
∣∣∣∣∣

� sup
1/2<|ϕ(a)|

‖Tψ1,ψ2,ϕ fϕ(a)‖H∞
μ � C < ∞, (9)

and

sup
|ϕ(a)|�1/2

μ(a)

∣∣∣∣∣ψ1(a)
(

log
2

1−|ϕ(a)|2
)1−1/p

+ ψ2(a)
(

log
2

1−|ϕ(a)|2
)−1/p ϕ(a)

1−|ϕ(a)|2
∣∣∣∣∣
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� sup
|ϕ(a)|�1/2

(
log

8
3

)1−1/p

|μ(a)ψ1(a)|+ sup
|ϕ(a)|�1/2

4μ(a)|ψ2(a)|
3

(log2)1/p

�
(

log
8
3

)1−1/p

K1 +
4K2

3
(log2)1/p < ∞. (10)

We use the triangle inequality, and the fact that ‖ϕ‖∞ � 1 to get

sup
a∈D

μ(a) |ψ1(a)|
(

log
2

1−|ϕ(a)|2
)1−1/p

� C+ sup
a∈D

∣∣∣∣∣μ(a)ψ2(a)
(

log
2

1−|ϕ(a)|2
)−1/p ϕ(a)

1−|ϕ(a)|2
∣∣∣∣∣

� C+C sup
a∈D

∣∣∣∣ μ(a)ψ2(a)
1−|ϕ(a)|2

∣∣∣∣ . (11)

Take the functions gw,hw defined in Lemma 3, jw(z) = gw(z)−hw(z) ∈ Bp , then

sup
w∈D

‖ jw‖Bp � C < ∞,

and

j′w(z) =
(1−|w|2)2

(1−wz)2 − (1−|w|2)2(1+wz)
(1−wz)3 =

−2(1−|w|2)2wz
(1−wz)3 , z ∈ D,

so

jw(w) = 0, j′w(w) =
−2|w|2
1−|w|2 , w ∈ D.

Thus by Lemma 3

sup
a∈D

2μ(a)|ψ2(a)||ϕ(a)|2
1−|ϕ(a)|2 � ‖Tψ1,ψ2,ϕ jϕ(a)‖H∞

μ � C < ∞. (12)

From (8) and (12), we have

sup
a∈D

μ(a)|ψ2(a)|
1−|ϕ(a)|2 � C < ∞,

that is (3) holds.
By (3) and (11) we obtain

sup
a∈D

μ(a)|ψ1(a)|
(

log
2

1−|ϕ(a)|2
)1−1/p

� C < ∞.

Since log 1+|w|
1−|w| � log 2

1−|w|2 as |w| approaches 1, for r ∈ (0,1) large enough we have

sup
r<|ϕ(a)|

μ(a)|ψ1(a)|
(

1
2

log
1+ |ϕ(a)|
1−|ϕ(a)|

)1−1/p
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� C sup
r<|ϕ(a)|

μ(a)|ψ1(a)|
(

log
2

1−|ϕ(a)|2
)1−1/p

� C < ∞, (13)

and

sup
|ϕ(a)|�r

μ(a)|ψ1(a)|
(

1
2

log
1+ |ϕ(a)|
1−|ϕ(a)|

)1−1/p

� C sup
|ϕ(a)|�r

μ(a)|ψ1(a)|
(

1
2

log
1+ r
1− r

)1−1/p

� CK1 < ∞. (14)

It from (13) and (14) follows that (2) holds. That ends the proof of Theorem 1. �
The following corollary follows by setting ψ1(z) = ψ(z) and ψ2(z) = 0 in the

Theorem 1 at once.

COROLLARY 1. ([2, Theorem 3] ,[3, Theorem 4.5]) Suppose ψ ∈ H(D) and
ϕ ∈ S(D) . Then the weighted composition operator Wψ,ϕ : Bp → H∞

μ is a bounded
operator if and only if ψ ∈ H∞

μ and

sup
z∈D

μ(z)|ψ(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

< ∞.

The following corollary follows by setting ψ1(z) = ψ ′(z) and ψ2(z) = ψ(z)ϕ(z)
in the Theorem 1 at once.

COROLLARY 2. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted composi-
tion followed by differentiation DWψ,ϕ : Bp → H∞

μ is a bounded operator if and only if
ψ ′ ∈ H∞

μ ,

sup
z∈D

μ(z)|ψ ′(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

< ∞,

and

sup
z∈D

μ(z)|ψ(z)ϕ(z)|
1−|ϕ(z)|2 < ∞.

The following corollary follows by setting ψ1(z) = 0 and ψ2(z) = ψ(z) in the
Theorem 1 at once.

COROLLARY 3. Suppose ψ ∈ H(D) and ϕ denotes an analytic self-map of D .
Then the weighted composition followed by differentiation Wψ,ϕD : Bp → H∞

μ is a
bounded operator if and only if

sup
z∈D

μ(z)|ψ(z)|
1−|ϕ(z)|2 < ∞.

The following theorem characterizes the boundedness of the operator Tψ1,ψ2,ϕ :
Bp → H∞

μ,0 .
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THEOREM 2. Suppose ψ1,ψ2 ∈H(D) and ϕ ∈ S(D) . Then Tψ1,ψ2,ϕ : Bp →H∞
μ,0

is bounded if and only if Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded, ψ1,ψ2 ∈ H∞

μ,0 .

Proof. ⇒: Suppose first that Tψ1,ψ2,ϕ : Bp → H∞
μ,0 is bounded. Then Tψ1,ψ2,ϕ :

Bp → H∞
μ is bounded and for f ∈ Bp , Tψ1,ψ2,ϕ f ∈ H∞

μ,0 . Taking f (z) = 1 ∈ Bp , we
have

lim
|z|→1

μ(z)|ψ ′
1(z)| = 0,

that is, ψ1 ∈ H∞
μ,0 . Taking f (z) = z ∈ Bp , we get

lim
|z|→1

μ(z)|ψ1(z)ϕ(z)+ ψ2(z)| = 0. (15)

By ψ1 ∈ H∞
μ,0 , the triangle inequality, and ‖ϕ‖∞ � 1 we have

lim
|z|→1

μ(z)|ψ2(z)| = 0,

that is, ψ2 ∈ H∞
μ,0 .

⇐: Suppose now that Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded, ψ1,ψ2 ∈ H∞

μ,0 . Since for
each polynomial L , one has

μ(z)
∣∣Tψ1,ψ2,ϕL(z)

∣∣ = μ(z)|ψ1(z)L(ϕ(z))+ ψ2(z)L′(ϕ(z))|
� μ(z)|ψ1(z)||L(ϕ(z))|+ μ(z)|ψ2(z)||L′(ϕ(z))|
� μ(z)|ψ1(z)|‖L‖∞ + μ(z)|ψ2(z)|‖L′‖∞ → 0 as |z| → 1,

from which it follows that Tψ1,ψ2,ϕL ∈ H∞
μ,0 . Since the set of all polynomials is dense

in Bp ([1]), thus for each f ∈ Bp , there is a sequence of polynomials {Lk}k∈N , such
that

lim
k→∞

‖Lk − f‖Bp = 0. (16)

Since the operator Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded, we have

‖Tψ1,ψ2,ϕLk −Tψ1,ψ2,ϕ f‖H∞
μ � ‖Tψ1,ψ2,ϕ‖‖Lk − f‖Bp → 0 as k → ∞.

Since H∞
μ,0 is the closed subset of H∞

μ , we see that Tψ1,ψ2,ϕ f ∈ H∞
μ,0 , and consequently

Tψ1,ψ2,ϕ(Bp) � H∞
μ,0 . The boundedness of the operator Tψ1,ψ2,ϕ : Bp →H∞

μ implies that
Tψ1,ψ2,ϕ : Bp → H∞

μ,0 is bounded. This ends the proof of Theorem 2. �
According to Theorem 2 we immediately get the following.

COROLLARY 4. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted composi-
tion operator Wψ,ϕ : Bp → H∞

μ,0 is bounded if and only if Wψ,ϕ : Bp → H∞
μ is bounded

and ψ ∈ H∞
μ,0 .

COROLLARY 5. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted composi-
tion followed by differentiation DWψ,ϕ : Bp → H∞

μ,0 is a bounded operator if and only
if DWψ,ϕ : Bp → H∞

μ,0 is bounded, ψ ′ ∈ H∞
μ,0 , and ψϕ ∈ H∞

μ,0 .
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COROLLARY 6. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the differentiation fol-
lowed by the weighted composition operator Wψ,ϕD : Bp →H∞

μ,0 is a bounded operator
if and only if Wψ,ϕD : Bp → H∞

μ,0 is bounded and ψ ∈ H∞
μ,0 .

4. The compactness of the operator Tψ1,ψ2,ϕ : Bp → H∞
μ (or H∞

μ,0)

Now we are ready to state and prove the results on the compactness of the operator
Tψ1,ψ2,ϕ : Bp → H∞

μ .

THEOREM 3. Suppose ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D) . Then the following state-
ments are equivalent:

(a) Tψ1,ψ2,ϕ : Bp → H∞
μ is compact;

(b) Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded,

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0, (17)

and

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ2(z)|
1−|ϕ(z)|2 = 0. (18)

Proof. (b) ⇒ (a) . Suppose that Tψ1,ψ2,ϕ : Bp → H∞
μ is bounded, (17), and (18)

hold. To prove that Tψ1,ψ2,ϕ : Bp → H∞
μ is compact, for any bounded sequence { fk}

in Bp with fk → 0 uniformly on compact subsets of D , let ‖ fk‖Bp � 1, it suffices, in
view of Lemma 4, to show that

‖Tψ1,ψ2,ϕ fk‖H∞
μ → 0 as k → ∞.

By (17) and (18), we have for any ε > 0, there exists ρ ∈ (0,1) such that

sup
|ϕ(z)|>s

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

< ε, (19)

and

sup
|ϕ(z)|>s

μ(z)|ψ2(z)|
1−|ϕ(z)|2 < ε, (20)

for ρ < s < 1. From the boundedness of the operator Tψ1,ψ2,ϕ : Bp →H∞
μ and the proof

of Theorem 1, (6) and (8) hold. Since fk → 0 uniformly on compact subsets of D ,
Cauchy’s estimate shows that f ′k converges to 0 uniformly on compact subsets of D ,
there exists a K0 ∈ N such that k > K0 implies that

|(Tψ1,ψ2,ϕ fk)(0)|+ sup
|ϕ(z)|�s

μ(z)|Tψ1,ψ2,ϕ fk(z)|
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� |ψ1(0) fk(ϕ(0))+ ψ2(0) f ′k(ϕ(0))|+ sup
|ϕ(z)|�s

μ(z)|ψ1(z)|| fk(ϕ(z))|

+ sup
|ϕ(z)|�s

μ(z)|ψ2(z)|| f ′k(ϕ(z))|

� |ψ1(0)|| fk(ϕ(0))|+ |ψ2(0) f ′k(ϕ(0))|+K1 sup
|ϕ(z)|�s

| fk(ϕ(z))|+K2 sup
|ϕ(z)|�s

| f ′k(ϕ(z))|

< Cε. (21)

When k > K0 , from (19), (20), (21) and Lemma 1, one has

‖Tψ1,ψ2,ϕ fk‖H∞
μ = |(Tψ1,ψ2,ϕ fk

)
(0)|+ sup

z∈D

μ(z)
∣∣Tψ1,ψ2,ϕ fk(z)

∣∣
�
(
|(Tψ1,ψ2,ϕ fk

)
(0)|+ sup

|ϕ(z)|�s
μ(z)

∣∣Tψ1,ψ2,ϕ fk(z)
∣∣)+ sup

s<|ϕ(z)|<1
μ(z)

∣∣Tψ1,ψ2,ϕ fk(z)
∣∣

< Cε +2C sup
s<|ϕ(z)|<1

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

‖ fk‖Bp

+C sup
s<|ϕ(z)|<1

μ(z) |ψ2(z)|
1−|ϕ(z)|2 ‖ fk‖Bp

< Cε +2C sup
s<|ϕ(z)|<1

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

+C sup
s<|ϕ(z)|<1

μ(z) |ψ2(z)|
1−|ϕ(z)|2

< 4Cε,

it follows that the operator Tψ1,ψ2,ϕ : Bp → H∞
μ is compact.

(a) ⇒ (b) . It is clear that the compactness of Tψ1,ψ2,ϕ : Bp → H∞
μ implies the

boundedness of Tψ1,ψ2,ϕ : Bp → H∞
μ . If ‖ϕ‖∞ < 1, it is clear that the limit in (17)

and (18) is automatically equal to zero. Hence, assume that ‖ϕ‖∞ = 1, let {zk} be a
sequence in D such that |ϕ(zk)| → 1 as k → ∞ . We can use the test functions

jk(z) = jϕ(zk)(z),

then
sup
k∈N

‖ jk‖Bp � C,

jk(ϕ(zk)) = 0, and j′k(ϕ(zk)) =
−2|ϕ(zk)|2
1−|ϕ(zk)|2 .

It is easy to see that jk converges to 0 uniformly on compact subsets of D . By Lemma
4 we obtain

lim
k→∞

‖Tψ1,ψ2,ϕ jk‖H∞
μ = 0.

Thus

2|μ(zk) |ψ2(zk)| |ϕ(zk)|2
1−|ϕ(zk)|2

� ‖Tψ1,ψ2,ϕ jk‖H∞
μ → 0 as k → ∞. (22)
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By (22) and |ϕ(zk)| → 1 we have

lim
k→∞

|μ(zk) |ψ2(zk)|
1−|ϕ(zk)|2

= 0,

it implies that (17) holds.
From (9), we have

μ(zk)|ψ1(zk)|
(

log
2

1−|ϕ(zk)|2
)1−1/p

� ‖Tψ1,ψ2,ϕ fϕ(zk)‖H∞
μ + μ(zk)|ψ2(zk)|

(
log

2
1−|ϕ(zk)|2

)−1/p |ϕ(zk)|
1−|ϕ(zk)|2

� ‖Tψ1,ψ2,ϕ fϕ(zk)‖H∞
μ +(log2)1/p μ(zk)|ψ2(zk)|

1−|ϕ(zk)|2 → 0 as k → ∞. (23)

(18) follows. This finishes the proof of Theorem 3. �
From Theorem3 we can get the characterization of the compactness of the weighted

composition operator Wψ,ϕ : Bp → H∞
μ , the operator DWψ,ϕ : Bp → H∞

μ and the opera-
tor Wψ,ϕD : Bp → H∞

μ .

COROLLARY 7. ([2, Corollary 2]) Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the
weighted composition operator Wψ,ϕ : Bp →H∞

μ is compact if and only if Wψ,ϕ : Bp →
H∞

μ is bounded,

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0.

COROLLARY 8. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted composi-
tion followed by differentiation DWψ,ϕ : Bp → H∞

μ is a compact operator if and only if
DWψ,ϕ : Bp → H∞

μ is bounded,

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ ′(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0,

and

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ(z)ϕ(z)|
1−|ϕ(z)|2 = 0.

COROLLARY 9. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the differentiation fol-
lowed by the weighted composition operator Wψ,ϕD : Bp → H∞

μ is a compact operator
if and only if Wψ,ϕD : Bp → H∞

μ is bounded,

lim
s→1

sup
|ϕ(z)|>s

μ(z)|ψ(z)|
1−|ϕ(z)|2 = 0.
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Next we are ready for the description of the compactness of Tψ1,ψ2,ϕ : Bp → H∞
μ,0 .

The compactness of operators whose range is in H∞
μ,0 has a close relation with Lemma

5.

THEOREM 4. Suppose ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D) . Then the following state-
ments are equivalent:

(a) Tψ1,ψ2,ϕ : Bp → H∞
μ,0 is compact;

(b) ψ1 ∈ H∞
μ,0 ,

lim
|z|→1

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0, (24)

and

lim
|z|→1

μ(z)|ψ2(z)|
1−|ϕ(z)|2 = 0. (25)

Proof. (b) ⇒ (a) . Suppose that ψ1 ∈ H∞
μ,0 , (24), and (25) hold. By Theorem 2,

it is clear that Tψ1,ψ2,ϕ : Bp → H∞
μ,0 is bounded. Taking the supremum in inequality (4)

over all f ∈ Bp such that ‖ f‖Bp � 1 and letting |z| → 1, yields

lim
|z|→1

sup
‖ f‖Bp�1

μ(z)
∣∣Tψ1,ψ2,ϕ f (z)

∣∣= 0.

From this and Lemma 5 we have that Tψ1,ψ2,ϕ : Bp → H∞
μ,0 is compact.

(a) ⇒ (b) . Assume that Tψ1,ψ2,ϕ : Bp → H∞
μ,0 is compact. Firstly, it is obvious

Tψ1,ψ2,ϕ : Bp → H∞
μ is compact. By Theorem 3, ψ1,ψ2 , and ϕ satisfy conditions (17)

and (18). It follows that for every ε > 0, there exists ρ ∈ (0,1) such that (19) and (20)
hold for ρ < s < 1. On the other hand, since Tψ1,ψ2,ϕ : Bp → H∞

μ,0 is compact, then
Tψ1,ψ2,ϕ : Bp → H∞

μ,0 is bounded. By Theorem 2, ψ1,ψ2 ∈ H∞
μ,0 . Thus for ε > 0, there

exists γ ∈ (0,1) such that

μ(z)|ψ1(z)| <
(

1
2

log
1+ s
1− s

)1/p−1

ε (26)

and

μ(z)|ψ2(z)| < (1− s2)ε, (27)

for γ < |z| < 1. Next, we prove that (19) and (26) imply (24). The proof of (25) is
similar, hence it will be omitted.

From (19) one has, when γ < |z| < 1 and ρ < s < 1,

sup
|ϕ(z)|>s

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

< ε. (28)
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By (26) we get, when γ < |z| < 1 and s ,

sup
|ϕ(z)|�s

μ(z)|ψ1(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

� sup
|ϕ(z)|�s

μ(z)|ψ1(z)|
(

1
2

log
1+ s
1− s

)1−1/p

< ε. (29)

Having in mind (28) and (29) we conclude that (24) holds completing the proof of the
theorem. �

Due to Theorem 4, the characterization of the compactness of the weighted com-
position operator Wψ,ϕ : Bp → H∞

μ,0 , the operator DWψ,ϕ : Bp → H∞
μ,0 and the operator

Wψ,ϕD : Bp → H∞
μ,0 are now obvious, which to the best of our knowledge, have not

appeared in the literature.

COROLLARY 10. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted compo-
sition operator Wψ,ϕ : Bp → H∞

μ,0 is compact if and only if and

lim
|z|→1

μ(z)|ψ(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0.

COROLLARY 11. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then the weighted compo-
sition followed by differentiation DWψ,ϕ : Bp → H∞

μ,0 is a compact operator if and only
if

lim
|z|→1

μ(z)|ψ ′(z)|
(

1
2

log
1+ |ϕ(z)|
1−|ϕ(z)|

)1−1/p

= 0,

and

lim
|z|→1

μ(z)|ψ(z)ϕ(z)|
1−|ϕ(z)|2 = 0.

COROLLARY 12. Suppose ψ ∈H(D) and ϕ ∈ S(D) . Then the differentiation fol-
lowed by the weighted composition operator Wψ,ϕD : Bp →H∞

μ,0 is a compact operator
if and only if

lim
|z|→1

μ(z)|ψ(z)|
1−|ϕ(z)|2 = 0.

Finally, we deduce the following compactness characterization of the differentia-
tion followed by the weighted composition operator Wψ,ϕD : Bp → H∞

μ,0.

THEOREM 5. Suppose ψ ∈ H(D) and ϕ ∈ S(D) . Then Wψ,ϕD : Bp → H∞
μ,0 is

compact if and only if Wψ,ϕD : Bp → H∞
μ,0 is bounded.

Proof. We only need to prove sufficiency. Assume that Wψ,ϕD : Bp → H∞
μ,0 is

bounded. Then we have ψ ∈ H∞
μ,0 . Taking f (z) = zn ∈ Bp , we have

μ(z)
∣∣Wψ,ϕDf (z)

∣∣= μ(z)|ψ(z) f ′(ϕ(z))| = μ(z)
∣∣nψ(z)(ϕ(z))n−1

∣∣→ 0 as |z| → 1.
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Thus,

lim
|z|→1

(
nμ(z)|ψ(z)||ϕ(z)|n−1)= 0. (30)

For N ∈ N and n � N , define the sets

EN =
{

z ∈ D : |ϕ(z)| � 1− 1
N

}

and

Δn =
{

z ∈ D : 1− 1
n−1

� |ϕ(z)| � 1− 1
n

}
.

Fix an integer N > 2 and z ∈ D . If z ∈ EN , we have

μ(z) |ψ(z)|
1−|ϕ(z)|2 � μ(z) |ψ(z)|

1−|1− 1
N |2

. (31)

If z is not in EN , that is |ϕ(z)| > 1− 1
N , there exists n > N such that z ∈ Δn . Since

([43])

inf
z∈Δn

n(1−|ϕ(z)|) |ϕ(z)|n−1 � 1
e
,

we obtain

μ(z)|ψ(z)|
1−|ϕ(z)|2 � nμ(z) |ψ(z)| |ϕ(z)|n−1

n(1−|ϕ(z)|)|ϕ(z)|n−1 � e
(
nμ(z) |ψ(z)| |ϕ(z)|n−1) .

(32)

Using (30), (31), and (32), we get

lim
|z|→1

μ(z)|ψ(z)|
1−|ϕ(z)|2 = 0.

Corollary 12 gives the operator Wψ,ϕD : Bp → H∞
μ,0 is compact. �
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[34] S. STEVIĆ, Weighted differentiation composition operators from the mixed-norm space to the n th

weighted-type space on the unit disk, Abstr. Appl. Anal. 2010, Art. ID 246287, 15 pp.
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[45] F. ZHANG, Y. LIU, On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the
unit disk, Complex Anal. Oper. Theory 12, 1 (2018), 81–100.

[46] J. ZHOU AND Y. LIU, Products of radial derivative and multiplication operators from F(p,q,s) to
weighted-type spaces on the unit ball, Taiwanese J. Math. 17, 1 (2013), 161–178.

[47] J. ZHOU AND X. ZHU, Product of differentiation and composition operators on the logarithmic Bloch
space, J. Inequal. Appl. 2014, 2014:453, DOI 10.1186/1029-242X-2014-453.

[48] K. ZHU, Operator Theory in Function Space, Marcel Dekker, New York, 1990.
[49] K. ZHU, Analytic Besov spaces, J. Math. Anal. Appl. 157, 2 (1991), 318–336.

(Received March 1, 2019) Yongmin Liu
School of Mathematics and Statistics

Jiangsu Normal University
Xuzhou 221116, People’s Republic of China

e-mail: 6019820099@jsnu.edu.cn

Yanyan Yu
School of Mathematics and Physics Science

Xuzhou University of Technology
Xuzhou 221018, People’s Republic of China

e-mail: yuyanyan@xzit.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


