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ON WEIGHTED QUASI-ARITHMETIC MEANS WHICH ARE CONVEX

JACEK CHUDZIAK, DOROTA GEAZOWSKA, JUSTYNA JARCZYK "
AND WITOLD JARCZYK

(Communicated by J. Jaksetic)

Abstract. We study convexity in the class of weighted quasi-arithmetic means. It turns out that
their convexity depends only on the generator, neither on weights, nor on the number of variables.
Connections between the convexity of a mean and the convexity of its increasing generators are
considered. We prove that convex means are generated by convex strictly increasing functions.
A simple example shows that the converse is not true, so the problem arises when this is the case.
Some answers are given under regularity assumptions imposed on the generator.

1. Introduction

Fix any real interval /. Given an integer n > 2 a function M: I — [ is said to be
amean on I if

min{xy,..., %, } <M (xq,...,x,) <max{xy,...,x,}

for all xi,...,x, € I. We are interested in convex means, that is means M: I" — [
satisfying the condition

M(x+(1=1)y) <tM(x) + (1 =0)M(y),  xyel’, (D

for every ¢ € (0,1). If 7 is fixed then condition (1) defines a ¢-convex mean. 1/2-
convex means are called also Jensen convex. Replacing the inequality in (1) by the
reverse one we come to the definitions of a concave, t-concave and Jensen concave

mean, respectively.

REMARK 1. Let M be a mean on an open interval. Then the following conditions
are pairwise equivalent:

(i) M is convex,

(ii) M is t-convex forall € (0,1),

(iii) M is t-convex for some ¢ € (0,1),

(iv) M is Jensen convex.
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Proof. Let M: I" — I. The implications (i) = (ii) and (ii) = (iii) are obvious.
To prove the implication (iii) = (iv) fix a t € (0,1). First observe that via a standard
argument any real-valued function defined on a convex set is 7-convex if and only if its
sections along all straight lines are #-convex: given any subset D of R" we have

f:D—Ris t-convex iff fye: Ixe — R are z-convex forallx € D and e € R"\ {0},

where Iy := {A € R: x+Ae € D} and fxe(A) := f(x+ Ae); of course each function
Jxe 1s defined on a real interval which is open provided D is open. Now assume
that M is 7-convex. Then, for any x € I" and e € R"\ {0}, the section My, is ?-
convex, and thus, by virtue of a theorem of Kuhn from the paper [5], it is Jensen convex.
Consequently, also the mean M is Jensen convex. Another possibility is use here the
Dardéczy-Pales identity

il e nRA U RAUBI CRNIRTEE

probably used in [2, proof of Lemma 1] for the first time:

M(X;y> :M<t (tXTH+(1—t)x)+(l—t) (ty+(l—t)¥))

<ot (A2 -nx) + 0 -0m (1y+ -0 22
Xty M)+ ()

< (l2+(1 —1)2)M<T> +2l(l—l)f»

hence

M(x;y) < MO+

forall x,y € I'".

Now observe that M (J") C J for any interval J C I, and thus M is locally bounded
at every point. Making use of the theorem of Bernstein-Doetsch (see [1], also [4, The-
orem 6.4.2]) we see that if M is Jensen convex then it is continuous and, consequently,
convex (cf., for instance, [4, Theorem 5.3.5 and the comment following it]). This gives
the implication (iv) = (i) and completes the proof of the remark. [J

Here we study the problem of convexity in the class of weighted quasi-arithmetic
means. For any integer n > 2 put A, = {(p1,...,pn) € (0,1)": p1+...+p,=1}.
Given any continuous strictly monotonic function ¢: I — R and a point p= (p1,...,pn)
€ A, the formula

Ap ()= (P19 (x1) + ...+ pug ()
where x = (x1,...,x,), defines a mean on I called the quasi-arithmetic mean generated

by ¢ and weighted by p. Clearly A, ?— Ag , S0 we may always assume that the
generator of the mean Ag is strictly increasing. In fact we know much more:
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REMARK 2. Let ¢,y: I — R be continuous strictly monotonic functions and
P.q € A,. Then A} = A{ if and only if p = q and there exist a € R\ {0} and b € R
such that w =ap +b.

This is an immediate consequence of Theorem 1 from [7] which implies that p = q
and the function yo (p‘1 is affine. Then, as a continuous function, it is of the form
y+— ay+ b with some reals a,b (see, for instance, [4, Theorem 13.2.2]). Since yo qo_1
is not constant we get a # 0. Notice also that, in the case when the equality p = q is
imposed a priori, the assertion of Remark 2 was known already for Hardy, Littlewood
and Pdlya (see [3]).

As an immediate consequence of Remark 2 we have what follows.

REMARK 3. If a weighted quasi-arithmetic mean is generated by a convex [con-
cave] strictly increasing function, then every its strictly increasing generator is convex
[concave].

Many classical means, for instance weighted arithmetic:
Ap (X) = p1xi + ...+ puxn, x € R",
weighted geometric:
Gp (x) =xt - xl X € (0,+00)",
and weighted harmonic:

1
p Pn>
Byt

Xn

HP (X) = Xe (07 +°°)na

are weighted quasi-arithmetic. Their increasing generators are given by

0a(x) = x, 0c(x) =logx and op(x)=——,
respectively.

EXAMPLE 1. (i) Itis clear that the function Ap: R" — R is affine, so it is simul-
taneously convex and concave.

(ii) To answer the question on possible convexity of the mean Gy : (0,+e)> —
(0,4-c0) we study its Hessian matrix. Fixing x = (x1,x) € (0,+o0)? arbitrarily we
easily get

P2 1
X2 X1
d1Gp (x1,x2) = p1 (—) , A Gy (x1,x2) = p2 (-) )
X1 X2
P2 p1
2G _ _pnp(x 26 _ i (x
11Y9p (x1,x2) —x1 X ) 22Yp (x1,%2) —X2 %

pPip2
P2 PL”
X7 X%

IGyp (¥1,32) = 95, Gy (x1,32)
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Hence 97, Gp (x1,x2) <0 and
911Gy (x1,%2) 905Gy (x1,%2) — I} Gp (x1,x2) 93, G (x1,%2)

2,2 p1 P2 2.2 2.2
_ Pipa (X Y\ PPy _PIP (xp1+p2—lxp1+p2—l _ 1> —0
X1X2 \ X2 X x%p zxip ! x%p zxip AN 2

for all (x1,x2) € (0,4o0)2. This means that the Hessian matrix of G, is negatively
semidefinite at every point of (0,+e0)? which is equivalent to the concavity of Gp:
(0,40)% — (0, +o0).

(iii) One can easily check that suitable derivatives of the function Hy: (0, +0)? —
(0,4-c0) are as follows:

2 2
1X 2X
Hy (x1,2) = —L 22— BH, (x,x) = — 2
(p2x1 + p1x2) (p2x1+pix2)
2p1p2x3 2p1pax?

a121[_1[’ (x17x2) = ) a2221—113 (x17x2) =

(pax1 +P1x2)3 (pax1 +P1x2)3’
2p1pax1x2

(p2x1 +P1X2)3

b

Ot Hp (x1,%2) = 931 Hyp (x1,%2) =

and thus 92 Hy (x1,x2) < 0 and
a121Hp (x1,x2) ai‘zsz (x1,%2) — a122Hp (x1,x2) a221Hp (x1,x2) =0

for all x1,x; € (0,+c0). Therefore, also the mean Hp: (0,+o0)? — (0,+o0) is concave.

2. Posing the problem

Our main problem is as follows. Is there any connection between the convexity
of a weighted quasi-arithmetic mean and the convexity of its increasing generator?
Example 1 suggests that maybe this is the case indeed, as we have the following rough
information:

increasing generator mean
affine @(x) =x affine A
concave @(x) =logx | concave Gy
concave @(x) = —1/x | concave H,

However, the example below shows that in general the convexity of the increasing gen-
erator of weighted quasi-arithmetic mean does not force the convexity of the mean.
Nevertheless, in Section 5, in some classes of differentiable functions, we character-
ize convex strictly increasing functions generating convex weighted quasi-arithmetic
means.

EXAMPLE 2. Clearly, the formula

(x) = x, x<0,
¢l = 2x, x>0,
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defines a convex strictly increasing function with the inverse ¢! given by

-1 )y }’<0,
¢ (y)_{Y/Z,y>0.

Taking p = 1/2 we come to the quasi-arithmetic mean A? defined by

122 if oy < 0 < xp and xp +2x2 <0,
x1+2x2 yifxp <0< xpand x; +2x >0,
A9 ) = | 432, i <0, orr 50,
2X1+xz ,ifxp <0< xpand 2x; +xp <0,
2"{%7 ifxp <0< x;and 2x; +x, > 0.

Putting here x, = 1 we get the section A?(-,1) of A?:

x1+2

Jifx < =2,

A? (x1,1) =

2<x <0,

xl+l lfxl 0.

Since the section A?(-, 1) is not convex, neither is the function A?. Consequently,
the mean A? is not convex but it is generated by a convex function.

We are interested also in the following converse question. Do strictly increas-
ing generators of a convex weighted quasi-arithmetic mean have to be convex? That
problem will be positively answered in Section 4.
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3. Adjoint classes of means

Given integers m,n > 2 and real intervals / and J let {Mp} _, and {Ng}.c,, be

families of means on I and J, respectively. We say that the class {Mp}pe A is adjoint
10 {Ng} ey, if forall p € A, and q € A, the conditions
My (x4 4 gux)
2)

<aMp (x0) 4oty (x), x,x0) e,
and
Ny (my(” +... +pmy('“))
> piNg (Y0) 4 (), ¥,y e,

are equivalent. The following result provides an important example of adjoint classes
of means.

3)

PROPOSITION 1. Let I be a real interval, ¢: 1 — R be a continuous strictly

increasing function and let m,n > 2 be integers. Then the class {Ag }p cn, Of @-
m

generated weighted quasi-arithmetic means in m variables is adjoint to the class

—1
{Ag } of ¢~ '-generated means in n-variables.
qu)'l

Proof. Fix p € A, and q € A,,. Assume condition (2) for M, = Ag , fix points
y = ( EU,...,yE,l)) s,y = (ygm),...,yg,m)> € J", where J := ¢(I), and put

x = (qo’l (y51)> e ! (y(lm)» s x = ((p*1 (yﬁﬁ) e ! (yﬁ[’”)).

Then x(V),... x" e /" and
Ap (qlx(1)+...+qnx(”)> < qiAp <X(l)> + .ot guApy <X(")>7 4)
that is

0! (m(p (cnxﬁ” ot qnxﬁn)) ot o (qlen” ot qnxﬁ,?)))

<qo7! (PI(P (x§1)> Fo it P (xf,?)) T
+qnp ! (Pl‘P (xgn)> + .t pm@ (xﬁf))) )

Since ¢ is increasing then, using the variables y(l),...,y(m), this inequality can be
rewritten in the form
_ 1 - 1
P1(P<Q1<P : (y(l )> +ot g (y,(, ))> +..

P (cn(p" (y({")) Fo g (yf!")))

Se (ql(p_l <p1y(11) +'“+Pmy5m)> +ot g (ply,(ql) +... +p,ny£’“)>>
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or, equivalently,
—1 1 .
PIA§ <y<1>) + oot DAY <y<m)> <AY <p1y(1>+__.+pmy<m)>. )

-1
Thus we come to (3) for Ng = Aflo . The implication (3)=(2) for M, = Af,o and

~1
Nq=Ag  can be proved similarly. [
Using Proposition 1 we can prove the following main result of this section.

THEOREM 1. Let I be an open real interval and ¢: 1 — R be a continuous
strictly increasing function. Then the following statements are pairwise equivalent:
(i) there exist an integer m = 2 and p € Ay, such that the mean Ag Is convex,

(ii) the mean Ag is convex for every integer m > 2 and all p € A,
-1
(iii) there exist an integer n > 2 and q € A, such that the mean Aflo is concave,

~1
iv) the mean Ag is concave for every integer n =2 and all q € A,.

Proof. Assume statement (i) and choose an integer m > 2 and a vector p € A,
such that the mean Ag is convex. Fix any integer n > 2 and q € A,. Using Jensen’s
inequality (see, for instance, [4, Theorem 8.1.1]) we infer that inequality (4) holds
for all x(),... . x(") € ", and thus, by Proposition 1, inequality (5) is satisfied for all
y. ...,y € o(I)". Therefore, putting y*) = y(>) for k =2,...,m in (5), we obtain

pIAg (y(”) +(1-pag <y<2)) <Ay’ (ply“) +(1- Pl)y(2)>

forall y(1),y() € o(I)", which means that A§ s p1-concave. Now Remark | implies
that it is concave. This completes the proof of the implication (i) = (iv). Analogously
one can prove that (iii) = (ii). Since the implications (iv) = (iii) and (ii) = (i)
trivially hold, the proof is completed. [J

Theorem | shows that the convexity of a weighted quasi-arithmetic mean depends
only on its generator, neither on the numbers of variables, nor the weights. Conse-
quently, studying the convexity of a mean Ag with some p € A, and n > 2 itis enough
to deal with the simplest case of the quasi-arithmetic mean A?: I> — I defined by

A? (x1,x0) =@~ <7¢ &) ; (p(x2)) :

Of course calculations for A? are shorter and much more straightforward. For that
reason, in what follows we disregard both the number of the variables and the weights
of the mean Ag and refer only to the quasi-arithmetic A? in two variables.
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4. Increasing generators of convex quasi-arithmetic means are convex

We start with a characterization of the convexity of weighted quasi-arithmetic
means. This is an immediate consequence of [9, Theorem 4] by Péles and Theorem 1.

THEOREM 2. Let I be an open real interval and ¢: 1 — R be a continuous
strictly increasing function. Then the mean A® is convex if and only if there exist
functions dy,d;: I? = R such that

o (232) -0 (152) < 01.02) (pn) 0 1) +da (1.3 (0 () ~0.02)
(6)

forall xy,x3,y1,y2 € 1.

Now we can positively answer the question posed at the very end of Section 2.

THEOREM 3. Let I be an open real interval and ¢: 1 — R be a continuous
strictly increasing function. If the mean Aﬁ is convex for some p € A, and an integer
m > 2, then the function @ is convex.

Proof. Assume that p € A, with an m > 2 and Ag is convex. Theorem 1 im-
plies that also A? is convex. Fix an xo € I. According to Remarks 2 and 3 we may
assume without loss of generality that ¢ (xo) = 0. By Theorem 2 there exist functions
dy,dy: >R satisfying inequality (6) for all xy,x2,y1,y2 € I. Setting y; =y, = x¢ in
(6) we see that

X1 +x
<P< 12 2) <c1@(x1) + 20 (x2), x1,x2 €1, @)

where ¢1: = dj (x0,%) and c2: = d; (x0,%0). In particular,
o(x) < (c1+c2) o(x), xel,

and thus, as ¢ is changing its sign in a neighbourhood of xj, we have ¢; +c> = 1.
Now, swapping x; and x; in (7), and summing the obtained inequality with (7), we get
that ¢ is Jensen convex. Since ¢ is continuous, it is convex. [J

5. Convexity of quasi-arithmetic means generated by regular convex functions

First notice the following result which is a direct consequence of [9, Theorem 6]
and again Theorem 1.

THEOREM 4. Let I be an open real interval and ¢: I — R be a differentiable
function with positive first derivative. Then the mean A? is convex if and only if the
function E: I>* — R, given by

Eln) ===

)

is convex.
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Observe that Theorem 4 characterizes the convexity of the mean A? in terms of
the convexity of the two-variable function £. The result below reduces the problem
to studying the convexity of another functions also built using only the generator ¢.
Notice however, that both of them are in a single variable, so easier to study. It should
be also observed that the assumptions made in both results are different.

THEOREM 5. Let I be an open real interval and ¢: 1 — R be a twice continu-
ously differentiable function with positive first derivative. Then the following statements
are pairwise equivalent:

(i) the mean A? is convex [concave],

(ii) either @ is an affine function, or the second derivative @" is positive [nega-
tive] and the function [((p’)2/(p”] o @~ is concave [convex],

(iii) either @ is an affine function, or the second derivative @" is positive [nega-
tive] and the function @' /@" is concave [convex].

Proof. To prove that (i) is equivalent to (ii) assume that the quasi-arithmetic
mean A?: I> — [ is convex. To find the Hessian matrix of A? we need to calculate
second partial derivatives of A?. Standard argument shows that for any xj,x, € I we
have

o (x1) ¢’ (x2)
20 010 = ety ) Sty

20 (A? (x1,:2))” 9" (x1) — @' (x1)° 9" (A? (x1,x2))
40/ (A? (x1,x2))’

29/ (A% (x1,%2))* 9" (x2) — ¢’ (x2)° ¢ (A? (x1,2))
49! (A (x1,32))°

aflA<° (x1,%2) =

)

AP (x1.32) =

)

and
@' (x1) @' (x2) 9" (A? (x1,x2)) .

49! (A (x1,32))°

OBA? (x1,x7) = OHA? (x1,x3) = —

The convexity of A? is equivalent to the condition
Dl (x17x2) =20 and D2 (xl7x2) 207 X1,X2 617

where

= 03A? and Dy = 3} A%0HA? — 0HAY 07 AY.
In particular, since

"

9°() o,
49'(x) ~
we see that @” > 0. If ¢” =0 then ¢ is affine. So we may assume that the open set
{xel: ¢"(x)>0} is nonempty. Let J be any its connected component. If xq :=
supJ < sup/ then ¢” (xp) =0 and

Di(x,x) = xel,

¢’ (x0)’ 9" (A (x0,%))
49’ (A9 (x0,))*

Ong (x07x):8121A(p(x0ax):_ ) x617
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hence ¢ (A% (x9,x)) <0, that is ¢” (A% (xp,x)) =0 for all x € I. This, however, is
impossible as A? (xp,x) € J, for x € J sufficiently close to xq. Therefore supJ = sup/.
Similarly, we show that infJ = infl, and thus J =1, i.e. ¢” >0.Put ¢ := (¢')*/¢".
Then

(29 (A (x1,32)) — ¢ (x1)) 9" (x1) ¢" (A? (x1,x2))

04 A° = 8
1A% (x1,x2) 40" (A% (x1.x2))° ; ®)
and
P9 (1 1) = (04 (1:22)) ~0.(12)) ¢ (12) 9" (49 (1.12)
4¢' (A% (x1,x2))
for all x;,x, € I. Moreover,
8¢’ (A (x1,x,))°
D (xy,
9 (o) 9 (1) 97 (A9 (e )P )
)
= ¢ (A% (x1,:2)) 20 (A? (x1,x2)) = ¢ (x1) — ¢ (x2)],  x1,:2 €,
and thus, since ¢ > 0 and D, > 0, we have
6(A% (r,x)) > LOEOR) e (10)
that is
cn-! cn-!
(900 ()H;-}’z) > (poo )(yl);r((b () )(yz), s € o(D).

This means that the function ¢ o ¢! is Jensen concave and according to its continuity,
concave. In such a way we have proved statement (if).

If the function ¢ is affine, then A? is the arithmetic mean which is clearly convex.
So to prove implication (ii) = (i) we may assume that ¢” > 0 and the function ¢ o ¢!
is concave. This gives (10) and, using (9), we infer that D, > 0. Condition (10) and the
positivity of ¢ imply also that

2¢ (A% (x1,x2)) = ¢ (x1), Xi,X% €1,

which, in view of (8), shows that D; > 0 as well. Therefore, the Hessian matrix of A?
is positively semidefinite at every point of 1> which forces the convexity of A?.
Finally we prove the equivalence of statements (ii) and (iii). Of course we may
consider only the case when ¢” > 0. Assume that the function [((p’)z/(p”] op~!is
concave. Then A? is convex and, by Theorem I, the mean AY, where y := qo_l, is
concave. Thus the function [(y')?/y”] oy~ is convex. We have y~' = ¢,

/ 1 and v = ¢"og”!

V= popt (9 op=1)"
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and thus

N2 / ~1)3 /
(W/2 oy =~ : 2((,0//0(1) 1) O(p:_g//'
v (¢opt)” @o¢” ¢
Consequently, the function ¢’/¢” is concave and the implication (ii) = (iii) has been
proved. Reversing this reasoning we see that also the implication (iii) = (ii) holds.
This completes the proof. [

As a consequence we obtain the following simple necessary condition of the con-
vexity of the mean A?.

COROLLARY 1. Let I be an open real interval and ¢: I — R be a twice contin-
uously differentiable function with positive first derivative. If the mean A® is convex
[concave], then either @ is an affine function, or it is strictly convex [strictly concave].

Recently, in the paper [10], Pdles and Pasteczka have proved that statement (iii)
is equivalent to the convexity [concavity] of the quasi-arithmetic mean A?: I — [ for
all integers m > 2.

6. Simple applications

The function ¢@: I — R, described in Example 2, is convex and strictly increasing
but the mean A? is neither convex, nor concave. However, ¢ is not differentiable at 0.
Just recently, Matolepszy [8] has asked about a similar example with a generator which
is continuously differentiable. He proposed to consider ¢: I — R defined by

(x) = X, ifx <0,
plx) = X2 +x,ifx>0.

In fact, it is a convex, strictly increasing and continuously differentiable function, and
the section A?(-, 1) of the mean A? is given by

ntz ifx < —2,

A? (xy, 1) ={ YL i 2<x <0,
\/ 25242 -1 .
%}HS,MQO,

Simple calculations show that its right-hand side derivative at —2,0 and 1 equals
1/2,1/2/5 and 1/2, respectively, so this derivative is not monotonic. Therefore
A?(-,1) and, consequently, also A? are neither convex, nor concave.

Encouraged by Matolepszy’s question we were looking for similar examples where
the regularity of the generator is of higher order.
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EXAMPLE 3. For each n € N the function ¢: R — R, defined by

[n]()_ X, if x <0,
)= X'+ x,ifx >0,

is convex, strictly increasing and (n — 1)-times continuously differentiable. Observe
that (pm is the function discussed in Example 2 and (p[z] is that one presented at the
very beginning of this section. In general, examining the convexity of the mean Ao ,
we cannot follow the arguments used for n =1 or n =2. For n > 3 it is usually hard

-1
even to determine the form of the inverse ((p[”]> . However, making use of Corollary

1 we see that the mean A‘P["] is neither convex, nor concave for all n € N.

It turns out that even the analyticity of a convex generator ¢ does not guarantee
the convexity of the mean A?.

EXAMPLE 4. The formula ¢(x) =e*+x defines a convex strictly increasing func-
tion ¢: R — R which is analytic. Moreover,

¢'(x)=e*+1>0 and ¢"(x)=¢">0,

hence ,
X e+ 1 _
<p”( ) _ e
¢"(x) e
for all x € R, and thus the function ¢’/¢@" is convex. Therefore, using Theorem 5, we
infer that the mean A? is neither convex, nor concave.

In the last example we apply Theorem 5 to examine the convexity of the power
means. The result is known due to Losonczi [6].

EXAMPLE 5. Fix an integer n > 2, a vector p € A, and a number # € R. The
formula

—x', if 1 € (—o0,0),
o (x) =< logx, if t =0,
X, ifre (0,400),

defines a continuous strictly increasing function ¢@,: (0,4o0) — R. It generates the

weighted Holder mean Hj, := Ap' on the half-line (0,+c0). Clearly HY = G, is the
p-weighted geometric mean. Since

1
(p()(x) = and (P(/)/(.X) = _x_27 X e (O7+°°>7

= —x, x € (0,+00),
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and thus Theorem 5 (cf. statement (if) and/or (iii)) implies the concavity of the mean
Hl(,). Taking r = 1 we come to the p-weighted arithmetic mean Ap which is affine, so
simultaneously convex and concave.

Now assume that # € R\ {0,1}. Then

1
Hy(x) = (P o+ piy) T, x € (0,4o0)",
Since
v [T 1 € (—e0,0),
(p’(x)_{ tx =1 if £ € (0,1) U (1, 4o0),
and

wen | —tt— 1)xt—27 if 1 € (—e0,0),
9 x) = { t(t—1)xX "2 if £ € (0,1) U(1,+oo),

for each x € (0,+4-<0), it follows that ¢’ is positive for ¢ € (1,+o) and negative for
t € (—e,0)U(0,1). Moreover,

(o), _ !
(Pr// (t (Y))—

for each y € ¢ ((0,+0)) and

for all x € (0,+c). Therefore, by Theorem 5, the mean Hj, is convex for ¢ € (1,+eo)
and concave for # € (—e0,0) U (0,1). Reasumming, if ¢ € (—oo, 1] then Hj, is concave
and if 7 € [1,+oco) then the mean Hj, is convex.
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