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SOME INEQUALITIES AND AN APPLICATION

OF EXPONENTIAL POLYNOMIALS
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Abstract. In the paper, with the help of the Faà di Bruno formula, properties of the Bell poly-
nomials of the second kind, and the inversion theorem for the Stirling numbers of the first and
second kinds, the author presents an explicit formula and an identity for higher order derivatives
of generating functions of exponential polynomials; consequently, the author recovers an ex-
plicit formula and finds an identity for exponential polynomials in terms of the Stirling numbers
of the fist and second kinds; furthermore and importantly, with the assistance of the complete
monotonicity of generating functions of exponential polynomials and other known conclusions,
the author constructs some determinantal inequalities and product inequalities and deduces the
logarithmic convexity and logarithmic concavity of two sequences related to exponential poly-
nomials; finally, the author gives an application of exponential polynomials by confirming that
exponential polynomials satisfy conditions for sequences required in white noise distribution
theory.
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