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ON A FUNCTIONAL EQUATION RELATED

TO TWO–VARIABLE CAUCHY MEANS

TIBOR KISS AND ZSOLT PÁLES

Abstract. In this paper, we are dealing with the solution of the functional equation

ϕ
( x+ y

2

)
( f (x)− f (y)) = F(x)−F(y),

concerning the unknown functions ϕ , f and F defined on a same open subinterval of the reals.
Improving the previous results related to this topic, we describe the solution triplets (ϕ , f ,F)
assuming only the continuity of ϕ .

As an application, under natural conditions, we also solve the equality problem of two-
variable Cauchy means and two-variable quasi-arithmetic means.
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[35] L. SZÉKELYHIDI, Convolution Type Functional Equations on Topological Abelian Groups, World

Scientific Publishing Co. Inc., Teaneck, NJ, 1991.
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