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Abstract. The idea of b -metric was proposed from the works of Bourbaki and Bakhtin. Czer-
wik gave an axiom which was weaker than the triangular inequality and formally defined b -
metric spaces with a view of generalizing the Banach contraction mapping theorem. Further,
in 2006, Mustafa and Sims have introduced an alternative more robust generalization of metric
spaces to overcome fundamental flaws in B.C. Dhage ′s theory of generalized metric spaces and
named it as G -metric spaces. In this paper, inspired by the concept of b -metric spaces and
G -metric spaces, a new generalization of G -metric spaces (named as Gb -metric spaces ) are
introduced that recovers a large class of topological spaces including standard metric spaces,
b -metric spaces, G -metric spaces etc. In such spaces, a new version of known fixed point the-
orems in b -metric spaces as well as in G -metric spaces have been proved. As an application
of our result, we establish an existence and uniqueness result for system of linear equations in
Gb -complete metric spaces.

1. Introduction

In 1989, Bakhtin [1] established b -metric spaces as an extension of metric spaces
by defining a b -metric constant(s �1) in triangle inequality of metric axiom. This idea
gave researchers to think in a magnificent way for their fixed point results.

DEFINITION 1. [1] Let X be a non empty set and let s � 1 be a given real number.
A function d : X ×X → [0,∞) is called a b -metric if for all x,y,z ∈ X ,

(i) d(x,y) = 0 i f and only i f x = y ,

(ii) d(x,y) = d(y,x) ,

(iii) d(x,z) � s[d(x,y)+d(y,z)] .

A pair (X ,d) is called a b -metric space.
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EXAMPLE 1. Let X = Lp[0,1] be the space of all real functions x(t), t ∈ [0,1]

such that
∫ 1

0
|x(t)|pdt < ∞ with 0 < p < 1. Define d : X ×X → [0,∞) as

d(x,y) =
(∫ 1

0
|x(t)− y(t)|pdt

)1/p

.

Then d is a b -metric space with coefficient s = 21/p .

EXAMPLE 2. Let X = R be the set of real numbers. Define d : X ×X → [0,∞) as

d(x,y) = (x− y)2 .

Then d is a b -metric space with coefficient s = 2.

The above examples show that the class of b -metric spaces is larger than the class of
metric spaces. When s = 1, the concept of b -metric spaces coincide with the concept
of metric spaces.

DEFINITION 2. Let (X ,d) be a b -metric space. A sequence {xn} in X is said to
be:

(I) Cauchy if and only if d(xn,xm) → 0 as n,m → ∞.

(II) Convergent if and only if there exists x∈ X such that d(xn,x)→ 0 as n→ ∞ and
we write lim

n→∞
xn = x .

(III) The b -metric space (X , d) is complete if every Cauchy sequence is convergent.

The extension of Banach contraction principle in case of b -metric spaces proved
in [11] reads as.

THEOREM 1. Let (X ,d) be a complete b-metric space with constant s � 1 , such
that b-metric is a continuous functional. Let T : X → X be a contraction having con-
traction constant k ∈ [0,1) such that ks < 1 . Then T has a unique fixed point.

Generalizations of metric spaces were also proposed by Gahler ([7], [8]) (called
2-metric spaces) and Dhage ([4], [5], [6]) (called D-metric spaces) to extend the known
fixed point theorems from metric spaces to these spaces. But later, different authors
proved that these attempts are invalid (for detail see [9], [12], [17]). In 2005, Mustafa
and Sims ([14]) introduced G-metric spaces as a generalization of metric spaces as
follows:

DEFINITION 3. ([14]) Let X be a non empty set and G : X ×X ×X → [0,∞) be
a function satisfying:

(i) G(x,y,z) = 0 i f x = y = z ,
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(ii) 0 < G(x,x,y); f or all x,y ∈ X , with x �= y ,

(iii) G(x,x,y) � G(x,y,z); f or all x,y,z ∈ X , with z �= y ,

(iv) G(x,y,z) = G(x,z,y) = G(y,z,x) = ...( symmetric in all three variables),

(v) G(x,y,z) � G(x,a,a)+G(a,y,z) f or all x,y,z,a ∈ X ,( rectangle inequality) ,

then the function G is called a generalized metric or a G-metric on X , and the pair
(X ,G) is a G-metric space.

In this paper, a new class of metric spaces have been introduced which is gen-
eralization of standard metric spaces, b -metric spaces, G-metric spaces etc as below:

DEFINITION 4. Let X be a non empty set and s � 1 be a given real number. Let
Gb : X ×X ×X → [0,∞) be a function satisfying:

(i) Gb(x,y,z) = 0 i f x = y = z ,

(ii) 0 < Gb(x,x,y); f or all x,y ∈ X , with x �= y ,

(iii) Gb(x,x,y) � s Gb(x,y,z); f or all x,y,z ∈ X , with z �= y ,

(iv) Gb(x,y,z) = Gb(x,z,y) = Gb(y,z,x) = ...( symmetric in all three variables),

(v) Gb(x,y,z) � s[Gb(x,a,a)+Gb(a,y,z)] f or all x,y,z,a ∈ X ,

then the function Gb is called generalized-G metric or a Gb -metric on X , and the pair
(X ,Gb) is a Gb -metric space.

REMARK 1. Every G-metric is a Gb -metric with s = 1. But converse need not
be true.

The following example shows the existence of a Gb -metric which is not a G-
metric.

EXAMPLE 3. Define a mapping Gb : R× R× R → R+ as :

Gb(x,y,z) = |x− y|2 + |y− z|2 + |z− x|2, f or all x,y,z ∈ R,

then this mapping is not a G-metric, however, it is a Gb -metric with s = 2.

PROPOSITION 1. Let (X ,Gb) be a Gb -metric space. Then mapping dGb : X ×
X → [0,∞) defined by

dGb(x,y) = Gb(x,x,y)+Gb(x,y,y), f or all x,y ∈ X ,

is a b-metric on X .
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DEFINITION 5. Let (X ,Gb) be a Gb -metric space. Then for x0 ∈ X , r > 0, the
open ball in (X ,Gb) with center x0 and radius r is

BGb(x0,r) = {y ∈ X : G(x0,y,y) < r}.

PROPOSITION 2. Let (X ,Gb) be a Gb -metric space with constant s � 1 . Then
for x0 ∈ X , r > 0 ,

BGb(x0,r) ⊆ BdGb
(x0,(1+2s)r)⊆ BGb(x0,(1+2s)r).

PROPOSITION 3. Let (X ,Gb) be a Gb -metric space with constant s � 1 . Then
for all x,y ∈ X ,

(i) Gb(x,y,y) � 2sGb(x,x,y),

(ii) 2s+1
2s Gb(x,y,y) � dGb(x,y) � (1+2s)Gb(x,y,y).

DEFINITION 6. Let (X ,Gb) be a Gb -metric space. Then a subset A of X is said
to be Gb -open if for each a ∈ A, there exists r > 0 such that BGb(a,r) ⊆ A.

REMARK 2. A Gb -open ball in Gb -metric space need not be a Gb -open set.

DEFINITION 7. Let (X ,Gb) be a Gb -metric space. Then a sequence {xn}, xn ∈
X , is said to be Gb -convergent to x ∈ X if for each ε > 0, there exists n0 ∈ N (here N
be the set of natural numbers) such that

Gb(xn,xn,x) < ε f or all n � n0.

PROPOSITION 4. Let (X ,Gb) be a Gb -metric space. Then following statements
are equivalent.

(i) Sequence {xn} is Gb -convergent to x.

(ii) dGb(xn,x) → 0 as n → ∞.

(iii) Gb(xn,xn,x) → 0 as n → ∞.

(iv) Gb(xn,x,x) → 0 as n → ∞.

(v) Gb(xn,xm,x) → 0 as n,m → ∞.

DEFINITION 8. Let (X ,Gb) and (X ′,G′
b) be two Gb -metric spaces. Then a map-

ping f : X → X ′ is said to be Gb -continuous at x0 ∈ X if for each ε > 0, there exists
δ > 0 such that

G′
b( f (x0), f (x), f (x)) < ε whenever Gb(x0,x,x) < δ f or all x ∈ X .

REMARK 3. Continuity defined above is not equivalent to continuity of a function
in (X ,Gb) as a topological space.
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PROPOSITION 5. Let (X ,Gb) and (X ′,G′
b) be two Gb -metric spaces. Then a

mapping f : X → X ′ is Gb -continuous at x ∈ X if and only if whenever sequence {xn}
is Gb -convergent to x , { f (xn)} is G′

b -convergent to f (x) .

DEFINITION 9. Let (X ,Gb) be a Gb -metric space. Then a sequence {xn}, xn ∈
X , is said to be Gb -Cauchy sequence if for each ε > 0, there exists n0 ∈ N such that

Gb(xn,xm,xl) < ε f or all n,m, l � n0.

PROPOSITION 6. Let (X ,Gb) be a Gb -metric space. Then following statements
are equivalent.

(i) Sequence {xn} is a Gb -Cauchy sequence.

(ii) For each ε > 0, there exists n0 ∈N such that Gb(xn,xm,xm)< ε f or all n,m �
n0 .

(iii) Sequence {xn} is a Cauchy sequence in b-metric space (X , dGb) .

PROPOSITION 7. Every Gb -convergent sequence is a Gb -Cauchy sequence.

DEFINITION 10. A Gb -metric space (X ,Gb) is said to be Gb -complete if every
Gb -Cauchy sequence is Gb -convergent sequence.

EXAMPLE 4. Let X = R , and Gb : X × X × X → R+ be defined as :

Gb(x,y,z) = |x− y|2 + |y− z|2 + |z− x|2, f or all x,y,z ∈ R.

Then (R,Gb) is a Gb -metric space with s = 2.
We can easily prove that (R,Gb) is Gb -complete with the help of Proposition 4 and
Proposition 6.

2. Lemmas

We need the following lemmas for the proofs of our main results:

LEMMA 1. Let (X ,Gb) be a Gb -metric space with constant s � 1 and {xn} be
any sequence in (X ,Gb) . Then

Gb(x0,xk,xk) � sn
k−1

∑
i=0

Gb(xi,xi+1,xi+1)

for every n ∈ N and k ∈ {1,2,3, ...,2n} .
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Proof. We denote P(n) by the statement: For every n∈N and k∈ {1,2,3, ...,2n} ,

Gb(x0,xk,xk) � sn
k−1

∑
i=0

Gb(xi,xi+1,xi+1).

It is easy to prove that P(0) and P(1) are true. Now we prove that P(n) implies
P(n+1) .
Case 1: If k ∈ {1,2,3, ...,2n} , then using P(n) and s � 1, we have

Gb(x0,xk,xk) � sn
k−1

∑
i=0

Gb(xi,xi+1,xi+1) � sn+1
k−1

∑
i=0

Gb(xi,xi+1,xi+1).

Case 2: If k ∈ {2n +1,2n +2,2n +3, ...,2n+1} , then using P(n) , we have

Gb(x0,xk,xk) � s(Gb(x0,x2n ,x2n)+Gb(x2n ,xk,xk))

� s

(
sn

2n−1

∑
i=0

Gb(xi,xi+1,xi+1)+ sn
k−1

∑
i=2n

Gb(xi,xi+1,xi+1)

)

= sn+1
k−1

∑
i=0

Gb(xi,xi+1,xi+1). �

LEMMA 2. Let (X ,Gb) be a Gb -metric space with constant s � 1 and {xn} be
any sequence in (X ,Gb) such that

Gb(xn,xn+1,xn+1) � kGb(xn−1,xn,xn)

for every n ∈ N and for some k ∈ [0,1) , then {xn} is a Gb -Cauchy sequence.

Proof. Applying induction on given condition we have,

Gb(xn,xn+1,xn+1) � knGb(x0,x1,x1). (1)

Let m, l ∈ N and p = [log2 l] . Consider,

Gb(xm+1,xm+l,xm+l)
� sGb(xm+1,xm+2,xm+2)+ sGb(xm+2,xm+l ,xm+l)
� sGb(xm+1,xm+2,xm+2)+ s2Gb(xm+2,xm+22 ,xm+22)+ s2Gb(xm+22 ,xm+l,xm+l)

� sGb(xm+1,xm+2,xm+2)+ s2Gb(xm+2,xm+22 ,xm+22)+ s3Gb(xm+22 ,xm+23 ,xm+23)

+s3Gb(xm+23 ,xm+l ,xm+l)

� . . . �
p

∑
n=1

snGb(xm+2n−1 ,xm+2n ,xm+2n)+ sp+1Gb(xm+2p ,xm+l,xm+l)

�
p

∑
n=1

s2n

(
m+2n−1−1

∑
i=m

Gb(x2n−1+i,x2n−1+i+1,x2n−1+i+1)

)
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+s2(p+1)

(
m+l−2p−1

∑
i=m

Gb(x2p+i,x2p+i+1,x2p+i+1)

)

�
p+1

∑
n=1

s2n

(
m+2n−1−1

∑
i=m

Gb(x2n−1+i,x2n−1+i+1,x2n−1+i+1)

)
,

Gb(xm+1,xm+l ,xm+l) � Gb(x0,x1,x1)
p+1

∑
n=1

s2n

(
2n−1−1

∑
i=0

km+2n−1+i

)

� Gb(x0,x1,x1)km

1− k

p+1

∑
n=1

s2nk2n−1

� Gb(x0,x1,x1)km

1− k

∞

∑
n=1

k2n logk s+2n−1
.

Since lim
n→∞

(2n logk s+2n−1−n) = ∞ , so for λ > 0, there exists n0 ∈ N such that

2n logk s+2n−1−n > λ f or all n � n0,

which implies that

k2n logk s+2n−1 � kλ+n f or all n � n0.

Hence, the series
∞

∑
n=1

k2n logk s+2n−1
is convergent and denote the sum by μ , then

Gb(xm+1,xm+k,xm+k) � Gb(x0,x1,x1)kmμ
1− k

for all m,k ∈ N . But k ∈ [0,1) , so by using Proposition 6, {xn} is a Gb -Cauchy
sequence. �

3. Fixed point theorems in the context of Gb - metric spaces

Our first result is the following theorem.

THEOREM 2. Let (X ,Gb) be a Gb -complete metric space with constant s � 1
and T : X → X be a mapping such that

Gb(Tx,Ty,Tz) � kGb(x,y,z) f or all x,y,z ∈ X ,

where k ∈ [0, 1
s ) . Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by

xn = Tn(x0) f or all n ∈ N.
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Then for each n ∈ N , we have

Gb(xn,xn+1,xn+1) � kGb(xn−1,xn,xn).

Now an easy induction gives that

Gb(xn,xn+1,xn+1) � knGb(x0,x1,x1).

Let n,m ∈ N with n < m , then we have,

Gb(xn,xm,xm)
� s[Gb(xn,xn+1,xn+1)+Gb(xn+1,xm,xm)]
� sGb(xn,xn+1,xn+1)+ s2[Gb(xn+1,xn+2,xn+2)+Gb(xn+2,xm,xm)]
� . . . � sGb(xn,xn+1,xn+1)+ s2Gb(xn+1,xn+2,xn+2)+ ...+ sm−nGb(xm−1,xm,xm)

� (skn + s2kn+1 + ...+ sm−nkm−1)Gb(x0,x1,x1) � skn

1− sk
Gb(x0,x1,x1),

so Gb(xn,xm,xm) −→ 0 as n,m → ∞ . Thus {xn} is a Gb -Cauchy sequence. But
(X ,Gb) is a Gb -complete, therefore, there exists x′ ∈ X such that xn → x′ . Now
T (x′) = T ( lim

n→∞
xn) = lim

n→∞
T (xn) = lim

n→∞
xn+1 = x′ . Thus x′ is a fixed point of T . Let

y be another fixed point of T . Then

Gb(x′,y,y) = Gb(Tx′,Ty,Ty) � kGb(x′,y,y)

which implies that Gb(x′,y,y) = 0 as k ∈ [0,1) , therefore, x′ = y , that is, x′ is a unique
fixed point of T . �

EXAMPLE 5. Let X = R , and Gb : X × X × X → R+ be defined as:

Gb(x,y,z) = |x− y|2 + |y− z|2 + |z− x|2, f or all x,y,z ∈ R.

Then (X ,Gb) is a Gb -complete metric space with s = 2.
Define T : X → X by

T (x) =
x
2
, x ∈ X .

Then

Gb(Tx,Ty,Tz) = Gb(
x
2
,
y
2
,
z
2
) =

∣∣∣ x
2
− y

2

∣∣∣2 +
∣∣∣ y
2
− z

2

∣∣∣2 +
∣∣∣ z
2
− x

2

∣∣∣2 � kGb(x,y,z),

where k = 1
4 ∈ [0, 1

s ) . Also T has a unique fixed point namely 0.

EXAMPLE 6. Let X = {α,β ,γ} and define a mapping Gb : X × X × X → R+ as
follows:

Gb(x,x,x) = 0 for all x ∈ X ,
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Gb(α,β,β)=Gb(β,α,β)=Gb(β,β,α)=Gb(α,α,β)=Gb(α,β,α)=Gb(β,α,α)=1,

Gb(α,γ,γ)=Gb(γ,α,γ)=Gb(γ,γ,α)=Gb(α,α,γ)=Gb(α,γ,α)=Gb(γ,α,α)=1.2,

Gb(β,γ,γ)=Gb(γ,β,γ)=Gb(γ,γ,β)=Gb(β,β,γ)=Gb(β,γ,β)=Gb(γ,β,β)=1.3,

Gb(x,y,z) = 3.3 for all x,y,z ∈ X with x �= y �= z �= x.

Then it is easy to prove that (X ,Gb) is a Gb -metric space with constant s = 1.5 (here
1.5 is the smallest possible value of s) . Also we notice that, with x = α, y = β , z = γ ,

Gb(x,y,z) � Gb(x,β ,β )+Gb(β ,y,z),

however,
Gb(x,y,z) � s[Gb(x,β ,β )+Gb(β ,y,z)].

Also it is very easy to show that (X ,Gb) is a Gb -complete. Define a mapping T : X →X
by Tα = α, Tβ = α, Tγ = β . Now for k = 5

6 ∈ [0,1), it is not difficult to prove that

Gb(Tx,Ty,Tz) � kGb(x,y,z) f or all x,y,z ∈ X ,

and 5
6 is the smallest value of such k . Here T has a unique fixed point, namely α ,

however k �∈ [0, 1
s ) . So it is need to extend the interval [0, 1

s ) in Theorem 2.

In this theorem, we consider k ∈ [0,1) rather k ∈ [0, 1
s ) .

THEOREM 3. Let (X ,Gb) be a Gb -complete metric space with constant s � 1
and T : X → X be a mapping such that

Gb(Tx,Ty,Tz) � kGb(x,y,z) f or all x,y,z ∈ X , (2)

where k ∈ [0,1) . Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by

xn = Tn(x0) f or all n ∈ N.

Then for each n ∈ N , we have

Gb(xn,xn+1,xn+1) � kGb(xn−1,xn,xn),

so by Lemma 2, {xn} is a Gb -Cauchy sequence. But (X ,Gb) is a Gb -complete, there-
fore, there exists x′ ∈ X such that xn → x′ . Now T (x′) = T ( lim

n→∞
xn) = lim

n→∞
T (xn) =

lim
n→∞

xn+1 = x′ . Thus x′ is a fixed point of T . Let y be another fixed point of T . Then

Gb(x′,y,y) = Gb(Tx′,Ty,Ty) � kGb(x′,y,y)

which implies that Gb(x′,y,y) = 0 as k ∈ [0,1) , therefore, x′ = y , that is, x′ is a unique
fixed point of T . �

The next theorems are generalization of Theorem 2 and Theorem 3.
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THEOREM 4. Let (X ,Gb) be a Gb -complete metric space with constant s � 1
and T : X → X be a mapping such that

Gb(Tx,Ty,Tz) � k[Gb(x,y,z)+Gb(x,Tx,Tx)+Gb(y,Ty,Ty)+Gb(z,T z,Tz)]

for all x,y,z ∈ X , where k ∈ [0,λ ) and λ = min{ 1
4 , 1

2s} . Then T has a unique fixed
point.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by

xn = Tn(x0) f or all n ∈ N.

Then for each n ∈ N , we have

Gb(xn,xn+1,xn+1) � k[2Gb(xn−1,xn,xn)+2Gb(xn,xn+1,xn+1)]

which implies that

Gb(xn,xn+1,xn+1) � 2k
1−2k

Gb(xn−1,xn,xn).

As k < 1
4 , therefore, 2k

1−2k < 1 and hence by Lemma 2, {xn} is a Gb -Cauchy sequence.
But (X ,Gb) is a Gb -complete, therefore, there exists x′ ∈ X such that xn → x′ . Now
consider,

Gb(x′,Tx′,Tx′) � s[Gb(x′,xn,xn)+Gb(xn,Tx′,Tx′)]
� sGb(x′,xn,xn)+sk[Gb(xn−1,x

′,x′)+Gb(xn−1,xn,xn)+2Gb(x′,Tx′,Tx′)]

which gives that

(1−2ks)Gb(x′,Tx′,Tx′) � sGb(x′,xn,xn)+ sk[Gb(xn−1,x
′,x′)+Gb(xn−1,xn,xn)].

Letting n → ∞ , we have
Gb(x′,Tx′,Tx′) = 0

which immediately tells that Tx′ = x′ , that is, x′ is a fixed point of T . Let y be another
fixed point of T . Then

Gb(x′,y,y) = Gb(Tx′,Ty,Ty) � kGb(x′,y,y)

which implies that Gb(x′,y,y) = 0 as k < 1
4 , therefore, x′ = y , that is, x′ is a unique

fixed point of T . �

THEOREM 5. Let (X ,Gb) be a Gb -complete metric space with constant s � 1
and T : X → X be a mapping such that

Gb(Tx,Ty,Tz) � AGb(x,y,z)+BGb(x,Tx,Tx)+CGb(y,Ty,Ty)+DGb(z,T z,Tz) (3)

for all x,y,z ∈ X , where A+B+C+D < 1, s(C+D) < 1 and A+B � 0 . Then either
T has a unique fixed point or all elements of X are fixed points of T .
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Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by

xn = Tn(x0) f or all n ∈ N.

Then for each n ∈ N , we have

Gb(xn,xn+1,xn+1)
�AGb(xn−1,xn,xn)+BGb(xn−1,xn,xn)+CGb(xn,xn+1,xn+1)+DGb(xn,xn+1,xn+1),

which implies that

Gb(xn,xn+1,xn+1) � A+B
1− (C+D)

Gb(xn−1,xn,xn).

As A + B +C + D < 1, A + B � 0, therefore, by Lemma 2, {xn} is a Gb -Cauchy
sequence. But (X ,Gb) is a Gb -complete, therefore, there exists x′ ∈ X such that xn →
x′ . Now consider,

Gb(x′,Tx′,Tx′)
� s[Gb(x′,xn,xn)+Gb(xn,Tx′,Tx′)]
� sGb(x′,xn,xn)+ sAGb(xn−1,x

′,x′)+ sBGb(xn−1,xn,xn)+ s(C+D)Gb(x′,Tx′,Tx′),

which gives that

(1−s(C+D))Gb(x′,Tx′,Tx′)� sGb(x′,xn,xn)+s[AGb(xn−1,x
′,x′)+BGb(xn−1,xn,xn)].

Letting n → ∞ , we have
Gb(x′,Tx′,Tx′) = 0,

which gives that Tx′ = x′ , that is, x′ is a fixed point of T . Now if all elements of X are
not fixed points of T , then there exists some x∗ ∈ X such that Tx∗ �= x∗ , so on putting
x = y = z = x∗ in (3), we have that 0 � (B+C +D) Gb(x∗,Tx∗,Tx∗) which implies
that B+C+D � 0. Thus A < 1 as A+B+C+D < 1. Let y be another fixed point of
T . Then

Gb(x′,y,y) = Gb(Tx′,Ty,Ty) � AGb(x′,y,y)+BGb(x′,Tx′,Tx′)+ (C+D)Gb(y,Ty,Ty)
= AGb(x′,y,y),

which implies that Gb(x′,y,y) = 0 as A < 1, therefore, x′ = y , that is, x′ is a unique
fixed point of T . �

Now, we furnish some examples related to Theorem 5.

EXAMPLE 7. Let X = {α,β ,γ,δ} and define a mapping Gb : X × X × X → R+
as follows:

Gb(x,x,x) = 0 for all x ∈ X ,

Gb(α,β ,β ) = Gb(β ,α,β ) = Gb(β ,β ,α) = Gb(α,α,β ) = Gb(α,β ,α)
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= Gb(β ,α,α) = 2,

Gb(α,γ,γ) = Gb(γ,α,γ) = Gb(γ,γ,α) = Gb(α,α,γ) = Gb(α,γ,α) = Gb(γ,α,α)
= 1,

Gb(α,δ ,δ ) = Gb(δ ,α,δ ) = Gb(δ ,δ ,α) = Gb(α,α,δ ) = Gb(α,δ ,α)
= Gb(δ ,α,α) = 1,

Gb(β ,γ,γ) = Gb(γ,β ,γ) = Gb(γ,γ,β ) = Gb(β ,β ,γ) = Gb(β ,γ,β ) = Gb(γ,β ,β )
= 2.1,

Gb(β ,δ ,δ ) = Gb(δ ,β ,δ ) = Gb(δ ,δ ,β ) = Gb(β ,β ,δ ) = Gb(β ,δ ,β )
= Gb(δ ,β ,β ) = 1.3,

Gb(γ,δ ,δ ) = Gb(δ ,γ,δ ) = Gb(δ ,δ ,γ) = Gb(γ,γ,δ ) = Gb(γ,δ ,γ) = Gb(δ ,γ,γ)
= 4.3,

Gb(x,y,z) = 5 for all x,y,z ∈ X with x �= y �= z �= x.

Then it is easy to prove that (X ,Gb) is a Gb -metric space with constant s = 2.6. Also
we notice that, with x = δ , y = β , z = γ ,

Gb(x,y,z) � Gb(x,β ,β )+Gb(β ,y,z),

however,
Gb(x,y,z) � s[Gb(x,β ,β )+Gb(β ,y,z)].

Also it is quite obvious that (X ,Gb) is a Gb -complete. Define a mapping T : X → X by
Tα = α, Tβ = δ , Tγ = δ , Tδ = α . Now for A = 0.7, B = 0.07, C = 0.08, D = 0.09,
we have A+B+C+D < 1, s(C+D) < 1 and A+B � 0. Also it is not hard to prove
that (3) holds true. But for x = y = α, z = γ , we notice that (2) does not hold true for
any k ∈ [0,1) , however T has only one fixed point, namely α .

EXAMPLE 8. Let (X ,Gb) be a Gb -complete metric space as in previous Example
7. Define a mapping T : X → X by Tα = α, Tβ = β , Tγ = γ, Tδ = δ . Then for
A = 1.4, B = −0.2, C = −3, D = −1, we have A+B+C+D < 1, s(C+D) < 1 and
A+B � 0. Also it is easy to see that (3) holds true, however all elements of X are fixed
points of T .

THEOREM 6. Let (X ,Gb) be a Gb -complete metric space with constant s � 1
and T : X → X be a mapping such that:

(i) Gb(Tx,Ty,Tz) � kmax{Gb(x,y,z), Gb(x,Ty,Ty), Gb(y,Tx,Tx), Gb(z,T z,Tz)}
for all x, y, z ∈ X and for some k ∈ [0, 1

2s

)
;

(ii) T is Gb−continuous or Gb(xn,y,z)→Gb(x,y,z) whenever xn → x for all y,z∈
X

then T has a unique fixed point.
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Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by

xn = Tn(x0) f or all n ∈ N.

Then for each n ∈ N , we have

Gb(xn,xn+1,xn+1)
� kmax{Gb(xn−1,xn,xn), Gb(xn−1,xn+1,xn+1), Gb(xn,xn,xn), Gb(xn,xn+1,xn+1)}
� kmax{Gb(xn−1,xn,xn), Gb(xn−1,xn+1,xn+1)}.

Case I: If max{Gb(xn−1,xn,xn), Gb(xn−1,xn+1,xn+1)} = Gb(xn−1,xn,xn) , then

Gb(xn,xn+1,xn+1) � kGb(xn−1,xn,xn).

Case II: If max{Gb(xn−1,xn,xn), Gb(xn−1,xn+1,xn+1)} = Gb(xn−1,xn+1,xn+1) , then

Gb(xn,xn+1,xn+1) � kGb(xn−1,xn+1,xn+1) � ks[Gb(xn−1,xn,xn)+Gb(xn,xn+1,xn+1)],

which implies that

Gb(xn,xn+1,xn+1) � ks
1− ks

Gb(xn−1,xn,xn).

As k ∈ [0, 1
2s ) , so in both cases by Lemma 2, {xn} is a Gb -Cauchy sequence. But

(X ,Gb) is a Gb -complete, therefore, there exists x′ ∈ X such that xn → x′ .
Case I: If T is Gb -continuous, then T (x′) = T ( lim

n→∞
xn) = lim

n→∞
T (xn) = lim

n→∞
xn+1 = x′ .

Case II: If Gb is continuous with respect to first variable, then

Gb(x′,Tx′,Tx′) � s[Gb(x′,xn,xn)+Gb(xn,Tx′,Tx′)]
� sGb(x′,xn,xn)+ skmax

{
Gb(xn−1,x

′,x′), Gb(xn−1,Tx′,Tx′),
Gb(x′,xn,xn), Gb(x′,Tx′,Tx′)

}
.

Letting n → ∞ and using the fact that Gb is continuous with respect to first variable,
we have

Gb(x′,Tx′,Tx′) � skGb(x′,Tx′,Tx′).

But sk < 1, therefore,
Gb(x′,Tx′,Tx′) = 0

which implies that Tx′ = x′ , that is, x′ is a fixed point of T . Let y be another fixed
point of T . Then, in view of Proposition 3,

Gb(x′,y,y) = Gb(Tx′,Ty,Ty)
� kmax{Gb(x′,y,y), Gb(x′,Ty,Ty), Gb(y,Tx′,Tx′), Gb(y,Ty,Ty)}
= kmax{Gb(x′,y,y), Gb(x′,y,y), Gb(y,x′,x′), Gb(y,y,y)} � kGb(y,x′,x′)
� k[2sGb(x′,y,y)],

which gives that Gb(x′,y,y) = 0 as 2ks < 1, therefore, x′ = y . Thus T has a unique
fixed point. �
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4. Application

As an application of the fixed point theorem for contractions on a Gb -complete
metric space, we provide an existence and uniqueness result for system of linear equa-
tions.

THEOREM 7. In a system of linear equations

Ax = b (4)

where A = [ai j] is a n× n matrix and b = [bi] is a column vector of constants and
x = [xi] is a column matrix of n unknowns, if

|aii +1|+
n

∑
j=1, j �=i

|ai j| < 1 f or all i = 1,2, ...,n. (5)

then system has a unique solution.

Proof. Let X = {[xi] | xi is real f or all i = 1 to n, n being f ixed} and
Gb : X × X × X → R+ be defined as:

Gb(x,y,z) =
n

max
i=1

|xi− yi|2 +
n

max
i=1

|yi − zi|2 +
n

max
i=1

|zi − xi|2,

for all x = [xi], y = [yi], z = [zi] ∈ X . Then clearly (X ,Gb) is a Gb -complete metric
space with constant s = 2. Now define a n×n matrix C = [ci j] by

ci j =
{

ai j +1, i f i = j
ai j, i f i �= j.

Then given system (4) reduces to

x = Cx−b. (6)

Also given condition (5) becomes

n

∑
j=1

|ci j| < 1 f or all i = 1,2, ...,n. (7)

Now define a mapping T : X → X by

Tx = Cx−b, where x ∈ X .

Now for x = [xi], y = [yi], z = [zi] ∈ X , set p = Tx, q = Ty, r = Tz and suppose
that p = [pi], q = [qi], r = [ri] , then

pi =
n

∑
j=1

ai jxi−bi (i = 1,2, ...,n) etc.
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Consider,

Gb(Tx,Ty,Tz)

=
n

max
i=1

|pi −qi|2 +
n

max
i=1

|qi− ri|2 +
n

max
i=1

|ri − pi|2

=
n

max
i=1

∣∣∣∣∣
n

∑
j=1

ci j(xi − yi)

∣∣∣∣∣
2

+
n

max
i=1

∣∣∣∣∣
n

∑
j=1

ci j(yi − zi)

∣∣∣∣∣
2

+
n

max
i=1

∣∣∣∣∣
n

∑
j=1

ci j(zi − xi)

∣∣∣∣∣
2

� n
max
i=1

(
n

∑
j=1

|ci j||xi − yi|
)2

+
n

max
i=1

(
n

∑
j=1

|ci j||yi− zi|
)2

+
n

max
i=1

(
n

∑
j=1

|ci j||zi − xi|
)2

�
(

n
max
k=1

|xk − yk|2 +
n

max
k=1

|yk − zk|2 +
n

max
k=1

|zk − xk|2
)

n
max
i=1

(
n

∑
j=1

|ci j|
)2

= Gb(x,y,z)
n

max
i=1

(
n

∑
j=1

|ci j|
)2

= αGb(x,y,z),

where

α =
n

max
i=1

(
n

∑
j=1

|ci j|
)2

.

By the condition (7), α ∈ [0,1) , therefore, using Theorem 3, T has a unique fixed point
and hence system (4) has a unique solution. �
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