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ON THE VARIATION OF THE DISCRETE MAXIMAL OPERATOR

FENG LIU

Abstract. In this note we study the endpoint regularity properties of the discrete nontangential
fractional maximal operator

Mα,β f (n) = sup
r∈N

|m−n|�β r

1
(2r +1)1−α

r

∑
k=−r

| f (m+ k)|,

where α ∈ [0,1) , β ∈ [0,∞) and N = {0,1,2, . . . ,} , covering the discrete centered Hardy-
Littlewood maximal operator and its fractional variant. More precisely, we establish the sharp
boundedness and continuity for Mα,β from �1(Z) to BV(Z) . When α = 0 , we prove that the
operator Mα,β is bounded and continuous on BV(Z) . Here BV(Z) denotes the set of functions
of bounded variation defined on Z . Our main results represent generalizations as well as natural
extensions of many previously known ones.
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