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POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES VIA AN
EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION

MAJA ANDRIC*, GHULAM FARID, SAJID MEHMOOD AND JOSIP PECARIC

(Communicated by S. Varosanec)

Abstract. In this paper certain Pélya-Szego type integral inequalities due to Karamata’s estima-
tions of the Chebyshev quotient are presented. Those inequalities include an extended general-
ized Mittag-Leffler function with the corresponding fractional integral operator, and from them,
some fractional integral inequalities of Chebyshev type are obtained. Also, several known results
are improved.

1. Introduction and preliminaries

The Chebyshev functional T'(f,g) for two Lebesgue integrable functions f and g
on interval [a,b] is defined by

T(f.8) /f dx—(b a/f dx) (b_ /g dx) M

Majority of problems involving Chebyshev functional are to give a lower bound or an
upper bound for 7', under various assumptions. For instance, if f and g are mono-
tonic in the same sense (in the opposite sense) then we obtain a well-known Chebyshev
inequality ([3])

T(f,g) =20 (<0). 2)
Also, if we have constants m,M,n,N € R such that for x € [a, D]

then the Griiss inequality ([7]) states

7(5.9) < M=),
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For more recent inequalities see [2, 4, 5, 8, 11, 12, 13]. Following inequalities are the
subject of our research: the first one was introduced by Pdlya and Szego ([15])

(J;"fz(;c) )(f & ( S \/W> @

(1 £Cge)d
Next is the inequality by Dragomir and Diamond ([6])
(M —m)(N
7(f.9) < 4¢W o /f [ o 5)

Using Karamata’s estimations of the Chebyshev quotient ([9]), Pecari¢ and Peri¢ give
generalized and improved inequality of (5) for positive normalized functional @ in

([13D

B (M—m)(N—n)cD B (M—m)(N—n)q) @
(VN + V3 fe) < (/i + VAMN)’ ()0)
(M —m)(N—n)
(0] —P(f)D {——F———=d
(fg) —D(f)P(g) < (W+\/W)2 (fg)

< (M —m)(N —n) (VN + \/m)ch( D). (6)

Motivated by the paper [11], where authors have proved Pélya-Szeg6 and Chebyshev
types fractional integral inequalities for the Riemann-Liouville fractional integral oper-
ator, we presents improved and generalized corresponding results using our extended
generalized Mittag-Leffler function with its fractional integral operator, both defined in

[1]:

DEFINITION 1. Let p,a,1,8,c € C, R(p),R(a),R(7) >0, R(c) >R(5) >0

with p >0, r>0and 0 < g <r+R(p). Then the extended generalized Mittag-Leffler

function Eg ok (z;p) is defined by

0,ng,C . < BP(6 + ng,c— 6) (C)nq e
Epoiz(p) = : (7
pat (5P) 26 B(8,c—0) TI(pn+a)(t)n

DEFINITION 2. Let w,p,0,7,0,c € C, R(p), R(a),R(7) >0, R(c) > R(5) >
O with p>0,r>0and 0< g < r+R(p). Let f € Ly[a,b] and x € [a,b]. Then the

generalized fractional integral operator ewf prg _f is defined by

,0,1,q,¢ b —10.ng.c .
(errass) Gap) = [ (=)™ S o= p)f0)ar (®)
Here (c),q denotes the generalized Pochhammer symbol

I'(c+ng)

(C)nq = F(C) )
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B, is an extension of the beta function

B, (x,y) :Alfxfl(l—f)y”e_’“%’)dt (R(x),R(y),R(p) > 0)

and Li[a,b] is the space of all Lebesgue measurable functions f for which |f] is
Lebesgue integrable on [a,b], i.e. || f]|1 = /7 [f(x)]dx < .

For different choices of parameters in Definition 1 and Definition 2, we can get
corresponding known fractional integral operators (for more details see [1] and refer-
ences therein). E.g., setting p = w = 0 in (8), this operator reduces to the left-sided
Riemann-Liouville fractional integral 1% f(x) of order o.

2. Polya-Szego type fractional integral inequalities via extended generalized
Mittag-Leffler function

In this section we use extended generalized Mittag-Leffler function Eg o (z:p)

w,0,n,q,c

with the corresponding fractional integral operator € ;"’" f (in real domain) to obtain

fractional generalizations of inequalities due to Polya aﬁd Szego. Following theorems
are based on [11] where this was done for the Riemann-Liouville fractional integral
operator. The role of the parameter o0 > 0 will be of great significance and for the
reader’s convenience we will use a simplified notation

Eq(zp) = ES5% (zp)
_ i B,(6+ng,c—08) (C)ng 7"
4T B(5,c-8) T(pn+a) (D

(eaf)(p) i= (€154 f) (x:p)
—/ D)% E (2 p) (w(x — 1) p) f()dr.

THEOREM 1. Under the various parametric constraints stated already with Def-
inition 1 and Definition 2, in real domain, let f.g,®1,¢2, W) and Y, be positive inte-
grable functions on [0,e0) with

0<oi(u) <f(u) <@a(u), 0<wyi(u) <glu)<ya(u) (u€la],r>a). (9)
Then the following inequality holds

(ayryaf?) (5p) (a1 28”) (:p) _ s
[(Eal@iyi+o2un)fg) (p)) 4

(10)

Proof. From the given conditions follows

() (&) >




1368 M. ANDRIC, G. FARID, S. MEHMOOD AND J. PECARIC
that is

(@1 () w1 (u) + @2(0) w2 (1)) £ (1) (1) = W1 ()2 () f2 (1) + 1 () p2 (1) ().

Multiplying above inequality by (x —u)* Eq(w(x — u)P;p) and integrating on [a,x]|
we obtain

[ =) (= 10P) (1 0) v () + @2 ()20 (g )
> [ (=) B — 05 p)ya ()2 )% ()
+ [ =) = 0P :p) g1 () 2)* )
that is

(Ea(@ry1 + 2v2)f8) (x:p) = (EaviVaf?) (x:p) + (a1 928%) (x:p).

Since a+b > 2+v/ab for a,b € R (the AM-GM inequality), we have

(Ea(@ryi+ @2y2)f8) (x:p) > 2\/(£awl ¥2f?) (x:p) (€aPr928”) (x:p),

which leads to the inequality (10) as required. [J

Fixing the bounds on functions f and g we get the following special case of
Theorem 1.

COROLLARY 1. Under the various parametric constraints stated already with
Definition 1 and Definition 2, in real domain, let f and g be two positive integrable
Sunctions on [0,0) satisfying

O<m< flu) SM<oo, 0<n<gu)<N<e (u€lat],t>a). (11)

Then the following inequality holds

(8af?) (:p) (€ag®) (ip) _ 1 [ [mn |MN 2
[(€afs) (x:p))* <4< my m”) .

REMARK 1. Choosing particular values of parameters in Theorem 1, known Pdlya-
Szegd type inequalities for several fractional integral operators can be deduced (for
more details on fractional integral operators see [1] and references therein). For exam-
ple, setting w = p =0 (and a = 0), we get Pélya-Szego inequality for the Riemann-
Liouville fractional integral operator given in [1 1, Lemma 3.1].

Now we prove the next Pélya-Szego type inequality.
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THEOREM 2. Suppose that the assumptions of Theorem 1 hold with > 0. Then

(Ea@192) (x:p) (Epviva) (x:p) (Eaf?) (x:p) (€87) (x:p)
[(£a@1f) (x:p) (Epvig) (x:p) + (Ea@af) (x:p) (E¥2g) (x:p)]

1
;<3 (12

Proof. Under given conditions on f,g and ¢;, y;(i = 1,2) in (9), for u,v € [a,1]
we have

o f) fl) i)
i) s0) 20 ™ ) v
which imply ,
o) @)\ ) _ L) ew)es(w)
(w(v) " (v>) O ZOREAOIZC)
that is

@1 () f () Y1 (V)g(v) + @2 () f () w2 (V)g (v) = Wi (V)2 (V) 2 (1) + @1 () @2 () (v).
Multiplying above inequality by
(r—10)* " (x = )P E o (w(x—u)P; p)Eg (w(x —v)P; p)

and integrating, we obtain

| [ =P Eawtx—Pip)
xEg(w(x—v)P;p)ei(u) f(u)y1(v)g(v)dudy
[ a0 )P g el w)ip)
XEg(w(x—v)P;p)@a(u) f () y2 (v)g (v)dudv
> [ = =) Ea(vle )i p)
XEg(w(x—v)P; p)yi (V) y2 (v).f (u)dudv
[ [ = P Eawlx - i)
XEg(w(x—v)P; )1 () 92 (u)g* (v)dudv,
that is
(&apif) (x:p) (Epvi8) (x:p) + (€2 f) (x:p) (Y28 (x:p))
> (€af?) (x:p) (Egv1v2) (x:p) + (EaPr92) (v:p) (€p87) (x:p)-
Now if we apply the AM-GM inequality we get
(€ap1f) (x;p) (Epyig) (x:p) + (Eapaf) (x:p) (EpY28) (x:p)
>2y/(€af?) (x:p) (¥1v2) (x:) (Ear92) (x:p) (p8?) (x:p)
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which leads to the inequality (12). O

In the results that follow, we need next equality:
X
(€al) (xip) = [ (=) Ealwix—1)Psp)ds
_ /" o1 2 p(0+ng,c—0) (C)ng W'(x—1)P"

B(6,c—8) T(pn+o) (T)up a
B 5+nq7 —0) () wtoox o
2 B(6 0—5) Fon+a) (r)n,,/a (x—n)prreids
(x—a aE p(8+nq,c—08) (¢)ng wh (x—a)P"
B(0,c—6) T(pn+a)(t),y pnto’
Hence,
(€al) (x;p) = (x—a)“Eq11 (w(x —a)P;p). (13)

More details on the properties of the fractional integral operator €, f can be found in
[1, Section 2].

We continue with a special case of Theorem 2.

COROLLARY 2. Suppose that the assumptions of Corollary 1 hold with 3 > 0.
Then

(€a1) (x;p) (eg1) (x:p) (€as?) (x:p) (€88%) ( ( mn /MN)
[(eaf) (:p) (p8) (x >]2 Vi
THEOREM 3. Suppose that the assumptions of Theorem 1 hold with > 0. Then

(af?) (x:p) (£58°) (x:p) < (Ea (@2f8/W1)) (x:p) (€5 (W2 fg/ 1)) (x;p). (14)

Proof. Under given conditions on f,g and ¢;,y; (i=1,2) in (9), for u,v € [a,1]
we have

P WW) oo O0E0)

L gt (v) =0,
e - w420
hence
[ =0 Bt P p) P )
x o— . (P2(u)
< [ e Bl — P p) 02 F g
and

[ =P Egwtx =i ()

a

< [P B —Pip) 2 ()0,



POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES 1371

which imply
(€as?) (v:p) < (€al2f8/W1)) (x:p),
(epg°) (x:p) < (ep(yafe/ o)) (x:p).
Multiplying above inequalities we obtain (14). [

COROLLARY 3. Suppose that the assumptions of Corollary 1 hold with B > 0.
Then 5 5
(eaf?) (x:p) (ep8?) (:p) _ MN
(€afg) (x:p) (€pfg) (x:p) ~ mn

REMARK 2. As before, choosing particular values of parameters in Theorem 2
and Theorem 3, known Pdlya-Szego type inequalities for several fractional integral
operators can be deduced, such as inequalities for the Riemann-Liouville fractional
integral operator in [1 1, Lemma 3.3, Lemma 3.4] if we set w = p = 0.

3. Chebyshev type fractional integral inequalities

Using Pdlya-Szego type inequality in Theorem 1, we obtain following Chebyshev
inequalities based on [13] and [11].

THEOREM 4. Under the various parametric constraints stated already with Def-
inition 1 and Definition 2, in real domain, let f.g, @1, @2, W) and Y, be positive inte-
grable functions on [0,e0) with

0< 91(1) < fu) < pau), 0 < yi(u) < glw) < () (€ [a,i], > a).

Suppose also B > 0. Then

|(8al) (x;p) (pf2) (x:p) + (£51) (x; p) (€S g) (x; p)
—(8af) (x:p) (gpg) (x:p) — (€ag) (x:p) (£5f) (x:P)]
< [Gap(f. 01.02)(x:p) + Gp.alf. 01.02) (x:p)
< |G (8,1, ¥2) (x:p) + G, i ) (i) (15)

where

(ep1) (x:p) [(€a(v+w)u) (x:p)]?
4 (gqvw) (x;p)
— (qu) (x:p) (gpu) (x:p). (16)

Ga,ﬁ (u7 v, W)(X;p) =

Proof. Let f and g be two positive integrable function on [0,0). For u,v € [a,t]
we define A(u,v) as

Au,v) = (f () = f(v))(8 () = g(v)),
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that is

Au,v) = f(u)g(u) + f(v)g(v) — f(u)g(v) — f(v)g(u).
Multiplying above equality by

(=) e =) T E o (w(x—u)?: p)Eg (w(x—v)P: p)

and integrating, we obtain

/Q/a x—u)* N x—v)P T E g (w(x— u)?; p)Eg (w(x—v)P;p)A(u,v)dudv

= (eg1) (x:p) (Eafg) (x;p) + (al) (x:p) (€pSg) (x:p)
— (eaf) (v;p) (€8) (x:p) — (epf) (x:p) (Eag) (x: ). (17)

By the Cauchy-Schwartz inequality for double integrals we have

x(x— W) =P E g (wix— u)P;p)Eg(w(x—v)P;p)A(u,v)dudy

[/¢1/¢1 x— 1) (x— V)BT E G (w(x —u)P; P)E g (w(x— V)P p)£2 () dudv

+/X/Xx u)* 1(x V)B lEa( (x—u)P; )Eﬁ( w(x— v)p;p)fz(v)dudv

1
2

_2// x—u)*" 1x vﬁ 1Ea( (x —u)P; )[3( w(x— V)p§17)f(u)f(v)dudv]
[// x— 1) (=B E G (w(x —u)P; PEp(w(x— VP p) e (u)dudy

+/ / x—u)* =P E g (wlx—u)P; PEg(w(x— V)P p)g*(v)dudy

L
2

2 [ [ e )P Bl ) ) B (- v)P;p>g<u>g<v>dudv]

= [(€p1) (1) (£0f2) (x:p) + (1) (:p) (£5.%) (6:p) —2(80f) (x3P) (6 f) (x3)]
% [(ep1) (x:p) (£ag?) (1:p) + (€al) (:p) (8587 ) (v:) — 2 (€ag) (x:1) (ep8) (x:p)]
For v (1) = ya(t) = g(¢t) = 1 by Theorem 1 follows

[(€al@i +@)f) (x:p)]*
4(€00192) (x;p)

(af?) (x:p) <

This implies

(g81) (x:p) (€af?) (x:p) — (€af) (x:p) (€pS) (x:p)

(es1) (:p) [ealor +@)N) ) |
< 1Eapron) (Tp) (&af) (x:p) (£5.) (x:p)
= Gop(f,01,02)(x;p) (18)
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and

(€a1) (x:p) (€pf7) (x:p) — (€af) (x:p) (€5 ) (x:P)

(eal) () (g1 +02)f) (wp)]” .
< (epor0n) (i) (&af) (x:p) (€pf) (x:p)

= Gﬁa(fy(Ply(PZ)(x’p) (19)

Applying the same procedure for @ (1) = @2(¢) = f(t) = 1, we get

(epl) (x:p) (£ag?) (x:p) — (€ag) (x:p) (€p8) (x:p)
< Gople, v, v2)(x:p) (20)

(£al) (x:p) (£58%) (x:p) — (€0g) (x:p) (€p8) (x:p)
< Gg (g, v, ) (x:p) 21

Finally, considering (17) to (21), we arrive at the desired result in (15). This completes
the proof. [

Setting o = 3 in Theorem 4, next inequality follows.

COROLLARY 4. Suppose that the assumptions of Theorem 4 hold. Then
[(€al) (x:p) (Eaf8) (x:p) — (€af) (x:P) (Eag) (x:P)]

1
< |Gaalf01,02) (% p) Gaa (8, W1, ¥2) (3 p)] 2,
where G ¢ is given by (16).

Setting ¢ =m, ¢ =M, y; =n and y, = N, we obtain

(M —m)?

- (eaf) (p)),

Gma(f,m,M)(x;p) =

N —n)?

oy L(Eag) (sp))*.

Garaelgn,N)(rip) = ¢

COROLLARY 5. Under the various parametric constraints stated already with
Definition 1 and Definition 2, in real domain, let f and g be two positive integrable
Sunctions on [0,e0) satisfying

O<m< flu)SM<eo, 0<n<gu)<N<o (u€lat],t>a).

Then
(€ l) (x;p) (Eafg) (x:p) — (Eaf) (s p) (Eag) (x;p)]
B () (60 ea) ),

<
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REMARK 3. Setting w=p =0 (and @ =0) in Theorem 4, Corollary 4 and Corol-
lary 5 we get Pélya-Szeg6 type inequalities for the Riemann-Liouville fractional inte-
gral operator given in [ 1, Theorem 3.6, Theorem 3.7, Corollary 3.4].

Recently, in [ 10] Nikolova and VaroSanec generalized results from [1 1] for any two
linear isotonic functionals. Here, we will give another approach. In the next theorem
we will use Karamata’s estimations of the Chebyshev quotient ([9]),

1 (Halrwan) (5 o)

< <K, 22
K2 5 S F()g(x)dx -
where
B vmn++MN 23)
B v mN + \/W’

and the result (6) by Pecari¢ and Peri¢ ([13]). In this way we will obtain even better
upper and lower estimations than those in Corollary 5.

THEOREM 5. Suppose that the assumptions of Corollary 5 hold. Then

1 o (8al) (x;p) (€af8) (x;P) <K? (24)

K% = (gof) (x:p) (€ag) (x:p)

where K is given by (23).

Proof. Without loss of generality we can assume
I<flu) <, 1<g() <
for every u € [a,] and some Ui, 1, > 1. From the obvious inequality
[ = F @) f(v) = 1] [p28(v) — g(w)] = 0

we obtain

i f(v)g(v) — pipog(v) — i f(v)g(u) + tig(u)
—taf (u) f(V)g(v) + f(u) f(v)g(u) + o f (u)g(v) — f(u)g(u) = 0.

Multiplying above inequality by
(=) (x=v)*Ea(w(x —u)P; p)Ea(w(x—v)P:p)

and then integrating, we have

pit (Eal) (x;p) (Eafg) (x;p) — tikia (Eal) (x;p) (Eag) (x; p)
—t (Eaf) (x;p) (Eag) (x;p) + 11 (Eal) (x; ) (Eag) (x; p)
—2 (Eaf) (x;p) (Eafg) (x;p) + (Eaf) (x;P) (Eafg) (x;P)

(x;p))

+12 (€ f) (x;:p) (Eag) (X;p) — (€al) (x;p) (Eafg)
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from which follows

o (11 (Eal) (x:p) — (€af) ()] + 11 [(€af) () — (Eal) (x;p)]

1
p2 [t (&) (x;p) — (€af) (x;p)] + (Eaf) (x:p) — (€al) ()
o (Eafg) (xp)
= (gag) (xip)

Similarly, from
[ = f)] [f(v) = 1] [128 () — g(v)] = 0
follows
(Eafg) (x;p)
(ag) (x:p)

o Hi(eal) (p) — (€af) (up) + Mk [(Eaf) (xp) — (€al) (xp)]
11 (8a1) (x:p) = (€af) (x:p) + 2 [(Ef) (x:p) — (€a1) (3 p)]

Hence, from (25) and (26) we have

T [.Ul £ocf xp} [eaf xip) }
Hz{ul Ee"‘f))é“ﬂJrE ;E ;—1

(eaf)(x:0) (eaf)(x:p)
_ (€afe)(nip) _ M1 GeaTiiep) +HIK2 [( N (wp) 1}

= (e xp) _ (eaf)xp) Eah)mp) 1]
(€et)(50) gy - Geliie | e 1]

Next, we define functions /,H : [1, 1] — (0,c0) by

lul_t+ulu2(t_l) (): 1

B = w1 H(wi /1)’

For 1) = VAIICVLTREVLTEN straightforward to check that

Vi +1

1 2

max H(1) = H() = (L V“l”z) e
relbpu) VI + /I

and

terﬂiﬂl]h(t) =h(uy/n)=1/H(t) =1/K>.

Using (27) we obtain

(€af)p)) _ (Ea) (50) (€afs) (1:p) _ . ( (Eaf) (i)
”((eaw(x;p)) S €af) (cp) (€ag) (x:p) <H< e >)

from which follows (24). [

1375

(25)

(26)

27)



1376 M. ANDRIC, G. FARID, S. MEHMOOD AND J. PECARIC

COROLLARY 6. Ifthe assumptions of Theorem 5 hold, then

(M —m)(N—n)

—W (€al) (x;p) (Eafg) (x:p)

< —% (eaf) () (Eag) (x:p)

< (€al) () (af2) (v:P) — (Eaf) () (Eag) (x:p)

< Tt eal) () eaf) )

< % (€af) (1) (€ag) (x:p). (28)

Proof. Asin [13, Corrolary 1], we see that direct consequences of (24) are the first
and the last inequality in (28). From the lower bound in (24) we have

1] eat) () (et (i)
< (eal) (6:0) (€a/8) () — () (:7) (€at) (x:P)

from which follows the second inequality in (28). Analogously, from the upper bound
in (24) follows the third inequality in (28). [

REMARK 4. If we observe results from Corollary 5 and Corollary 6 we can see
that the upper estimate from Corollary 6 is better, i.e. inequality
(M —m)(N—n) P (M —m)(N—n)
(1 /mN—|—«/Mn)2 = 4vVmMnN

is equivalent with inequality
2
0< (Vin—VmN)".

The upper estimates are equal if and only if M/m =N /n.
The lower estimate from Corollary 6 is also better, i.e. inequality

4/mMnN (vmn+VMN)’

(M —m)(N—n) - (M —m)(N—n)

is equivalent with inequality

2

OS(\/m_—\/M_N>

The lower estimates are equal if and only if m =M and n =N.
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