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CONVERSE TO THE SHERMAN INEQUALITY WITH APPLICATIONS

ANA BARBIR, SLAVICA IVELIĆ BRADANOVIĆ, -DILDA PEČARIĆ AND

JOSIP PEČARIĆ

(Communicated by J. Jakšetić)

Abstract. In this paper we proved a converse to Sherman’s inequality. Using the concept of f -
divergence we obtained some inequalities for the well-known entropies. We also introduced a
new entropy by applying the Zipf-Mandelbrot law and derived some related inequalities.

1. Introduction and preliminaries

Throughout R+ and R++ denote the sets of nonnegative and positive numbers,
i.e. R+ = [0,∞) and R++ = (0,∞) , respectively.

Let f : [α,β ] → R be a convex function on [α,β ] ⊂ R . If xxxxx = (x1, . . . ,xn) is any
n -tuple in [α,β ]n and aaaaa = (a1, . . . ,an)∈R

n
+ such that ∑n

i=1 ai = 1, then the well known
Jensen inequality

f

(
n

∑
i=1

aixi

)
�

n

∑
i=1

ai f (xi) (1.1)

holds (see for example [18]).
Closely connected to Jensen’s inequality (1.1) is the Lah-Ribarič inequality

n

∑
i=1

ai f (xi) � β − x
β −α

f (α)+
x −α
β −α

f (β ), (1.2)

which holds for every function f : [α,β ] → R convex on [α,β ] ⊂ R , where x =
(x1, ...,xn) ∈ [α,β ]n, a = (a1, ...,an) ∈ R

n
+ with ∑n

i=1 ai = 1 and x = ∑n
i=1aixi (see

[16]).
Sherman [21] obtained generalization of Jensen’s inequality (1.1) in the form

m

∑
j=1

b j f (y j) �
n

∑
i=1

ai f (xi), (1.3)
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which holds for every function f : [α,β ] → R convex on [α,β ] ⊂ R , where x =
(x1, . . . ,xn) ∈ [α,β ]n , y = (y1, ...,ym) ∈ [α,β ]m , a = (a1, ...,an) ∈ R

n
+ , and b =

(b1, ...,bm) ∈ R
m
+ are such that

y = xS and a = bSᵀ (1.4)

for some column stochastic matrix S = (si j) ∈ Mnm(R) , i.e. matrix whose entries are
greater or equal to zero with the sum of the entries in each column is equal to 1. Here
Sᵀ denotes a transpose matrix of S .

Recently, some generalization of Sherman’s inequality (1.3) are obtained (see [1,
2, 7–11, 17]).

Note that (1.4) can be written as

y = xS, (y j =
n

∑
i=1

xisi j, j = 1, ...,m), (1.5)

a = bSᵀ, (ai =
m

∑
j=1

b jsi j, i = 1, ...,n).

It is obvious that Sherman’s inequality (1.3) reduces to Jensen’s inequality (1.1) by
choosing m = 1 and setting b = [1] .

Csiszár [4] introduced the concept of f -divergence functional

Cf (p,q) =
n

∑
i=1

pi f

(
qi

pi

)
(1.6)

for a convex function f : R++ →R and p =(p1, ..., pn)∈R
n
++, q =(q1, ...,qn)∈R

n
++ .

It is possible to use non-negative n -tuples p and q in the f -divergence functional,
by defining

f (0) = lim
t→0+

f (t), 0 f

(
0
0

)
= 0, 0 f

( c
0

)
= lim

ε→0+
f
( c

ε

)
= c lim

t→∞

f (t)
t

, c > 0.

We will limit our consideration to positive cases of p and q .
The generalized Csiszár f -divergence for a convex function f : R++ → R is de-

fined by

Cf (p,q;r) =
n

∑
i=1

ripi f

(
qi

pi

)
, (1.7)

where p = (p1, ..., pn) ∈ R++, q = (q1, ...,qn) ∈ R++, with weights r = (r1, ...,rn) ∈
R+. It is obvious Cf (p,q;e) = Cf (p,q) for e = (1, ...,1) ∈ R

n.
The classical inequality for f -divergence functional, known as the Csiszár-Körner

inequality [5], has the form

n

∑
i=1

pi f

⎛
⎜⎜⎝

n
∑
i=1

qi

n
∑
i=1

pi

⎞
⎟⎟⎠� Cf (p,q) (1.8)
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and holds for every function f : R++ → R convex on R++ . Specially, if f is normal-
ized, i.e. f (1) = 0 and ∑n

i=1pi = ∑n
i=1qi, then

0 � Cf (p,q). (1.9)

In particular, if p and q are two positive probability distribution, i.e. p = (p1, ..., pn) ∈
R

n
++ and q = (q1, ...,qn) ∈ R

n
++ with ∑n

i=1pi = ∑n
i=1qi = 1, then the inequality (1.9)

holds for every convex and normalized function f : R++ → R . These results are easy
consequences of Jensen’s inequality (1.1).

In this paper, as main result we present a converse to Sherman’s inequality (1.3).
Using the concept of f -divergence we also obtain a converse to the Csiszár-Körner in-
equality (1.8). As easy consequences we derive some inequalities for the well-known
divergences. As applications, we introduce a new entropy by applying the Zipf-
-Mandelbrot law and give some related inequalities including the Zipf-Mandelbrot en-
tropy.

2. Main results

First we present a converse to Sherman’s inequality (1.3).

THEOREM 1. Let f : [α,β ] → R be a convex function on [α,β ] ⊂ R. Let x =
(x1, ...,xn) ∈ [α,β ]n , y = (y1, ...,ym) ∈ [α,β ]m , a = (a1, ...,an) ∈ R

n
+ and b =

(b1, ...,bm)∈R
m
+ be such that (1.4) holds for some column stochastic matrix S = (si j)∈

Mnm(R) , then

m

∑
j=1

b j f (y j) �
n

∑
i=1

ai f (xi) �
m

∑
j=1

b j
f (α)(β − y j)+ f (β )(y j −α)

β −α
. (2.1)

Proof. Under the assumptions, Sherman’s inequality (1.3) holds. Further, from
(1.2), setting pi = si j , for i = 1, ...,n, we have

m

∑
j=1

b j f (y j) �
n

∑
i=1

ai f (xi) =
n

∑
i=1

(
m

∑
j=1

b jsi j

)
f (xi) =

m

∑
j=1

b j

(
n

∑
i=1

si j f (xi)

)

�
m

∑
j=1

b j

⎛
⎜⎜⎝

β − n
∑
i=1

xisi j

β −α
f (α)+

n
∑
i=1

xisi j −α

β −α
f (β )

⎞
⎟⎟⎠ ,

what we need to prove. �
In sequel, we use notation 〈·, ·〉 for the standard inner product in R

n . We also
denote with Mnm(R+) the space of n×m matrices with nonnegative entries.

By applying Theorem 1 we compare two generalized Csiszár f -divergences.
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THEOREM 2. Let f : [α,β ] → R be a convex function on [α,β ] ⊂ R++. Let p ∈
R

n
++, q ∈ R

n
++, be such that qi

pi
∈ [α,β ], i = 1, ...,n. Further, let p̃ ∈ R

m
++, q̃ ∈ R

m
++,

c ∈ R
n
+ and d ∈ R

m
+ be such that

p̃ = pR, q̃ = qR and c = dRᵀ (2.2)

for some matrix R = (ri j) ∈ Mnm(R+) , then

Cf (p̃, q̃;d) � Cf (p,q;c) �
m

∑
j=1

d j〈p,r j〉
f (α)

(
β − 〈q,r j〉

〈p,r j〉
)

+ f (β )
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (2.3)

Proof. According to (1.7) the inequality (2.3) can be written in the form

m

∑
j=1

d j p̃ j f

(
q̃ j

p̃ j

)
�

n

∑
i=1

cipi f

(
qi

pi

)

�
m

∑
j=1

d j〈p,r j〉
f (α)

(
β − 〈q,r j〉

〈p,r j〉
)

+ f (β )
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (2.4)

We denote r j = (r1 j, ...,rn j) , ri j � 0 for i = 1, ...,n , j = 1, ...,m . From (2.2) it follows
that p̃ j = 〈p,r j〉 = ∑n

i=1 piri j and q̃ j = 〈q,r j〉 = ∑n
i=1 qiri j for j = 1, ...,m . Moreover,

ci = ∑m
j=1 d jri j for i = 1, ...,n (see (2.2)) and after multiplying with pi and taking

ai = cipi , b j = d j〈p,r j〉 we get

ai =
m

∑
j=1

b j
piri j

〈p,r j〉 (2.5)

for i = 1, ...,n , j = 1, ...,m . The following equality holds

〈q,r j〉
〈p,r j〉 =

p1r1 j

∑n
i=1 piri j

q1

p1
+ ...+

pnrn j

∑n
i=1 piri j

qn

pn

for j = 1, ...,m. Hence, the following identity is valid

[ 〈q,r1〉
〈p,r1〉 , ...,

〈q,rm〉
〈p,rm〉

]
=
[

q1

p1
, ...,

qn

pn

]⎡⎢⎣
p1r11
〈p,r1〉 . . . p1r1m

〈p,rm〉
...

. . .
...

pnrn1
〈p,r1〉 . . . pnrnm

〈p,rm〉

⎤
⎥⎦ . (2.6)

The n×m matrix S = (si j) , si j = piri j
〈p,r j〉 is column stochastic and with x = (x1, ...,xn) ,

y = (y1, ...,yn) , xi = qi
pi

and y j = 〈q,r j〉
〈p,r j〉 , i = 1, ...,n , j = 1, ...,m, satisfies condition

y = xS (see (2.6)). Since a = bSᵀ (see (2.5)) is satisfied for a = (a1, ...,an) and b =
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(b1, ...,bm) , we can apply Theorem 1 and obtain

m

∑
j=1

b j f

(
〈q,r j〉〈
p,r j

〉
)

=
m

∑
j=1

d j〈p,r j〉 f
(
〈q,r j〉〈
p,r j

〉
)

�
n

∑
i=1

cipi f

(
qi

pi

)

�
∑m

j=1d j〈p,r j〉
(

β− 〈q,r j〉
〈p,r j〉

)
β −α

f (α)+
∑m

j=1d j〈p,r j〉
(
〈q,r j〉
〈p,r j〉−α

)
β −α

f (β ),

which is equivalent to (2.3). �

COROLLARY 1. Let f : [α,β ] → R be a convex function on [α,β ] ⊂ R++. Let
p ∈ R

n
++, q ∈ R

n
++, be such that qi

pi
∈ [α,β ], i = 1, ...,n. Further, let p̃ ∈ R

m
++ and

q̃ ∈ R
m
++ be such that

p̃ = pR and q̃ = qR (2.7)

for some matrix R = (ri j) ∈ Mnm(R+) and R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j ,

i = 1, ...,n is the i-th row sum of R, then

Cf (p̃, q̃) � Cf (p,q;R) �
m

∑
j=1

〈p,r j〉
f (α)

(
β − 〈q,r j〉

〈p,r j〉
)

+ f (β )
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (2.8)

In particular, if the matrix R is row stochastic, then

Cf (p̃, q̃) � Cf (p,q) �
m

∑
j=1

〈p,r j〉
f (α)

(
β − 〈q,r j〉

〈p,r j〉
)

+ f (β )
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (2.9)

Proof. By taking d = (d1, ...,dm) = (1, ...,1) in Theorem 2, we calculate ci =
∑m

j=1 ri j = Ri for i = 1, ...,n . Therefore inequality (2.3) becomes (2.8).
If additionally the matrix R is row stochastic, then R = (1, ...,1)∈R

n and (2.8) reduces
to (2.9). �

As a special case of the previous result we obtain a converse to the Csiszár-Körner
inequality (1.8).

COROLLARY 2. Let f : [α,β ] → R be a convex function on [α,β ] ⊂ R++. Let
p ∈ R

n
++, q ∈ R

n
++, r ∈ R

n
+ be such that qi

pi
∈ [α,β ], i = 1, ...,n, with Pn = ∑n

i=1pi

and Qn = ∑n
i=1qi , then

〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
� Cf (p,q;r) � 〈p,r〉

f (α)
(

β − 〈q,r〉
〈p,r〉

)
+ f (β )

( 〈q,r〉
〈p,r〉 −α

)
β −α

. (2.10)

In particular, if r = e, then

Pn f

(
Qn

Pn

)
� Cf (p,q) � Pn

f (α)
(

β − Qn

Pn

)
+ f (β )

(
Qn

Pn
−α

)
β −α

. (2.11)
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Proof. Taking m = 1 in Corollary 1 and r1 = (r1, ...,rn), we obtain Ri = ri for
i = 1, ...,n, and (2.8) becomes (2.10). Further, for r = e = (1, ...,1), the inequality
(2.10) reduces to (2.11). �

3. Application to divergences

In the examples below we obtain, for suitable choices of the kernel f , some of the
best known distance functions used in mathematical statistics, information theory and
other scientic fields (see [3, 6, 12–15, 19, 20]).

For f (t) = − ln t, t > 0, the Csiszáre f -divergence is

Cf (p,q) =
n

∑
i=1

pi

(
− ln

qi

pi

)
=

n

∑
i=1

pi ln
pi

qi
= KL(p,q),

known as the Kullback-Liebler divergence.
We also introduce the weighted Kullback-Liebler divergence defined by

KL(p,q;r) =
n

∑
i=1

ripi ln
pi

qi
,

with ri � 0, i = 1, ...,n. Obviously, for e = (1, ...,1) , it follows KL(p,q;e) = KL(p,q) .
The Shannon entropy is defined by

H(p) = −
n

∑
i=1

pi ln pi, (3.1)

where p ∈ R
n
++. Note that the Shannon entropy we can get as a special case from the

Csiszáre f -divergence choosing the convex mapping f (t) = ln 1
t = − ln t,t > 0, i.e.

Cf (p,e) = −
n

∑
i=1

pi ln

(
1
pi

)
=

n

∑
i=1

pi ln pi = −H(p).

We also consider the weighted Shannon entropy defined by

H(p;r) = −
n

∑
i=1

ripi ln pi, (3.2)

with weights ri , i = 1, ...,n . Obviously, for r = e = (1, ...,1) , it follows H(p;e) =
H(p) .

COROLLARY 3. Let [α,β ] ⊂ R++, p ∈ R
n
++ and q ∈ R

n
++ be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++, c ∈ R

n
+ and d ∈ R

m
+ be such that (2.2)

holds for some matrix R = (ri j) ∈ Mnm(R+) , then

KL(p̃, q̃;d) � KL(p,q;c) �
m

∑
j=1

d j〈p,r j〉
ln
(

1
α
)(

β − 〈q,r j〉
〈p,r j〉

)
+ ln

(
1
β

)( 〈q,r j〉
〈p,r j〉 −α

)
β −α

.

(3.3)
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Proof. If we take in Theorem 2 function f to be f (t) = ln
(

1
t

)
, which is convex

on [α,β ], then (3.3) follows from (2.3). �

COROLLARY 4. Let [α,β ]⊂R++, p∈R
n
++, q∈R

n
++, be such that qi

pi
∈ [α,β ],

i = 1, ...,n, and p̃∈R
m
++, q̃∈R

m
++ be such that (2.7) holds for some matrix R = (ri j)∈

Mnm(R+) . Further, let R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n is the i-th

row sum of R, then

KL(p̃, q̃) � KL(p,q;R) �
m

∑
j=1

〈p,r j〉
ln
(

1
α
)(

β − 〈q,r j〉
〈p,r j〉

)
+ ln

(
1
β

)( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.4)

In particular, if the matrix R is row stochastic, then

KL(p̃, q̃) � KL(p,q) �
m

∑
j=1

〈p,r j〉
ln
( 1

α
)(

β − 〈q,r j〉
〈p,r j〉

)
+ ln

(
1
β

)( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.5)

Proof. By taking d = (d1, ...,dm) = (1, ...,1) in Theorem 2 we obtain ci = ∑m
j=1 ri j

= Ri for i = 1, ...,n . Therefore inequality (2.3) becomes (3.4).
If additionally R is row stochastic, then R = (1, ...,1)∈R

n and (2.8) becomes (3.5). �

COROLLARY 5. Let [α,β ]⊂R++, p∈ [α,β ]n, p̃∈ [α,β ]m, c∈R
n
+ and d∈R

m
+

be such that
p̃ = pR and c = dRᵀ

for some column stochastic matrix R = (ri j) ∈ Mnm(R+) , then

H(p̃;d) � H(p;c) �
m

∑
j=1

d j〈p,r j〉
ln(α)

(
β − 1

〈p,r j〉
)

+ ln(β )
(

1
〈p,r j〉 −α

)
β −α

. (3.6)

Proof. We take in Theorem 2 a function f to be f (t) = ln 1
t which is convex

on [α,β ] and q = e = (1, ...,1) ∈ R
m. Then, since R is column stochastic, we also

have q̃ = (〈q,r1〉, ...,〈q,rm〉) = (〈e,r1〉, ...,〈e,rm〉) = (1, ...,1).Then (3.6) follows from
(2.3). �

COROLLARY 6. Let [α,β ] ⊂ R++, p ∈ [α,β ]n and p̃ ∈ [α,β ]m be such that

p̃ = pR (3.7)

for some column stochastic matrix R = (ri j) ∈Mnm(R+) and R = (R1, . . . ,Rn) , where
Ri = ∑m

j=1 ri j , i = 1, . . . ,n is the i-th row sum of R, then

H(p̃) � H(p;R) �
m

∑
j=1

〈p,r j〉
ln(α)

(
β − 1

〈p,r j〉
)

+ ln(β )
(

1
〈p,r j〉 −α

)
β −α

. (3.8)
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In particular, if the matrix R is double stochastic, then

H(p̃) � H(p) �
m

∑
j=1

〈p,r j〉
ln(α)

(
β − 1

〈p,r j〉
)

+ ln(β )
(

1
〈p,r j〉 −α

)
β −α

. (3.9)

Proof. By taking d = (d1, ...,dm) = (1, ...,1) in Theorem 2 we obtain ci = ∑m
j=1 ri j

= Ri for i = 1, ...,n . Therefore inequality (2.3) becomes (3.8).
If additionally the matrix R is row stochastic, then R = (1, ...,1) ∈ R

n and (2.8) be-
comes (3.9). �

Consider now the Hellinger distance

h(p,q) =
1√
2

√
n

∑
i=1

(
√

pi−√
qi)2, (3.10)

where p,q ∈R
n
++. This distance is metric and is often used in its squared form

h2(p,q) =
1
2

n

∑
i=1

(
√

pi−√
qi)2.

We also define the weighted Hellinger distance, with weights r = (r1, ...,rn) ∈ R+, in
squared form

h2(p,q;r) =
1
2

n

∑
i=1

ri(
√

pi−√
qi)2.

We know that Hellinger disctance is actually the Csiszáre f -divergence for the convex
mapping f (t) = 1

2

(
1−√

t
)2

.

COROLLARY 7. Let [α,β ]⊂R++, p∈R
n
++, q∈R

n
++, be such that qi

pi
∈ [α,β ],

i = 1, ...,n, and p̃ ∈R
m
++, q̃ ∈R

m
++, c∈ R

n
+, d∈ R

m
+ be such that (2.2) holds for some

matrix R = (ri j) ∈ Mnm(R+), then

h2(p̃, q̃;d) � h2(p,q;c)

�
m

∑
j=1

d j〈p,r j〉
(1−√

α)2
(

β − 〈q,r j〉
〈p,r j〉

)
+(1−√β )2

( 〈q,r j〉
〈p,r j〉 −α

)
2(β −α)

. (3.11)

Proof. If we take in Theorem 2 function f to be f (t) = 1
2

(
1−√

t
)2

which is
convex on [α,β ] , equation (3.11) follows from (2.3). �

COROLLARY 8. Let [α,β ]⊂R++, p∈R
n
++, q∈R

n
++, be such that qi

pi
∈ [α,β ],

i = 1, ...,n, and p̃∈R
m
++, q̃∈R

m
++ be such that (2.7) holds for some matrix R = (ri j)∈
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Mnm(R+) and R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n is the i-th row sum of

R, then

h2(p̃, q̃) � h2(p,q;R) �
m

∑
j=1

〈p,r j〉
(1−√

α)2
(

β − 〈q,r j〉
〈p,r j〉

)
+(1−√β )2

( 〈q,r j〉
〈p,r j〉 −α

)
2(β −α)

.

(3.12)
In particular, if the matrix R is row stochastic, then

h2(p̃, q̃) � h2(p,q) �
m

∑
j=1

〈p,r j〉
(1−√

α)2
(

β − 〈q,r j〉
〈p,r j〉

)
+(1−√β )2

( 〈q,r j〉
〈p,r j〉 −α

)
2(β −α)

.

(3.13)

Proof. By taking d = (d1, ...,dm) = (1, ...,1) in Theorem 2 we obtain ci = ∑m
j=1 ri j

= Ri for i = 1, ...,n . Therefore inequality (2.3) becomes (3.4).
If additionally the matrix R is row stochastic, then R = (1, ...,1) ∈ R

n and (2.8) be-
comes (3.5). �

For the convex function f (t) = −√
t and p,q ∈R

n
++ , we get

Cf (p,q) =
n

∑
i=1

pi

(
−
√

qi

pi

)
= −

n

∑
i=1

√
piqi = −B(p,q),

known as the Bhattacharyya distance.

COROLLARY 9. Let [α,β ]⊂R++, p∈R
n
++, q∈R

n
++, be such that qi

pi
∈ [α,β ],

i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++, c ∈ R

n
+ and d ∈ R

m
+ be such that (2.2) holds for

some matrix R = (ri j) ∈ Mnm(R+), then

B(p̃, q̃;d) � B(p,q;c) �
m

∑
j=1

d j〈p,r j〉
√

α
(

β − 〈q,r j〉
〈p,r j〉

)
+
√

β
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.14)

Proof. If we take in Theorem 2 function f to be f (t) = −√
t, which is convex on

[α,β ] , equation (3.14) follows from (2.3). �

COROLLARY 10. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++ be such that (2.7) holds for some ma-

trix R = (ri j) ∈Mnm(R+) and R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n is the

i-th row sum of R, then

B(p̃, q̃) � B(p,q;R) �
m

∑
j=1

〈p,r j〉
√

α
(

β − 〈q,r j〉
〈p,r j〉

)
+
√

β
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.15)

In particular, if the matrix R is row stochastic, then

B(p̃, q̃) � B(p,q) �
m

∑
j=1

〈p,r j〉
√

α
(

β − 〈q,r j〉
〈p,r j〉

)
+
√

β
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.16)
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Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 2 we obtain ci =
∑m

j=1 ri j = Ri for i = 1, . . . ,n . Therefore inequality (2.3) becomes (3.15).
If additionally R is row stochastic, then R = (1, . . . ,1)∈R

n and (2.8) becomes (3.16).�
For suitable choices of a convex function f we define divergences as follows:

For f (t) = (1− t)2, t > 0, we obtain χ2 -divergence

Cf (p,q) =
n

∑
i=1

pi

(
1− qi

pi

)2

=
n

∑
i=1

(pi −qi)2

pi
= χ2(p,q).

For f (t) = |1− t|, t > 0, we obtain the total variation distance

Cf (p,q) =
n

∑
i=1

pi

∣∣∣∣1− qi

pi

∣∣∣∣= n

∑
i=1

|pi −qi| = V (p,q).

For f (t) = (1−t)2
t+1 , t > 0, we obtain the triangular discrimination

Cf (p,q) =
n

∑
i=1

pi

(
1− qi

pi

)2

qi
pi

+1
=

n

∑
i=1

(pi −qi)2

pi +qi
= Δ(p,q).

We also introduce their weighted versions, with weights ri � 0, i = 1, ...,n :

χ2(p,q;r) =
n

∑
i=1

ri
(pi−qi)2

pi
,

V (p,q;r) =
n

∑
i=1

ri|pi−qi|,

Δ(p,q;r) =
n

∑
i=1

ri
(pi−qi)2

pi +qi
.

COROLLARY 11. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++, c ∈ R

n
+ and d ∈ R

m
+ be such that (2.2)

holds for some matrix R = (ri j) ∈ Mnm(R+) , then

χ2(p̃, q̃;d) � χ2(p,q;c)

�
m

∑
j=1

d j〈p,r j〉
(1−α)2

(
β − 〈q,r j〉

〈p,r j〉
)

+(1−β )2
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.17)

Proof. If we take in Theorem 2 function f to be f (t) = (1− t)2 which is convex
on [α,β ] , equation (3.17) follows from (2.3). �

COROLLARY 12. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++ be such that (2.7) holds for some ma-

trix R = (ri j) ∈Mnm(R+) and R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n is the
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i-th row sum of R, then

χ2(p̃, q̃) � χ2(p,q;R) �
m

∑
j=1

〈p,r j〉
(1−α)2

(
β − 〈q,r j〉

〈p,r j〉
)

+(1−β )2
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

.

(3.18)
In particular, if the matrix R is row stochastic, then

χ2(p̃, q̃) � χ2(p,q) �
m

∑
j=1

〈p,r j〉
(1−α)2

(
β − 〈q,r j〉

〈p,r j〉
)

+(1−β )2
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

.

(3.19)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 2 we obtain ci =
∑m

j=1 ri j = Ri for i = 1, . . . ,n . Therefore inequality (2.3) becomes (3.18).
If additionally R is row stochastic, then R = (1, . . . ,1)∈R

n and (2.8) becomes (3.19).�

COROLLARY 13. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Further, let p̃ ∈ R
m
++, q̃ ∈ R

m
++, c ∈ R

n
+ and d ∈ R

m
+ be such

that (2.2) holds for some matrix R = (ri j) ∈ Mnm(R+) , then

V (p̃, q̃;d) � V (p,q;c)

�
m

∑
j=1

d j〈p,r j〉
|1−α|

(
β − 〈q,r j〉

〈p,r j〉
)

+ |1−β |
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.20)

Proof. If we take in Theorem 2 function f to be f (t) = |1− t| which is convex
on [α,β ] , equation (3.20) follows from (2.3). �

COROLLARY 14. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃∈ R
m
++ and q̃ ∈ R

m
++ be such that (2.7) holds for some matrix

R = (ri j) ∈ Mnm(R+) . Further, let R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n

is the i-th row sum of R, then

V (p̃, q̃) � V (p,q;R) �
m

∑
j=1

〈p,r j〉
|1−α|

(
β − 〈q,r j〉

〈p,r j〉
)

+ |1−β |
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.21)

In particular, if the matrix R is row stochastic, then

V (p̃, q̃) � V (p,q) �
m

∑
j=1

〈p,r j〉
|1−α|

(
β − 〈q,r j〉

〈p,r j〉
)

+ |1−β |
( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.22)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 2 we obtain ci

= ∑m
j=1 ri j = Ri for i = 1, . . . ,n . Therefore inequality (2.3) becomes (3.21).

If additionally R is row stochastic, then R = (1, . . . ,1)∈R
n and (2.8) becomes (3.22).�
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COROLLARY 15. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Further, let p̃ ∈ R
m
++, q̃ ∈ R

m
++, c ∈ R

n
+ and d ∈ R

m
+ be such

that (2.2) holds for some matrix R = (ri j) ∈ Mnm(R+) , then

Δ(p̃, q̃;d) � Δ(p,q;c) �
m

∑
j=1

d j〈p,r j〉
(1−α)2

α+1

(
β − 〈q,r j〉

〈p,r j〉
)

+ (1−β )2

β+1

( 〈q,r j〉
〈p,r j〉 −α

)
β −α

.

(3.23)

Proof. If we take in Theorem 2 function f to be f (t) = (1−t)2
t+1 which is convex on

[α,β ] , equation (3.23) follows from (2.3). �

COROLLARY 16. Let [α,β ] ⊂ R++, p ∈ R
n
++, q ∈ R

n
++, be such that qi

pi
∈

[α,β ], i = 1, ...,n. Let p̃ ∈ R
m
++, q̃ ∈ R

m
++ be such that (2.7) holds for some ma-

trix R = (ri j) ∈Mnm(R+) and R = (R1, ...,Rn) , where Ri = ∑m
j=1 ri j , i = 1, ...,n is the

i-th row sum of R, then

Δ(p̃, q̃) � Δ(p,q;R) �
m

∑
j=1

〈p,r j〉
(1−α)2

α+1

(
β − 〈q,r j〉

〈p,r j〉
)

+ (1−β )2

β+1

( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.24)

In particular, if the matrix R is row stochastic, then

Δ(p̃, q̃) � Δ(p,q) �
m

∑
j=1

〈p,r j〉
(1−α)2

α+1

(
β − 〈q,r j〉

〈p,r j〉
)

+ (1−β )2
β+1

( 〈q,r j〉
〈p,r j〉 −α

)
β −α

. (3.25)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 2 we obtain ci =
∑m

j=1 ri j = Ri for i = 1, . . . ,n . Therefore inequality (2.3) becomes (3.24).
If additionally R is row stochastic, then R = (1, . . . ,1)∈R

n and (2.8) becomes (3.25).�

4. Inequalities including Zipf-Mandelbrot law

The Zipf-Mandelbrot law is a discrete probability distribution depending on pa-
rameters n ∈ N , q � 0 and s > 0 with probability mass function defined with

f (k,n,q,s) =
1

(k+q)sHn,q,s
, k = 1,2, ...,n,

where

Hn,q,s =
n

∑
i=1

1
(i+q)s . (4.1)

Using the given Zipf-Mandelbrot law we define new entropy by

Z(H,q,s) =
s

Hn,q,s

n

∑
k=1

ln(k+q)
(k+q)s + lnHn,q,s. (4.2)



CONVERSE TO THE SHERMAN INEQUALITY WITH APPLICATIONS 1417

We also consider the weighted Zipf-Mandelbrot entropy defined by

Z(H,q,s,R) =
s

Hn,q,s,R

n

∑
k=1

Rk
ln(k+q)
(k+q)s + lnHn,q,s,R, (4.3)

with nonnegative weights Ri, i = 1, ...,n and

Hn,q,s,R =
n

∑
i=1

Ri

(i+q)s . (4.4)

Specially, when ri j are entries of some matrix R = (ri j) ∈ Mnm(R+) , we use notation

Hn,q,s,r j =
n

∑
i=1

ri j

(i+q)s . (4.5)

THEOREM 3. Let n ∈ N , q � 0 and s > 0. Let R = (ri j) ∈ Mnm(R+) be some
column stochastic matrix, R = (R1, . . . ,Rn) , where Ri = ∑m

j=1 ri j , i = 1, . . . ,n is the
i-th row sum of R, then

m

∑
j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,R

Hn,q,s,r j

)
� Z(H,q,s,R) (4.6)

�
m

∑
j=1

Hn,q,s,r j

Hn,q,s,R

ln(α)
(

β − Hn,q,s,R
Hn,q,s,r j

)
+ ln(β )

(
Hn,q,s,R
Hn,q,s,r j

−α
)

β −α
,

provided that all terms are well defined.
In particular, if the matrix R is double stochastic, then

m

∑
j=1

Hn,q,s,r j

Hn,q,s
ln

(
Hn,q,s

Hn,q,s,r j

)
� Z(H,q,s) (4.7)

�
m

∑
j=1

Hn,q,s,r j

Hn,q,s

ln(α)
(

β − Hn,q,s
Hn,q,s,r j

)
+ ln(β )

(
Hn,q,s

Hn,q,s,r j
−α

)
β −α

.

Proof. Since Hn,q,s,R = ∑n
i=1

Ri
(i+q)s , it is obvious that

n

∑
i=1

Ri

(i+q)sHn,q,s,R
= Hn,q,s,R · 1

Hn,q,s,R
= 1.
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If we substitute pi with 1
(i+q)sHn,q,s,R

, i = 1,2, ...,n, then

H(p;R) = −
n

∑
i=1

Ripi ln pi = −
n

∑
i=1

Ri

(i+q)sHn,q,s,R
ln

1
(i+q)sHn,q,s,R

=
n

∑
i=1

Ri

(i+q)sHn,q,s,R
ln
(
(i+q)sHn,q,s,R

)

=
n

∑
i=1

Ri ln(i+q)s

(i+q)sHn,q,s,R
+

n

∑
i=1

Ri lnHn,q,s,R

(i+q)sHn,q,s,R

=
s

Hn,q,s,R

n

∑
i=1

Ri ln(i+q)
(i+q)s +

lnHn,q,s,R

Hn,q,s,R

n

∑
i=1

Ri

(i+q)s

=
s

Hn,q,s,R

n

∑
i=1

Ri ln(i+q)
(i+q)s + lnHn,q,s,R = Z(H,q,s,R).

From p̃ = pR, it follows

p̃ j = 〈p,r j〉 =
n

∑
i=1

piri j =
n

∑
i=1

ri j

(i+q)sHn,q,s,R
=

Hn,q,s,r j

Hn,q,s,R
,

so we have

H(p̃) = −
m

∑
j=1

p̃ j ln p̃ j = −
m

∑
j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,r j

Hn,q,s,R

)
=

m

∑
j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,R

Hn,q,s,r j

)
.

Now applying (3.8) we get the required result.
Specially, if R is also row stochastic, then R = (1, . . . ,1) ∈ R

n. Further, we have
Hn,q,s,R = Hn,q,s and Z(H,q,s,R)= Z(H,q,s), so the inequality (4.6) reduces to (4.7).�
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