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A HARMONIC MEAN INEQUALITY FOR THE POLYGAMMA FUNCTION

SOURAV DAS AND A. SWAMINATHAN

Abstract. In this work, we discuss some new inequalities and a concavity property of the poly-

gamma function ψ (n)(x) =
dn

dxn ψ(x) , x > 0 , where ψ(x) represents the digamma function (i.e.

logarithmic derivative of the gamma function Γ(x) ). Using these inequalities, minimum value
of harmonic mean of (−1)nψ (n)(x) and (−1)nψ (n)(1/x) is obtained in terms of the Riemann
zeta function and the Bernoulli numbers. Further new characterizations of π and the Apéry’s
constant are also presented as a consequence.
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