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Abstract. The aim of this article is to prove new results related to several inequalities in an
inner product space. Among these inequalities we will mention Cauchy-Schwarz inequality.
Moreover, we will we obtain some applications of these inequalities.

1. Introduction

Many classical inequalities have been extended for the inner product spaces. Among
these inequalities is the inequality of Cauchy-Schwarz [2, 13]:

|〈x,y〉| � ‖x‖‖y‖ , (1.1)

for all x,y ∈ X , where X is a complex inner product space.
The Cauchy-Schwarz inequality in the complex case is studied by Dragomir [7].

Using the Cauchy-Schwarz inequality, Pečarić proved a generalization of Hua’s in-
equality in [16].

Aldaz [1] and Niculescu [15], gave the following identity:

〈x,y〉 = ‖x‖‖y‖
(

1− 1
2

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥

2
)

, (1.2)

for all x,y ∈ X , x,y �= 0, which implies the Cauchy-Schwarz inequality in the real case.
Another inequality which plays a central role in an inner product space is the

triangle inequality,
‖x+ y‖ � ‖x‖+‖y‖ , (1.3)

for all x,y ∈ X , where X is a complex normed space. Other different results about the
triangle inequality have been proven by Pečarić and Rajić in [19]. In [4] Dadipour et al.
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gave a characterization of a generalized triangle inequality in normed spaces. In [12]
we show several estimates of the triangle inequality using integrals.

Equality (1.2) can be written in terms of the norm-angular distance or Clarkson

distance (see e.g. [3]) between nonzero vectors x and y,α [x,y] =
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥ , thus:

α2 [x,y] =
2(‖x‖‖y‖−〈x,y〉)

‖x‖‖y‖ . (1.4)

In [10], Maligranda proved an inequality which is a refinement of the triangle
inequality in a normed space. This can be written in terms of the norm-angular distance
as: ‖x− y‖− |‖x‖−‖y‖|

min{‖x‖ ,‖y‖} � α [x,y] � ‖x− y‖+ |‖x‖−‖y‖|
max{‖x‖ ,‖y‖} , (1.5)

for all x,y ∈ X , x,y �= 0.
By combining the inequalities (1.4) and (1.5) we infer the inequality

max{‖x‖ ,‖y‖}
2min{‖x‖ ,‖y‖} (‖x− y‖− |‖x‖−‖y‖|)2 � ‖x‖‖y‖−〈x,y〉

� min{‖x‖ ,‖y‖}
2max{‖x‖ ,‖y‖} (‖x− y‖+ |‖x‖−‖y‖|)2 , (1.6)

for all x,y ∈ X , x,y �= 0. This inequality implies the following inequality:

1
2

(‖x− y‖− |‖x‖−‖y‖|)2 � ‖x‖‖y‖−〈x,y〉 � 1
2

(‖x− y‖+ |‖x‖−‖y‖|)2 , (1.7)

for all x,y ∈ X .
The norm-angular distance was generalized to the p -angular distance in normed

spaces in [10], thus: for p in the interval [0,∞) and for nonzero x and y in X define

αp [x,y] =
∥∥∥‖x‖p−1 x−‖y‖p−1 y

∥∥∥ , with α0 [x,y] = α [x,y] .
In [6], Dragomir characterizes this distance obtaining new bounds for it. A survey

on the results for bounds for the angular distance, named Dunkl-Williams type theorems
(see [8, 11, 18]), is given by Moslehian et al. [14].

2. Main results

We will present some results regarding the Cauchy-Schwarz inequality and the
triangle inequality. We will also present some characterizations of the relationship be-
tween the two inequalities.

THEOREM 1. If X = (X ,〈·, ·〉) is an Euclidean space and the norm‖·‖ is gener-
ated by an inner product〈·, ·〉 , then we have

max{‖x‖ ,‖y‖}(‖x‖+‖y‖−‖x+ y‖) � ‖x‖ · ‖y‖−〈x,y〉 , (2.1)

for all vectors x and y in X .
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Proof. Without loss of generality, we may assume that ‖y‖ � ‖x‖ . The inequal-
ity from the statement becomes ‖x‖2 − ‖x‖ · ‖x+ y‖+ 〈x,y〉 � 0, which is equiva-
lent to (2‖x‖−‖x+ y‖−‖x− y‖)(2‖x‖−‖x+ y‖+‖x− y‖) � 0. This inequality is
true, because from the triangle inequality, we obtain 2‖x‖ � ‖x+ y‖+ ‖x− y‖ and
‖x+ y‖ � 2‖x‖+‖x− y‖ . �

REMARK 1. In the proof of inequality (2.1), we use the inequality ‖x‖2 + 〈x,y〉�
‖x‖ · ‖x+ y‖ , for all vectors x and y in X , which improves the inequality of Cauchy-
Schwarz, thus:

〈x,y〉 � ‖x‖ · (‖x+ y‖−‖x‖) � ‖x‖ · ‖y‖ . (2.2)

COROLLARY 1. If X = (X ,〈·, ·〉) is an Euclidean space and the norm ‖·‖ is gen-
erated by an inner product 〈·, ·〉 , then we have

0 � ‖x‖ · ‖y‖−〈x,y〉
‖x‖ · ‖y‖ � α [x,y] , (2.3)

for all nonzero vectors x and y in X .

Proof. For x → x
‖x‖ and y → y

‖y‖ in relation (2.1), we obtain �

0 � 2−
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥� ‖x‖ · ‖y‖+ 〈x,y〉

‖x‖ · ‖y‖ ,

which by simple calculations implies the statements.

REMARK 2. Combining inequalities (1.5) and (2.3), we find the following in-
equality:

0 � ‖x‖ · ‖y‖−〈x,y〉 � min{‖x‖ · ‖y‖}(‖x− y‖+ |‖x‖−‖y‖|) , (2.4)

for all vectors x and y in X .

THEOREM 2. If X = (X ,〈·, ·〉) is an Euclidean space and the norm ‖·‖ is gen-
erated by an inner product〈·, ·〉 , then we have

max{‖x‖ ,‖y‖}(‖x− y‖− |‖x‖−‖y‖|) � ‖x‖ · ‖y‖−〈x,y〉 , (2.5)

for all vectors x and y in X .

Proof. Without loss of generality we may assume that ‖y‖ � ‖x‖ . The inequal-
ity of the statement becomes ‖x‖(‖x− y‖−‖x‖+‖y‖) � ‖x‖ · ‖y‖− 〈x,y〉 , which is
equivalent to

‖x‖2−‖x‖ · ‖x− y‖−〈x,y〉 � 0. (2.6)

If we take y →−y in the first part of inequality (2.2), we obtain inequality (2.6). �
A consequence of the above theorems is related to the lower bounds of the p -

angular distance.
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REMARK 3. Combining inequalities (2.1) and (2.5), we find the following in-
equality:

max{‖x‖ ,‖y‖}(‖x‖+‖y‖−‖x+ y‖) � ‖x‖ · ‖y‖−〈x,y〉
� max{‖x‖ ,‖y‖}(‖x− y‖− |‖x‖−‖y‖|) , (2.7)

for all vectors x and y in X .

THEOREM 3. With the above notations, we have

αp [x,y] � ‖x‖p +‖y‖p−min{‖x‖p ,‖y‖p}
(

1+
〈x,y〉
‖x‖‖y‖

)
, (2.8)

for all nonzero vectors x and y in X and

αp [x,y] � |‖x‖p−‖y‖p|+ 1
2

min{‖x‖p ,‖y‖p}α2 [x,y] , (2.9)

for all vectors x and y in X .

Proof. In inequality (2.1) if we replace x by ‖x‖p−1 x and y by −‖y‖p−1 y , then
we deduce the following inequality:

max{‖x‖p ,‖y‖p}(‖x‖p +‖y‖p −αp [x,y]) � ‖x‖p · ‖y‖p
(

1+
〈x,y〉
‖x‖‖y‖

)
,

which is equivalent to

‖x‖p +‖y‖p−αp [x,y] � min{‖x‖p ,‖y‖p}
(

1+
〈x,y〉
‖x‖‖y‖

)
.

Consequently we obtain inequality (2.8).
In inequality (2.5) if we replace x by and y by ‖x‖p−1 x and y by ‖y‖p−1 y , then

we deduce the following inequality:

max{‖x‖p ,‖y‖p}(αp [x,y]−|‖x‖p−‖y‖p|) � ‖x‖p−1‖y‖p−1 (‖x‖ · ‖y‖−〈x,y〉) .
(2.11)

But, using relation (1.4), we have

max{‖x‖p ,‖y‖p}(αp [x,y]−|‖x‖p−‖y‖p|) � 1
2
‖x‖p ‖y‖p α2 [x,y]

=
1
2

max{‖x‖p ,‖y‖p}min{‖x‖p ,‖y‖p}α2 [x,y] .

Therefore, the statement is proven. �
Next, we develop these inequalities for linear combinations of vectors.
Let {e1,e2, . . . ,en} be an orthonormal system of vectors in a unitary space X =

(X ,〈·, ·〉) .
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For x ∈ X , we put

x̂ = x−
n

∑
k=1

〈x,ek〉ek and Sn (x,y) = 〈x,y〉−
n

∑
k=1

〈x,ek〉 〈ek,y〉 ,

where x,y ∈ X .
In [5], Dragomir proved the following inequality

[Sn (x,y)]2 � Sn (x,x)Sn (y,y) (2.12)

where x,y ∈ X .
In relation (2.12) the equality holds if and only if {x,y,e1,e2, . . . ,en} is linearly

dependent.
For n = 1, we apply the inequality (2.12) on C0 [a,b] for e1 = 1√

b−a
, x = 1√

b−a
f ,

y = 1√
b−a

g , where f ,g ∈C0 [a,b] , and we obtain an inequality in terms of the Cheby-
shev functional, as follows:

[T ( f ,g)]2 � T ( f , f )T (g,g) , (2.13)

where f ,g ∈C0 [a,b] and

T ( f ,g) =
1

b−a

b∫
a

f (x)g(x)dx− 1
b−a

b∫
a

f (x)dx
1

b−a

b∫
a

g(x)dx.

This inequality implies the Grüss inequality, as follows for f ,g ∈ C0 [a,b] with
γ1 � f (x) � Γ1 and γ2 � g(x) � Γ2 , where γ1,γ2,Γ1,Γ2 are four constants, we have
T ( f , f ) � 1

4 (Γ1 − γ1)
2 , so we obtain

|T ( f ,g)| � 1
4

(Γ1− γ1) (Γ2 − γ2) .

We also see an improvement of a Grüss type discrete inequality in an inner product
space [17].

THEOREM 4. With the above notations, we have

0 � max
{√

Sn (x,x),
√

Sn (y,y)
}(√

Sn (x,x)+
√

Sn (y,y)−
√

Sn (x+ y,x+ y)
)

�
√

Sn (x,x)Sn (y,y)−Sn (x,y)

� max
{√

Sn (x,x),
√

Sn (y,y)
}(√

Sn (x− y,x− y)−
∣∣∣√Sn (x,x)−

√
Sn (y,y)

∣∣∣) ,

(2.14)

f orallx,y ∈ X .

Proof. From [9] we have the following identity:

〈x̂, ŷ〉 = 〈x,y〉−
n

∑
k=1

〈x,ek〉 〈ek,y〉 = Sn (x,y) .
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But, 〈x̂, ŷ〉 = 〈x̂,y〉 = 〈x, ŷ〉 , so we deduce

‖x̂‖2 = 〈x̂, x̂〉 = 〈x̂,x〉 = 〈x, x̂〉 = Sn (x,x) = ‖x̂‖2 −
n

∑
k=1

〈x,ek〉2 .

Using Theorem 1, we have

max{‖x̂‖ ,‖ŷ‖}(‖x̂‖+‖ŷ‖−‖x̂+ ŷ‖) � ‖x̂‖ · ‖ŷ‖−〈x̂, ŷ〉
� max{‖x̂‖ ,‖ŷ‖}(‖x̂− ŷ‖− |‖x̂‖−‖ŷ‖|) ,

for all x̂, ŷ ∈ X . Therefore, we deduce the inequality of the statement. �

REMARK 4. Multiplying by
√

Sn (x,x)Sn (y,y)+Sn (x,y) in the inequality (2.14)
we obtain an improvement of inequality (2.12).

3. Applications

a) In the inner product space
(
C0 [a,b] ,〈., .〉) , for f ,g∈C0 [a,b] , we have 〈 f ,g〉=

b∫
a
f (x)g(x)dx and ‖ f‖ =

√
b∫
a
f 2 (x)dx . Similarly to the ones mentioned above, for

n = 1, we apply inequality (2.14) on C0 [a,b] for{
e1 =

1√
b−a

,x =
1√

b−a
f ,y =

1√
b−a

g

}
,

where f ,g ∈C0 [a,b] , and we obtain an improvement of inequality (2.13):

0 � max
{√

T ( f , f ),
√

T (g,g)
}(√

T ( f , f )+
√

T (g,g)−
√

T ( f +g, f +g)
)

�
√

T ( f , f )T (g,g)−T ( f ,g)

� max
{√

T ( f , f ),
√

T (g,g)
}(√

T ( f −g, f −g)−
∣∣∣√T ( f , f )−

√
T (g,g)

∣∣∣) ,

(3.1)

where f ,g,h ∈C0 [a,b] .
Let X = (X ,〈., .〉) be an Euclidean space. For n = 1 in inequality (2.12) and the

vector e ∈ X with ‖e‖ = 1, we have

[〈x,y〉− 〈x,e〉〈e,y〉]2 �
(
‖x‖2−〈x,e〉2

)(
‖y‖2−〈y,e〉2

)
. (3.2)

Dragomir [6] used this inequality to get a refinement of the Grüss inequality in an
inner product space.

From inequality (2.14) we prove an improvement of inequality (3.2), thus:

0 � A+ 〈x,y〉− 〈x,e〉〈e,y〉 �
√(

‖x‖2−〈x,e〉2
)(

‖y‖2 −〈y,e〉2
)

� B+ 〈x,y〉− 〈x,e〉〈e,y〉 ,
(3.3)
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for all x,y,e ∈ X , with ‖e‖ = 1, where

A = max

{√
‖x‖2−〈x,e〉2,

√
‖y‖2−〈y,e〉2

}
(√

‖x‖2 −〈x,e〉2 +
√
‖y‖2−〈y,e〉2−

√
‖x+ y‖2−〈x+ y,e〉2

)
and

B = max

{√
‖x‖2−〈x,e〉2,

√
‖y‖2−〈y,e〉2

}
(√

‖x− y‖2−〈x− y,e〉2−
∣∣∣∣
√
‖x‖2−〈x,e〉2 −

√
‖y‖2 −〈y,e〉2

∣∣∣∣
)

.

b) In the inner product space

(Rn,〈., .〉) , for x = (x1,x2, . . . ,xn) ,y = (y1,y2, . . . ,yn) ,

we have 〈x,y〉 = x1y1 + x2y2 + . . .+ xnyn and ‖x‖ =
√

x2
1 + x2

2 + . . .+ x2
n .

If we apply the inequality (2.14), then we deduce the inequality:

0 � max

{√
n

∑
i=1

x2
i ,

√
n

∑
i=1

y2
i

}(√
n

∑
i=1

x2
i +

√
n

∑
i=1

y2
i −
√

n

∑
i=1

(xi + yi)2

)

�
√

n

∑
i=1

x2
i

√
n

∑
i=1

y2
i −

n

∑
i=1

xiyi (3.4)

� max

{√
n

∑
i=1

x2
i ,

√
n

∑
i=1

y2
i

}(√
n

∑
i=1

(xi − yi)
2 −
∣∣∣∣∣
√

n

∑
i=1

x2
i −
√

n

∑
i=1

y2
i

∣∣∣∣∣
)

.

REMARK 5. Inequality (2.14) can be written as:

0 � max

{√
b∫
a
f 2 (x)dx,

√
b∫
a
g2 (x)dx

}
(√

b∫
a
f 2 (x)dx+

√
b∫
a
g2 (x)dx−

√
b∫
a
( f (x)+g(x))2 dx

)

�
√

b∫
a
f 2 (x)dx

√
b∫
a
g2 (x)dx−

b∫
a
f (x)g(x)dx

� max

{√
b∫
a
f 2 (x)dx,

√
b∫
a
g2 (x)dx

}
(√

b∫
a
( f (x)−g(x))2 dx−

∣∣∣∣∣
√

b∫
a
f 2 (x)dx−

√
b∫
a
g2 (x)dx

∣∣∣∣∣
)

(3.5)

Therefore, we obtain some improvements of the inequality of Cauchy-Schwarz in
the discrete version and in the integral version.
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