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CONVERSE TO THE SHERMAN INEQUALITY WITH APPLICATIONS

ANA BARBIR, SLAVICA IVELIC BRADANOVIC, DILDA PECARIC AND
Josip PECARIC

(Communicated by J. Jaksetic)

Abstract. In this paper we proved a converse to Sherman’s inequality. Using the concept of f-
divergence we obtained some inequalities for the well-known entropies. We also introduced a
new entropy by applying the Zipf-Mandelbrot law and derived some related inequalities.

1. Introduction and preliminaries

Throughout R, and R, denote the sets of nonnegative and positive numbers,
i.e. Ry =[0,00) and R, = (0,0), respectively.

Let f: [a,B] — R be a convex function on [ct, 3] CR.If x = (x1,...,x,) is any
n-tuplein [ot, B]" and a = (ay,...,a,) € R’ suchthat ¥ | a; =1, then the well known
Jensen inequality

F Y aixi | <Y aif(x) (1.1)
-1 i1

holds (see for example [18]).
Closely connected to Jensen’s inequality (1.1) is the Lah-Ribari¢ inequality

S 0 f () < P
;a,f(1)<ﬁ_a

X— 0o

B—a

=

flo)+ f(B), (1.2)

which holds for every function f : [o,] — R convex on [o,8] C R, where x =
(X1,..x0) € [, B]", a= (ai,...,ay) € R with Y} ;a; =1 and ¥ = ¥ |a;x; (see
[16]).

Sherman [21] obtained generalization of Jensen’s inequality (1.1) in the form

n

D.bif ) < Y aif (x), (1.3)
=1 =

i=1
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which holds for every function f : [0, 3] — R convex on [, ] C R, where x =
(xl,...,x,,) € [a7[ﬂn’ y= (ylv"'vym) € [a7[ﬂm’ a= (a17~”7an) € R}i’ and b =
(b1,...,by) € R are such that

y = xS and a = bST (1.4)

for some column stochastic matrix S = (s;;) € .#,,(R), i.e. matrix whose entries are
greater or equal to zero with the sum of the entries in each column is equal to 1. Here
ST denotes a transpose matrix of S.

Recently, some generalization of Sherman’s inequality (1.3) are obtained (see [1,
2,7-11,17)).

Note that (1.4) can be written as

yZXS, (yj:Exis,-j, j:l,...,m), (15)
i=1
m
a:bST, (Cl,‘z ijs,-j, i = 1,...,n).
Jj=1

It is obvious that Sherman’s inequality (1.3) reduces to Jensen’s inequality (1.1) by
choosing m =1 and setting b = [1].
Csiszar [4] introduced the concept of f-divergence functional

Ci(p.q) = Y.pif (%) (1.6)
i=1 1

foraconvex function f: R,y — R and p=(p1,...,pn) €ERY ,, q=(q1,....,qn) ER .
It is possible to use non-negative n-tuples p and q in the f-divergence functional,
by defining

0 c c t
0 0(3) =0 00 (5) - g (6) =m0
7(0) tir(grf(t) Of(o) 0, 0f 5 g_1>I(I)I+f - clim c>0
We will limit our consideration to positive cases of p and q.

The generalized Csiszar f-divergence for a convex function f: R, — R is de-
fined by

i=1 !

where p= (p1,....,pn) ERit, q=(q1,---,qn) € Ry, with weights r = (ry,...,r,) €
R. Itis obvious C¢(p,q;e) = Cr(p,q) fore=(1,....,1) € R".

The classical inequality for f-divergence functional, known as the Csiszar-Korner
inequality [5], has the form

Yroif | 5— | <Crp.a) (1.8)
i=1 .
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and holds for every function f: Ry, — R convex on R, . Specially, if f is normal-
ized,ie. f(1)=0and ¥ p;i =" qi, then

0<Cs(p.q)- (1.9)

In particular, if p and q are two positive probability distribution, i.e. p= (p1,...,pn) €
R% . and q = (q1,...,qn) € R%, with 3}, p; =37 q; = 1, then the inequality (1.9)
holds for every convex and normalized function f : Ry, — R. These results are easy
consequences of Jensen’s inequality (1.1).

In this paper, as main result we present a converse to Sherman’s inequality (1.3).
Using the concept of f-divergence we also obtain a converse to the Csiszar-Korner in-
equality (1.8). As easy consequences we derive some inequalities for the well-known
divergences. As applications, we introduce a new entropy by applying the Zipf-
-Mandelbrot law and give some related inequalities including the Zipf-Mandelbrot en-

tropy.

2. Main results

First we present a converse to Sherman’s inequality (1.3).

THEOREM 1. Let f: [or, ] — R be a convex function on [ot, ] C R. Let x =
(x17~~~7xn) € [a7[ﬂn’ y= (ylv“'vym) € [avﬁ]m’ a= (Ll17...,an) € R}i and b =
(b1,...,by) € R be such that (1.4) holds for some column stochastic matrix S = (s;;) €
Mum(R), then

n

ibjf(yjKEaif (xi) ib,f VB =)+ /B = ) 2.1)
=1

i=1 =1 B-o

Proof. Under the assumptions, Sherman’s inequality (1.3) holds. Further, from
(1.2), setting p; = s;;, for i =1,...,n, we have

ilbjf(yj) < iaif(xz') = i (i b,-s,-,-) flx) = ilbj (i%’ﬂ)@)
j= i= =1 =

i=1 =

m ﬁ szszj szszj o
=1 i=1
ZbJ ﬂ o f(a)+ ﬁ—(x

Jj=1

——fB) |,

~.

what we need to prove. [J

In sequel, we use notation (-,-) for the standard inner product in R"”. We also
denote with .#,,,(Ry) the space of n x m matrices with nonnegative entries.

By applying Theorem | we compare two generalized Csiszdr f-divergences.
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THEOREM 2. Let f: [ot, ] — R be a convex function on [0, ] CR4 .. Let p €

R ., q € R, be such that q—’l €la,B], i=1,....n. Further, let pe R, qeRY
cERY and d e R be such that

P=pPR, G=9qR and c¢c=dRT (2.2)

for some matrix R = (rij) € Mum(Ry), then

J J _a>
ld,-<p,r,-> 5 . (23)

VR

Cr(p,q:d) < Cr(p,q;c) <

J

Proof. According to (1.7) the inequality (2.3) can be written in the form

S s () < S (2)
j=1 Dj i=1

i= Pi
§ o =805 0)

j=1 p-o

(2.4)

We denote r; = (ry;,...,7nj), 1ij = 0 fori=1,....n, j=1,...,m. From (2.2) it follows
that p; = (p,r;) =X pirij and G; = (q,r;) = X, gir;j for j=1,...,m. Moreover,
ci = Z,’;’le/"ij for i =1,...,n (see (2.2)) and after multiplying with p; and taking
a; = cipi, bj = dj<p,rj> we get

ai=Y b;-LL 2.5)
j=1 <p7rj>
fori=1,...,n, j=1,...,m. The following equality holds
<q7rj> __prnj a1 Pnlnj  4n
(prj) X pirijpi i1 Pil'l] Pn
for j =1,...,m. Hence, the following identity is valid
Piri Pilim
<p,r1> e <p7rm>
<q71'1> (q,rm> a1 qn . . .
ey | = [y — : : (2.6)
<p,l‘1> <parm> P1 Pn Pulnl Plam

<p,r1> T <p7l“m>

The n x m matrix S = (s;;), sij = <pp’—:”> is column stochastic and with x = (x1,...,X,),
L)

Y= 1y Vn)s Xi = % and y; = ég:f'; ,i=1,...n, j=1,...,m, satisfies condition
i ‘ X

y = xS (see (2.6)). Since a = bST (see (2.5)) is satisfied for a = (ay,...,a,) and b =
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(b1,...,bm), we can apply Theorem 1 and obtain

S ) q,r; <(] c qi
j=21bjf<<P:r/>> j=z'1d pril <<p,r,>> Z' lplf( )
o) (B {225

<p7r1
B—o —a

\_/
M
Il
—
Ky
S
=
-
<
N
TN
NP
=2
==
IS
N
|

<
which is equivalent to (2.3). [

COROLLARY 1. Ler f:[o,B] — R be a convex function on [a,] C Ryy. Let
pe Ry, qe R, besuch that ;17’;_ € [o,B], i =1,...,n. Further, let p € R"! | and
q € RY, be such that

p=pR and q=¢qR 2.7)

for some matrix R = (rij) € Mun(Ry) and R = (Ry,...,R,), where R; = Zf:lrij’
i=1,...,n is the i-th row sum of R, then

(q,r-) (q,r-)
n o fle) (B ) 1 p) (B2
Cr(,d) <Cr(p.q;R) < Y, (p,1;) ( P [>3—a <<p’ . ) 2.8)
j=1
In particular, if the matrix R is row stochastic, then
(@r) (qr))
n o flo) (B2 4 r(p) (12 - a
Cr(0.d) < Cr(p.@) < X (p,1;) ( ® ’23 <<p - ) (2.9)

j=1
Proof. By taking d = (dy,...,dy) = (1,...,1) in Theorem 2, we calculate ¢; =
, 1 tij = R; for i = 1,...,n. Therefore inequality (2.3) becomes (2.8).
If additionally the matrix R is row stochastic, then R=(1,...,1) € R" and (2.8) reduces
to (2.9). O
As a special case of the previous result we obtain a converse to the Csiszar-Korner
inequality (1.8).

COROLLARY 2. Let f: [ot,f] — R be a convex function on [0, ] C Riy. Let
peR,, qeR,, reR be such that qui €lo,B], i=1,...n, with B, =Y pi
and Qn = Y ,qi, then

_ {an) {ar) _
et (23:3)<Cf(p7q;r><<p,r>f(a) £ <37r>l);£(ﬁ>(<g7,> %) e
In particular, if v = e, then
On On
flay(B—=|+fB)| = —
Pnf(%:><Cf(p7Q)<Pn i ( P”Z_a <P" ) (2.11)
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Proof. Taking m =1 in Corollary | and r; = (ry,...,r,), we obtain R; = r; for
i=1,...,n, and (2.8) becomes (2.10). Further, for r=e = (1,...,1), the inequality
(2.10) reduces to (2.11). O

3. Application to divergences

In the examples below we obtain, for suitable choices of the kernel f, some of the
best known distance functions used in mathematical statistics, information theory and
other scientic fields (see [3, 6, 12-15,19,20]).

For f(¢t) = —In¢, t > 0, the Csiszdre f-divergence is

Q):§Pi< ln;) Zplln—= L(p,q),

known as the Kullback-Liebler divergence.
We also introduce the weighted Kullback-Liebler divergence defined by

L(p,q;r) Er,p,ln—

with r; >0, i=1,...,n. Obviously, for e= (1,...,1), it follows KL(p,q;e) = KL(p,q)-
The Shannon entropy is defined by

n
=— pilnp;, 3.1

where p € R" | . Note that the Shannon entropy we can get as a special case from the
Csiszare f-divergence choosing the convex mapping f (1) = lntl =—Int,z >0, ie.

n l n
— Y piln (-) = Y pilnp; = —H(p).
i=1 pi i=1

We also consider the weighted Shannon entropy defined by

H(p;r) Zrzpzlnpz’ (3.2)
i=1
with weights r;, i = 1,...,n. Obviously, for r=e = (1,...,1), it follows H(p;e) =
H(p).

COROLLARY 3. Let [a,f] CRy4, pe R, and q € R be such that Z’ €
o,B], i=1,.,n. Lee peRY , GeRY ., c€ R" and d € R be such that (2.2)
holds for some matrix R = (r;j) € Mum(Ry), then

” (L) (B— 19 4 in (L) (105 g
KL(p,G:d) < KL(p,q;c) < 3 d;(p,r)—— ( <"’f23_a<‘*><<”’ . >.
j=1
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Proof. 1If we take in Theorem 2 function f to be f(7) =1In ([l) , which is convex
on [a, B], then (3.3) follows from (2.3). O

COROLLARY 4. Let [o,B]CR 4, peRY ., q€ R, be such that ;17 € [a, B,
i=1,..,n,and peRY , qeRY, besuchthat(2.7) holds for some matrix R = (r;j) €
Mum(RL). Further, let R = (Ry,...,Ry), where R; = Yy, i=1,..,n is the i-th
row sum of R, then

1 _ {qrj) 1) (larj)
KL(p,q) < KL(p,q:R) < i(p,mln(é‘) <B <g’”>%tlz<’§ ) <<g’”> a> . (3.4)
j=1

In particular, if the matrix R is row stochastic, then

m(g) (B fxs) +n (§) (foxs - "‘), 35)

=

m
KL(p,q) < KL(p,q) Z p.r))

Proof. By taking d = (dy,...,d,) = (1,...,1) in Theorem 2 we obtain ¢; = 2T
=R; for i = 1,...,n. Therefore inequality (2.3) becomes (3.4).
If additionally R is row stochastic, then R= (1,...,1) € R” and (2.8) becomes (3.5). [

COROLLARY 5. Let [a,B] CRy4, p€ o, B]", pe o, B]™, ce R and d e R
be such that
P =pR and ¢ =dRT

for some column stochastic matrix R = (rij) € Mum(RY), then

H(p;a) idj (p.rj) ln(a) (ﬁ ~ <P=1rf )Hn(ﬁ ) <<"71'-f> _a>.

j=1 B-a

(3.6)

Proof. We take in Theorem 2 a function f to be f(z) = ln% which is convex
on [o,f] and q =e = (1,...,1) € R™. Then, since R is column stochastic, we also
have = ((q,r1),....{(q,rm)) = ({e,r1),...,(e,ry)) = (1,...,1). Then (3.6) follows from
23). O

COROLLARY 6. Let [o,B] CRy4, p € [0, B]" and P € [, B]™ be such that

p=pR 3.7)

for some column stochastic matrix R = (rij) € Mum(R4) and R = (Ry,...,R,), where
R; = Z;-"Zl rij, i=1,...,n is the i-th row sum of R, then

1) > R > & oy "0 P wm) 00 (i )

J=1 p-o

(3.8)
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In particular, if the matrix R is double stochastic, then

n(@) (8 k7) +i8) (57 )
B-a '

m
H(p) > Z p,r;) (3.9)

Proof. By taking d=(d,...,dy) =(1,...,1) in Theorem 2 we obtain ¢; = 2;”:1 Fij
=R, for i = 1,...,n. Therefore inequality (2.3) becomes (3.8).
If additionally the matrix R is row stochastic, then R = (1,...,1) € R” and (2.8) be-
comes (3.9). [

Consider now the Hellinger distance

h(p,q) = \N/Z VDi— V@), (3.10)

where p,q €R’ , . This distance is metric and is often used in its squared form

Flpa) = 5 X/ Vi)

=

We also define the weighted Hellinger distance, with weights r = (ry,...,r,) € Ry, in
squared form

1 n
i (p.gq:x) = 5 3 ri(Vpi— V)
i=1
We know that Hellinger disctance is actually the Csiszdre f-divergence for the convex
. 2
mapping f(1) = 5 (1—7)".
COROLLARY 7. Let [ot,f] C R4, peRY |, q€ R, be suchthat 4 e [o, B,
i=1,..,n,and peRY,, qeRY,, ceRY, de R besuchthat(2.2) holdsforsome
matrix R (rij) € Mum(Ry), then

R (p,q:d) < h*(p,q;c)

ooy V(B ) £ 0 VB (35
B 2B-a)

<

R

J

Proof. If we take in Theorem 2 function f to be f(r) = % (1 — \/t_)2 which is
convex on [, 3], equation (3.11) follows from (2.3). O

COROLLARY 8. Let [a,f] CRyy, peRY , qe R, be such that %’l'_ € |, B,
i=1,...,n,and pe R, , e RY, besuchthat(2.7) holds for some matrix R = (r;;) €
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Mum(Ry) and R= (Ry,...,Ry), where R; = Z;-"Zl rij, i=1,...,n is the i-th row sum of
R, then

mn 1-— 2 _ lar)) 1— 2 ({ar)
(B, @) < I*(p,a:R) < E(p,r/>( il <lM]‘z)()[;r (a> it a>.
i—1 _

~.

(3.12)
In particular, if the matrix R is row stochastic, then
(qr;) 2 (lar))
2 (1—@)2(B—< )+ (- VB (55 - o)
72(3.8) <7 (p.a) < X (por)) = .
AL 2B—a)

(3.13)

Proof. By taking d=(d,...,dy,) = (1,...,1) in Theorem 2 we obtain ¢; = 2,’;'1:1 Fij
=R, for i = 1,...,n. Therefore inequality (2.3) becomes (3.4).
If additionally the matrix R is row stochastic, then R = (1,...,1) € R" and (2.8) be-
comes (3.5). U

For the convex function f(t) = —/7 and p,q €R" , , we get

q>=lilpi(—\/;) -3 i = ~lp.a)

known as the Bhattacharyya distance.

COROLLARY 9. Let [a,B] CRyy, peRY , qe R, be suchthat 4 € [, B],
i=1,.,n Let peR?,, qeRY, , ccR} and d € R besuchthat(22) holds for
some matrix R = (rij) € Mum(Ry.), then

ey P8 B (5 )
1

VE

B(p.§;d) > B(p,q;c) > (3.14)

J

Proof. 1If we take in Theorem 2 function f to be f(¢) = —+/¢, which is convex on
[er, B], equation (3.14) follows from (2.3). O

COROLLARY 10. Let [ot,f] C Ry, pe R}, q€ R, be such that ;17 €
[o,B], i=1,...,n. Let p € R",, § € R}, be such that (2.7) holds for some ma-
trix R = (rij) € Mum(Ry) and R=(Ry,...,R,), where R; = Z'}q:l rij, i=1,..,nis the

i-th row sum of R, then
n V(B ) VB (i
B(p,d) > B(p.q:R 2 p.r;) G f% — (55 ) RNERE)

In particular, if the matrix R is row stochastic, then
(q.rj) (q.r))
. m \/E(ﬁ—<pr;>)+ﬂ(<pr’ -
B(p,q) =Y (p.r))

j=1 p-a

a> . (3.16)
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Proof. By taking d = (dy,...,d,) = (1,...,1) in Theorem 2 we obtain ¢; =
2;”21 rij = R; for i = 1,...,n. Therefore inequality (2.3) becomes (3.15).
If additionally R is row stochastic, then R=(1,...,1) € R" and (2.8) becomes (3.16).0]
For suitable choices of a convex function f we define divergences as follows:
For f(t) = (1 —1)%,t >0, we obtain y2-divergence

Zpl (1——)2 = iM =2(p, ).

i=1 Di

For f(¢) = |1 —t],t > 0, we obtain the total variation distance

Zpt

l__ 2‘[71 gl =V(p,q).

For f(t) = 7 1) ,t > 0, we obtain the triangular discrimination

qi 2

ZPt( __> _y s ),

ql + 1 = +ql

We also introduce their weighted versions, with weights r; > 0,i = 1,...,n:

2

*(p.q:r Zrz :

n

V(p,q;r) = Zrilpi—qz'l,

i=1

Ap,q:r Z

=1 Di +q,

COROLLARY 11. Let [o,f] C Ry, pe R}, q€ R}, be such that Z’ €
[o,B], i=1,..,n. Let pe R}, §e R}, ce R and d € R be such that (2.2)
holds for some matrix R = (r;;) € Mun(R.), then

22(0,d:d) < x2(p,q;c¢)

m (1 —
j=

[>3+ S (g?’i —(X). (3.17)

Proof. If we take in Theorem 2 function f to be f(z) = (1 —¢)? which is convex
on [a, B], equation (3.17) follows from (2.3). O

COROLLARY 12. Let [ot,f] C R4y, pe R, q € R, be such that ;17 c
[o,B], i=1,..,n. Let p € R}, §€ R}, be such that (2.7) holds for some ma-
trix R= (rij) € Mum(R+) and R= (Ry,...,Ry), where Ri =3 rij, i=1,...,n is the
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i-th row sum of R, then

m
%2(f)7(i) p q’ 2 p’rj
In particular, if the matrix R is row stochastic, then
n (=02 (B + (1B (G -9)
Z p.rj) 3 .

(3.19)

x*(P.4) <

Proof. By taking d = (dy,...,d,) = (1,...,1) in Theorem 2 we obtain ¢; =
2’;1:1 rij = R; for i =1,...,n. Therefore inequality (2.3) becomes (3.18).
If additionally R is row stochastic, then R = (1,...,1) € R" and (2.8) becomes (3.19).[]

COROLLARY 13. Let [a,f] C R4y, pe RY, q € R, be such that f; €
lo,B], i=1,...n. Further, let pe R}, e R, ¢ € R and d € R be such
that (2.2) holds for some matrix R = (r;) € Mum(R4.), then

V(p,q:d) <V(p,q;c)

1ol (- o) + 11— (24 - o)
dj(p,r;) 5o . (3.20)
1

<

M

J

Proof. If we take in Theorem 2 function f to be f(¢) = |1 —¢| which is convex
on [a, B], equation (3.20) follows from (2.3). O

COROLLARY 14. Let [a,B] CR 4, pe R, q € R, be such that %ﬁ €
[o,B], i=1,...n. Let pe R and § € R be such that (2.7) holds for some matrix
R = (rij) € Mum(Ry). Further, let R = (Ry,...,R,), where R; = 2.’/1'1:1”’7’ i=1,...,n
is the i-th row sum of R, then

< 7[‘*) < ,l">
1ol (B 55 ) + 11— Bl (fars

m
V(p.q) <V(p,q:R Z p.rj)

In particular, if the matrix R is row stochastic, then

b <vinar< Sy EBR) A5 o)
j=1

(3.22)

Proof. By taking d = (dy,...,d,) = (1,...,1) in Theorem 2 we obtain ¢;
= Z;-"Zl rij = R; for i =1,...,n. Therefore inequality (2.3) becomes (3.21).
If additionally R is row stochastic, then R=(1,...,1) € R" and (2.8) becomes (3.22).[]
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COROLLARY 15. Let [ot,f] C Ry, pe R}, q€ R, be such that ;' €
lo,B], i=1,...n. Further, let pc R}, e R, ¢ € R} and d € R be such
that (2.2) holds for some matrix R = (r;) € Mum(R4.), then

(1*06)2 g lan)) | U= (lar)
p,q 5 +1 {p.r)) B+1 \pr))
A(p,q;d) < A(p,q;c) de ¢ < P fg_a <pJ )
Jj=1

(3.23)

(1-1)?
t+1

Proof. 1f we take in Theorem 2 function f to be f(¢) = which is convex on

[er, B], equation (3.23) follows from (2.3). O

COROLLARY 16. Let [o,] C Ry, pe RY,, q€RY,, be such that L €
[o,B], i=1,...n. Let p e RY,, § € RY, be such that (2.7) holds for some ma-
trix R = (rij) € Mum(Ry) and R=(Ry,...,R,), where R; = Z;-"Zl rij, i=1,..,nis the
i-th row sum of R, then

(1-a)? B (q,r;) (1-B)% ([ {qr;)
i - +
D, G o+l prj) B+1 \{pr))
AB.@) <A(p.¢:R) < X (p.1)) ( ~ I>3—oc ( =
j=1

In particular, if the matrix R is row stochastic, then

(1-a)? (ﬂ _ <q7r_,->> L 0= (<q=rj> _ a)
o~ o+l (p.rj) B+1 \(p.rj)

7r .
Ap,§) <Ap,q) < F21<p i) 5

3

Proof. By taking d = (dy,...,d,) = (1,...,1) in Theorem 2 we obtain ¢; =
> it = =R, fori=1,...,n. Therefore inequality (2.3) becomes (3.24).
If addltlonally R is row stochastlc then R=(1,...,1) € R" and (2.8) becomes (3.25).]

4. Inequalities including Zipf-Mandelbrot law

The Zipf-Mandelbrot law is a discrete probability distribution depending on pa-
rameters n € N, ¢ > 0 and s > 0 with probability mass function defined with

1
f(k,n,q, ——, k=1,2,...,n,
o) = G g
where
z 1
H, 5= - - 4.1
0= 2 (g
Using the given Zipf-Mandelbrot law we define new entropy by
s & In(k+
Z(H.q,s) = (k+q) +InH, g, (4.2)

anqVY k=1 (k + q)
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We also consider the weighted Zipf-Mandelbrot entropy defined by

s & In(k+q)

Z(H,q,s,R) = k +1InH, ,sR, (4.3)
( q ) Hn7q7_\'7R ] (k + q) n,4q,s,
with nonnegative weights R;, i =1,...,n and
n
R;
H, = . 4.4
n,q,s,R Z{ (i-l—q)s ( )

Specially, when r;; are entries of some matrix R = (r;j) € #uu(Ry), we use notation

n rij
n,q,5,xj — 2 . s (45)

THEOREM 3. Let n €N, g >0 and s > 0. Let R = (rij) € Mun(Ry) be some
column stochastic matrix, R = (Ry,...,R,), where R; = Xiyrij, i=1,...,n is the
i-th row sum of R, then

" Hygsr; H,
3 A g | Z295R ) > 7(H g, 5,R) (4.6)
j=1 Hy 4.5 R Hn.,q.,m_,-
_ Hnﬁq,.&,R Hnﬁq,.&,R _
N m Hn7q7s,rj ln(a) (B Hn,ms,r_,-) +ln(B) (H">q~,s>l‘_,' (X)
- j=1 Hy g5 B—a ,

provided that all terms are well defined.
In particular, if the matrix R is double stochastic, then

n,q,s,r; In n,q,s > Z(H,q,s) (4'7)
H, H,
j=1 n,gq,s n.q,s,x;
Hn 5 H’l. X3
( ) ﬂ V2 e +1n(ﬁ) H—‘{_—(X
> Z Hn,q,s,r] ,4q,S,X 1,5, j
g j=1 Hy g5 B-a '
Proof. Since H, 4 sr = Xi| %, it is obvious that
S e
48R =1
i=1 l+ l]) H n,q,s,R e Hn,q,&R
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If we substitute Di with m, 1= 1,2,...,}’17 then

1 “ R; 1
Hp;R)=— ) Rijp;lnp; = — - In —
(p ) Z ipilnpi Z; (l T q)Squ,S,R (l T C])SHn,q,s,R

R;
VHy g.5R
Riln(i+¢q)* L. RilnH, R
(i+q)HpqsR ,g{ (i+9)*HugsR
_ s L Riln(i+¢q n InH,;srRw Ri
Hn,q,S,Rizl (i+Q)‘ Hy g5 R izl(i‘i‘qy
s &Riln(i+q)

= H R (i—l—q)s +1an7q7s,R:Z(Ha‘IaSaR)'
n,q,S, R j=1

In ((i+9) Hygs5R)

Il
M=
T
Q

I
—_

Il
Mx

Il
-

From p = pR, it follows

n

rij Hy g
p7 rj pilij = ; - = s
= 2P R e~ e

so we have

~ & ~ ~ < Hn7‘]7s~,r’ Hn7‘]7s~,r’ < Hn,q,&r' H 5.R
H(p)Z—ijlnpjz—zH Z1n 7 ! :ZH Z1n H”'q"’
i=1 j=1 HngsR n,q,s,R j=1 Hng.sR n,q,5,x;

Now applying (3.8) we get the required result.
Specially, if R is also row stochastic, then R = (1,...,1) € R". Further, we have
Hygsr=H,qsand Z(H,q,s,R) =Z(H,q,s), so the inequality (4.6) reduces to (4.7).0]

Acknowledgement. The publication was supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number No. 02.203.21.0008.).
This research is partially supported through project KK.01.1.1.02.0027, a project co-
financed by the Croatian Government and the European Union through the European
Regional Development Fund - the Competitiveness and Cohesion Operational Pro-
gramme.

REFERENCES

[1] M. ADIL KHAN, S. IVELIC BRADANOVIC, J. PECARIC, Generalizations of Sherman’s inequality by
Hermite’s interpolating polynomial, Math. Inequal. Appl. 19 (4) (2016) 1181-1192.

[2] R.P. AGARWAL, S. IVELIC BRADANOVIC, J. PECARIC, Generalizations of Sherman’s inequality by
Lidstone’s interpolating polynomial, J. Inequal. Appl. 6, 2016 (2016).

[3] I. BURBEA AND C. R. RAO, On the convexity of some divergence measures based on entropy func-
tions, IEEE Transactions on Information Theory, 28 (1982), 489-495.

[4] 1. CSISZAR, Information-type measures of difference of probability functions and indirect observa-
tions, Studia Sci. Math. Hungar, 2 (1967), 299-318.

[5] 1. CSISZAR AND J. KORNER, Information Theory: Coding Theorem for Discrete Memoryless Systems,
Academic Press, New York, 1981.



[6]
[7]

CONVERSE TO THE SHERMAN INEQUALITY WITH APPLICATIONS 1419

S. S. DRAGOMIR, Other inequalities for Csiszdr divergence and applications, Preprint, RGMIA
Monographs, Victoria University (2000).

P. A. KLUZA AND M. NIEZGODA, On Csiszdar and Tsallis type f-divergences induced by su-
perquadratic and convex functions, Math. Inequal. Appl. 21 (2) (2018) 455-467.

[8] S. IVELIC BRADANOVIC, N. LATIF, J. PECARIC, On an upper bound for Sherman’s inequality, J.
Inequal. Appl. 2016 (2016).

[9] S.IVELIC BRADANOVIC, N. LATIF, D. PECARIC, J. PECARIC, Sherman’s and related inequalities
with applications in information theory, J. Inequal. Appl. 2018 (2018).

[10] S. IVELIC BRADANOVIC, J. PECARIC, Extensions and improvements of Sherman’s and related in-
equalities for n-convex functions, Open Math. 15 (1) 2017.

[11] S.IVELIC BRADANOVIC, J. PECARIC, Generalizations of Sherman’s inequality, Per. Math. Hung. 74
(2) 2017.

[12] J. H. JUSTICE, Maximum Entropy and Bayssian Methods in Applied Statistics, Cambridge University
Press, Cambridge, 1986.

[13] J. N. KAPUR, On the roles of maximum entropy and minimum discrimination information principles
in Statistics, Technical Address of the 38th Annual Conference of the Indian Society of Agricultural
Statistics, 1984, 1-44.

[14] S. KULLBACK, Information Theory and Statistics, J. Wiley, New York, 1959.

[15] S. KULLBACK, R. A. LEIBLER, On information and sufficiency, The Annals of Mathematical Statis-
tics 22 (1) (1951) 79-86.

[16] P. LAH AND M. RIBARIC, Converse of Jensen’s inequality for convex functions, Univ. Beograd Publ.
Elektrotehn. Fak. Ser. Mat. Fiz. 412-460 (1973), 201-205.

[17] M. NIEZGODA, Remarks on Sherman like inequalities for (cot,f)-convex functions, Math. Ineqal.
Appl. 17 (4) (2014) 1579-1590.

[18] J. E. PECARIC, F. PROSHAN AND Y. L. TONG, Convex Functions, Partial Orderings and Statistical
Applications, Academic Press, Inc. (1992).

[19] A. RENYIL, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Sympo-
sium on Mathematical Statistics and Probability, vol. 1, pp. 547-561, 1961.

[20] C. E. SHANNON, A mathematical theory of communication, Bell System Technical Journal 27 (1948)
379-423.

[21] S. SHERMAN, On a theorem of Hardy, Littlewood, Polya and Blackwekk, Proc. Nat. Acad. Sci. USA,
37(1) (1957), 826-831.

(Received November 1, 2018) Ana Barbir

Faculty of Civil Engineering, Architecture And Geodesy
University of Split
Matice Hrvatske 15, 21000 Split, Croatia

e-mail: ana.barbir@gradst.hr

Slavica Iveli¢ Bradanovi¢

Faculty of Civil Engineering, Architecture And Geodesy
University of Split

Matice Hrvatske 15, 21000 Split, Croatia

e-mail: sivelic@gradst.hr

Dilda Pecari¢

Catholic University of Croatia
Ilica 242, 10000 Zagreb, Croatia
e-mail: gildapeca@gmail.com
Josip Pecari¢

RUDN University

Moscow, Russia

e-mail: pecaric@element.hr

Mathematical Inequalities & Applications

v.ele-math.com

mia@ele-math.com



