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SCHUR-CONVEXITY OF THE WEIGHTED QUADRATURE FORMULA

SANJA KOovAaC

(Communicated by J. Jakseti¢)

Abstract. We explore the error of the weighted quadrature formulae and give the sufficient and
necessary conditions for this type of quadrature formula to have Schur-convexity property. Some
special cases of the weigted quadrature formulae are considered.

1. Introduction

Let us begin by recalling some definitions of convex, n— convex and Schur-convex
functions.

DEFINITION 1. A function f is convex on an interval [ if for any two points
x,ye€l and A €0,1],

fAx+(1=2)y) SAf(x)+(1=2)f(¥). (D

If the inequality (1) is reversed, then f is said to be concave.

DEFINITION 2. A function f : [a,b] — R is said to be n—convex, n > 0 on [a,b]
if for all choices of (n+ 1) distinct points in [a,b],

[%0,. .-, xa]f =0, 2)

where [xo,...,x,]f denotes the n—th order divided difference of f. If the inequality
(2) is reversed, then f is said to be n— concave.

REMARK 1. For n = 0,1,2 respectively , O—convex functions are nonnegative
functions, 1—convex functions are increasing functions and 2—convex functions are
convex functions.

THEOREM 1. If f") exists, then f is n—convex if f) > 0.

For this definitions and results see [5].
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DEFINITION 3. Function F : A C R" — R is said to be Schur-convex on A if

F(xi,...;x) <SF(V1,---,Yn) 3)
for every x = (x1,...,%,),¥y = (V1,---,¥n) € A such that x <y, i.e. such that
n n k k
>ox= Yy and Y xy < Dy fork=1,..n—1, 4)
i=1 i=1 i=1 i=1
where xj;) denotes the i— th-largest component in x. Function F is said to be Schur-

concave on A if —F is Schur-convex.

REMARK 2. Every convex and symmetric function is Schur-convex.

Schur-convexity has been investigated by many researchers. The following result was
proved in [3] for arithmetic integral mean.

THEOREM 2. Let f be a continuous function on an interval I with a non-empty
interior. Then

1oy
F(x,y):{y—xfxf(l)dt,x,yel,x;éy’ s

f(x), x=yel
is Schur-convex (Schur-concave) on I if and only if f is convex (concave) on I.

The next result for the Schur-convexity of the weighted arithmetic integral mean
was proved several years later [6].

THEOREM 3. Let f be a continuous function on 1 C R and let w be a positive
continuous weight on 1. Then the function

1 Y
_ fow(t)f(t)dtax7yel7x7éy7
Fu(x,y) {f(x)7 reyel (6)
is Schur-convex (Schur-concave) on I if and only if the inequality
Fw@)f@0dt _ wx)fx)+wy) /) 7

Jiwde = w(x) +w(y)
holds (reverses) for all x,y € I.

Authors have left the open problem: Under what conditions do the following inequali-
ties
7 (xw(x) +yW(y)> o iw@f@dr _ wo)f(x) +w) /()
w(x) +w(y) [ w(t)dt w(x) +w(y)

hold for all x,y € I?
The following result ([1]) was the motivation for our paper:

®)
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THEOREM 4. Suppose f:1— R is a continuous function. Function

1 x+
Miay) = { RIS OUI T o el ©)

is Schur-convex (Schur-concave) on I* if and only if f is convex (concave) on I. Fur-
thermore, function

T(X ): M—ﬁfxyﬂt)dt,x,yel,x#)@ (10)
Y 0, x=yel

is Schur-convex (Schur-concave) on I if and only if f is convex (concave) on 1.

In [2], the new proof for the Schur-convexity of functions M(x,y) and T (x,y) is
given.

The objective of this work is to give the necessary and sufficient condition for the
function M,, : I* — R defined as

14 t)dt — *ty el
atny) - | TR ORI F () wyea gy
Oa X=y cl
and the function T;, : I> — R defined as
OO 1 g
Tv(x’y) = 2 f}lw([)dt fx W(t)f(t)dt,)@yGI,x;éy? (12)
Oa X=y cl

is Schur-convex (Schur-concave) on /2.
Let us recall the weighted onepoint quadrature formula ([4]). If f: [x,y] — R is
such that f () isa piecewiese continuous function, then we have

n

[ s =Y A 0@ + (<1 [ Wt wdr,  (13)

j=1

where for j=1,...,n

Aj(z) = — !/xy(z—s)j_lw(s)ds (14)

and

wanlt) = o [ — sy Iw(s)ds, € (2] (1>

Weighted trapezoidal quadrature formula: If f: [x,y] — R is such that f” is con-
tinuous on [x,y], then there exists n € (x,y) such that

[ ();f(\lwwm

+§([Uwﬂf—@—w@—mW®w)ﬂm>

WWUQZ{WM)= o7 e (1= s)" " ws)ds, 1 € [x,2],

(16)
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Weighted midpoint quadrature formula: If f : [x,y] — R is such that f” is contin-
uous on [x,y], then there exists 1 € (x,y) such that

[ woswan=s (F2) [wos [ (525 woas s

In order to prove our result, we shall use the following characterization of Schur-
convexity ([5]):

LEMMA 1. Let f:I" — R be a continuous symmetric function. If f is differen-
tiable on I, then f is Schur-convex on I" if and only if

J J
(x,-—xj) <8)JCC, a—i) 0 (18)

forall xi,x; €1, x; #xj, i,j=1,2,...,n. Function [ is Schur-concave if and only if
the reversed inequality sign holds.

2. Main result

THEOREM 5. If f € C*(I), then the function M,,(x,y) defined by (11) is Schur-
convex on I? if and only if inequality

Fw@)f@0dt _ wx)fx) +wy) /)
Lw@)de = wx)+w(y)

(19)
holds for all x,y € I.

Proof. Obviously, M,, is symmetric, continuous and differentiable function, so
we shall prove this by using Lemma 1. Let x,y € I, x <y. We have

(MM (e ()

v )<8y 9x> (2 wit)dr)®
W) f(x) +
{ W)+ w(y)

if and only if

W) W) fO) o fw)f@de o
W@ tw) O wdi

REMARK 3. For w(r) = y%x, t € [x,y], the condition (19) becomes the right-hand

side of the Hermite-Hadamard inequality:
1 y
foyan < L)
y—xJx 2

In [7] it is proved that f is convex iff at least one of the inequalities in Hermite-
Hadamard is valid. Therefore, Theorem 5 for weighted version of the function M,,(x,y)
is the generalization of the result in [1].
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COROLLARY 1. If My,(x,y) is Schur-convex function on I?, then for all x,y € 1

f(x;y ) < f;wl(z) — / " w(e) f(0)dr.
x+y x+y

Proof. Since M, (x,y) is Schur-convex, then for x,y € I we have (3*,3%) <
(x,y), so by definition of Schur-convexity we have

X+y x-+
(252 _y) e

22
0 g . a1 ()

f(x;ry) < f;wl() z/xyw(t)f(t)dt’

which is the left-hand side of the Fejer-Hermite-Hadamard inequality. [l

THEOREM 6. If f € C*(I), then the function T,(x,y) defined by (12) is Schur-
convex on I? if f is convex and

Jiow@)de — xw(x) +yw(y)

Jiw(@)de — w(x)+w(y) (20)
and

WO _

0@ w0) < [ wtoar @)

hold for all x,y € 1.

Proof. Obviously, T,, is symmetric, continuous and differentiable function. Let
x,y €1, x <y. Suppose f is convex function. We have

Y (AL ELE)

dy  ox [ w(t)dr
Jow@)f(o)de — wx)f(x) +wy)f()
[ " +0) 2
Jow@)de  f'(y ) )]
w(x) +w(y)
Since f is convex and according to the inequality (21), we have
Y w w) [Fy—t)w
[f" z(t)dt — ij(fv(t)?,t (t)dt] O -] =0 (23)
Applying condition (20) to the last inequality we get:
Jiwdt _wly) [ =tjwdr] Jiw@)dt _wlx) [{(t —x)w(n)dt]
e e [ R
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and
Jw@dr ') = &) wf ) 56— wlt)dr —wl) f(x) [7 (£ = x)wlt)dr
w(x) +w(y) 2 - (w(x) +w(y)) - [3 w(t)dt '

On the other hand, if we apply (13) to z = x and multiply by %, and also to

z =1y and multiply by W(X‘;’J(:?v(y) , and then add those two identities, we obtain:

Jw)f@)dr — wx)f(x) +wy) )
JZw(t)ar w(x) +w(y)
L YOO [0 = Ow)dr —wx)f'(x) [} = x)w(t)dt 24)

(wx) +w())- [§ wt)dt
_ R ) - f(s—n)w(s)ds +w(y) - [ (t — s)w(s)ds] £ (1)
(W) +w(y)) - [ wt)dt ’

So, we have proved that the last term in brackets in (22) is greater or equal

w(m) [F O =s)w(s)dsf'(v)  wx) [7 (s —x)w(s)dsf' (x)
(wix)+wy)) [fwls)ds — (wlx)+w(y)) [fwls)ds

and therefore,

a1, JT,
o-s(35:-5)
_ =0 +wl) [ ) [ s=nwls)ds+wly) - [t =s)w(s)ds] f" (1)t
T wla (w(x)+w(y))- [ w(t)dt
_ =) [ ) [ s —)w(s)ds +w(y) - fy (t = s)w(s)ds] £ ()
([ w(t)dr)?

(25)

Since f is convex and the integrals in the brackets are non negative, we have

proved (y —x) (aaTy“ af;‘) >0, for all x,y € I,x <y, so the function T, is Schur-

convex. [

REMARK 4. For w(t) = y%x, t € [x,y], we get the result obtained in [1], so The-
orem 6 can be considered as generalised version of it.

COROLLARY 2. If T,,(x,y) is Schur-convex function on I?, then for all x,y € I

JSw)dr Jx
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( )Proof. Since Ty, (x,y) is Schur-convex, then for x,y € I we have (3,32) <
x,y), SO

xX+y x+
Tw (Tya Ty> < Tw(xvy)

[ +76)
2 )

W /xyw(’)f(t)dz <

which is the right-hand side of the Fejer-Hermite-Hadamard inequality. O
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