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COMMUTATORS OF CERTAIN FRACTIONAL TYPE
OPERATORS WITH HORMANDER CONDITIONS,
ONE-WEIGHTED AND TWO-WEIGHTED INEQUALITIES
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(Communicated by J. Soria)

Abstract. In this paper we study commutators of a certain class of fractional type integral ope-
rators. These operators are given by kernels of the form

K(x,y) = ki(x —A1y)ka (x — Aoy) ... k(X — Apy),

where A; are invertible matrices and each k; satisfies a fractional size condition and generalized
fractional Hérmander condition. We obtain weighted Coifman estimates and weighted L” (w”)
- L1(w?) estimates. We also give a two-weighted strong type estimate for pairs of weights
of the form (u,Su) where u is an arbitrary non-negative function and S is a maximal operator
depending on the smoothness of the kernel K. For the singular case we also give a two-weighted
endpoint estimate.

1. Introduction

In [27], Ricci and Sjogren obtained the LP(R,dx) boundedness, p > 1, for a fa-
mily of maximal operators on the three dimensional Heisenberg group. Some of these
operators arise in the study of the boundary behavior of Poisson integrals on the sy-
mmetric space SLR?/SO(3). To get the main result, they studied the boundedness on
L?(R) of the operator

Taf () = [ be=3|"%e+51"" S () (1)

for 0 < or < 1. Later, in [14], Godoy and Urciuolo studied a generalization of (1.1) for
R™.

During the last years, several authors have studied operators that generalize (1.1).
Let 0 < o <nand m e N. For 1 <i<m,let A; be matrices such that satisfy

(H) A; is invertible and A; — A} is invertible for i # j, 1 <i,j < m.
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For any locally integrable bounded function f, f € Ly (R"), define

Tomf (x) /ny y)dy, (1.2)

where
K(x,y) = ki(x = Ary)ka(x — A2y)...ky(x — Apy). (1.3)

The operators associated to functions k;, satisfying fractional size and regularity con-
ditions were studied in different settings such as: weighted Lebesgue and Hardy spaces
with constant and variable exponent, endpoint estimates and boundedness in BMO and
weighted BMO. See for example [13, 15, 16,29, 31, 33].

These operators generalize classical operators as Iy, the fractional integral ope-
rator, and the rough fractional and singular operators. In several cases these type of
operators are not bounded in H”, but instead are bounded from H?” into L7, 0 < p < 1
and some ¢ (see [30]). In the case of o« =0, Ty, behaves like a singular integral
operator. f 0 < ax<n,m=1,A; =1 and k;(x—Ay) = W then Ty | = Iy

n [28], Urciuolo and the second author considered each k; as a rough fractional
kernel. In those papers each k; satisfied a L% -Hormander’s regularity condition,
ki € Hy, 1, , that is, if there exists constants ¢,, > 1 and C,, > 0 such that for all x and
R > cplx|,

=

Z (2"R)"™ | (ki(- —x) = Kki()) Xp(x 21 R)\B (v 2mR) | i B 2mR) < Cory-

More recently, in [ 18], we analyzed operators of the form (1.2) with conditions of
regularity generalizing the L*"-Hormander condition and a fractional size condition.
For the definitions of these conditions recall that a function ¥ : [0,e0) — [0,0) is said to
be a Young function if W is continuous, convex, no decreasing and satisfies ¥(0) =0
and tli}rg‘l’(t) =00

For each Young function ¥ we can induce an averaged of the Luxemburg norm
for a function f, in the ball B, as follows

o e /]
f||\P,B-—1nf{7L>O. f/lgl},(T) gl},

where |B| is the Lebesgue measure of B. This function ¥ has an associated comple-
mentary Young function ¥ satisfying the generalized Holder’s inequality

1
E/B|fg|<

The fractional maximal operator My is defined in the following way. Given
feLl (R") and 0 < o < n, we define

Mo f(x) := sup|B|*/"| f]|w 5.
B>x
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Now, we present the fractional size condition and the generalize fractional Hor-
mander condition. For more details see [4] or [18].

Let ¥ be a Young function and let 0 < o0 < n. Let us introduce some notation:
|x| ~ s means s < |x| < 2s and we write

s = 1 Xos Il B(0,25)-

The function K, is said to satisfy the fractional size condition, if there exists a
constant C > 0 such that
Ko Jxs < Cs* .

In this case we denote Ky € Sow. When W(¢) =t we write Sy w = Sy . Observe that
if Ky € Sq, then there exists a constant ¢ > 0 such that

/H |Ke (x)|dx < cs

The function K, satisfies the L%¥* -Hormander condition (K € Hy w 1), if there
exist constants ¢y > 1 and Cy > 0 such that for all x and R > cy|x]|,

=

Z (2"R)"“m" | Ko (- — %) = Ko(-) | yj~2nr < Co-

We say that Ko € Hy o if Kq satisfies the previous condition with || - || = |y~omg in
place of || - [y |y~2mng- When k=0, we write Hyw = Ho w -

When W(¢) =1", 1 <r < oo, we simply write Hy, . instead of Hy .

In this paper, we study the k-order commutators of the operators of the form (1.2)
where k; € S,— o, VHy— o, 9, k -
Recall that given a locally integrable function b and an operator Ty, defined as (1.2),
we define the k-order commutator, kK € NU{0}, by

T(£)00) = 0.7 £06) = [ (bx) = b0 K () f )y

where we assume that TO% »=Ta.
We also consider the following condition for the weights, there exists ¢ > 0 such
that
w(A;x) < ew(x), (1.4)

a.e.x€R" and forall 1 <i<m.
The following is an example of a weight w that satisfies condition (1.4). Observe
that also power weights satisfy this condition.

log () ifbl <
EXAMPLE. Let w(x) = I . Then w € A and satisfies (1.4).
1

if x| >

Q= o=

In 1972, R. Coifman established in [6] that a singular integral operator 7" with reg-
ular kernel (that is, K € Hy .. ) is controlled by the Hardy-Littlewood maximal function
M and for every 0 < p < e and every Muckenhoupt weight w € A..,

IT £ ()P w(x)dx < C / M(x)? w(x) dx. (1.5)
]Rn

Rr
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This inequality (1.5) is called the Coifman type estimate. There have been many at-
tempts of controlling a given singular integral operator by an appropriate maximal func-
tion (see [9], [8] and the references therein). In [19] (see also [32] and [34]) singular
integral operators with less regular kernels are considered. Implicit in their proofs it is
shown that the operators in question are controlled, in the sense of (1.5), by a maximal
operator My,.f (x) = M(|f|")(x)/" for some 1 < r < co. The value of the exponent r is
determined by the smoothness of the kernel, namely, the kernel K € Hy . Let us point
out that in [22] it has been proved that this control is sharp in the sense that one cannot
write a pointwise smaller operator M ; with s < r. This yields, in particular, that (1.5)
do not hold in general with My, for any 1 < r < oo for singular integral operators sat-
isfying only the classical Hormander condition H;. Several authors studied this same
problem looking for an appropriate maximal operator to control in weighted L” norms
singular, fractional operators and their commutators considering that the kernel belongs
to the general class Hy, g ( see for example [4], [21] and [18]).
The main result in this paper is the following Coifman type estimate:

THEOREM 1.1. Let b€ BMO, 0 < a <n, ke NU{0}, me N and 1 <i<m.
Let Y¥; be Young functions and 0 < o; < n such that oy +---+ 0y =n— . Let Ty
be the integral operator defined by (1.2) and To]f.m,b be the k-order commutator of Ty, .
Suppose that the matrices A; satisfy the hypoth’esis (H) and ki € Sp—g;w, "Hy— o w, k-
If =0, let Ty, be of strong type (po, po) for some 1 < py < oo.Let @ (t) =tlog(e+
1) and let ¢ be a Young function such that W' (t)--- ¥, (1) (1)~ (1) St for
t > tg, for some to > 0. Let 0 < p < oo. Then there exists C > 0 such that, for f €
L2 (R") and w € A,

J.

whenever the left-hand side is finite. The constant C depends on the operator Té‘.m b
n,p and w.If additionally w satisfies (1.4), then

Je

To prove this estimate, we need a pointwise estimate that relates the sharp delta
maximal of the commutator with a sum of generalized fractional maximal function of
f-

As a consequence of the Coifman estimate we get strong weighted estimates for
the operator T*

o,m,b>
for suitable weights. See Theorem 3.1.
We also obtain a Fefferman-Stein type estimates.

T s f(x)‘pw(x)dx <Clpl, 3 /R Moo f)Pw(A)dx.  (L6)
i=1

T )] wi)dx < CUBIERo [ 1Moo f (01w,

k
Ta,m,hf

k
L9(w) < cllblipmoll 1l gwry

k
Tmm,bf

0 < CHf”U’(Su)?



COMMUTATOR OF CERTAIN FRACTIONAL TYPE OPERATORS 1365

where 1 < p <n/o, u is any weight and S is a suitable maximal operator. See Theorem
32
For Tok,m , We also give an endpoint estimate for pairs of weights (u,Su), that is,

u{x €R": T, , ()] >A}<C/Rn ¢k<@) Su(x)dx. (1.7)

See Theorem 3.3.

The plan of the paper is the following. The next section contains some preliminar-
ies, definitions and previous results that are needed to state the main theorems of the
paper that are presented in Section 3. Section 4 is devoted to the proof of the Coifman
estimate, namely, Theorem 1.1, and to the proof of a fundamental technical pointwise
result. In Section 5 we prove strong one weight norm inequalities and in Section 6 the
two weight norm inequalities.

2. Preliminaries and previous results

In this section we present some notions about Young functions, Luxemburg norms
and weights that will be fundamental throughout the rest of the paper. Also we gather
some previously known results.

2.1. Young functions and Luxemburg norms

Now, we present some extra definitions and properties for Young functions. Also
we give some examples. For more details of these topics see [23] or [26].

Each Young function ¥ has an associated complementary Young function ¥ sat-
isfying the generalized Holder’s inequality

1
3 e <2l

w58 ll% 5

If Wi,..., ¥, ¢ are Young functions satisfying W, ' () ---¥;, (1)~ (t) < ct, for
all t > 1y, some g > 0 then

11 fmgll g < cllfillwy - || fnllw, 5llgllo 5, 2.1

the function ¢ is called the complementary of the functions W¥y,...,'¥,,.
Here are some examples of maximal operators related to certain Young functions.

e W(t) =1, then ||f]
mal operator.

yo=fp:= @ Jo!f| and Mg w = My, the fractional maxi-

1/r
o W(r)=1" with 1 <r < oo. Inthat case ||f]\y.0 = || f]lr0 := (@fgw) and

My w =My, where MO.,f:M(f’)l/’.
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o W(r)=exp(t) —1,then, My w = My exp(r) -

e If f>0and 1 <r<oo, ¥(t) =1"log(e+1)P is a Young function then My y =

Ma,Lr(logL)ﬁ :

e If =0 and k€ N, W(t) = tlog(e +1)* it can be proved that My ~ M**!,
where M**! is Hardy-Littlewood maximal operator, M, iterated k+ 1 times.

REMARK 2.1. Observe that if W(r) =" then a simple computation shows that

Meyf = (Mot |17 = (M| £17)""

If B = B(xo,r), is the ball of center xy and radius r, for A a matrix, we set AB =
{Ay,y € B}.

PROPOSITION 2.2. Let 9 be a Young function and A be a invertible matrix. Let
wa(x) = w(Ax), then

Mey.5(wa)(A™'x) < canMy, (W) (x)

for almost every x € R".

Proof. Fix x € R" and let us consider the ball B=B (A~ 'x,r).

() ()

Then, x € AB and
Iwallz,s = [[wll2.48-

Let [|A[| = sup,.y— |Ax|. Thereexistballs B; =B <x7 m> and B, = B(x, ||A]|r)
such that By C AB C B;, then

Wllz.az < A" [A]1"wl| 7,3,-

Hence,
MY, 5 (wa) (A 1x) < (AT A]1"M, pw(x),

where

M(LXEZf(y) = Sug|B(y7r>|a/n||fH_@,B(y,r)'
r>
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2.2. Weights

A weight is a non negative locally integrable function in R". Let 0 < o < n,
1 < p,q < e, we say that a weight w € A, if, and only if

W]a,g = SngWIIq,BHW’l .8 <o,
where the supremum is taken over all balls B C R".

If 1 <p <o, A, denotes the classical Muckenhoupt classes of weights and A..
Up>14,. It can be prove (see [17]) that w € A.. if, and only if

[W]e = sng(B) /BM(wa)dx < oo,

Observe that w € A, , if and only if w” €A, and w € A, . if, and only if wP e
Aq. Also w € A if, and only if wleA.

The fractional B, condition, Bg‘ , was introduced by Cruz-Uribe and Moen in [10]:
Let | < p <n/a and é =12 A Young function ¢ € By if

P
oo q/p
[
1 14 t
They proved that if ¢ € By then Mg ¢ : L?(dx) — L?(dx) and

1/q
= 97" di
¢ (/1 14 7)

We will consider the following bump conditions: let 1 < g <o and ¥ be a Young
function, then a weight w € A,y if

Wla,w = Sl;;pr”%B HW71 H\P,B <o

where the supremum is over all balls B C R”".
Let f be locally integrable function in R". The sharp maximal function is defined

by
1
T /B f(2)dz|dy

A locally integrable function f has bounded mean oscillation ( f € BMO) if
M?*f € L~ and the norm || f||zp0 = [|M* f||.
Observe that the BMO norm is equivalent to

M# = sup

Illio = 4% = suping - [ 1716) = ald.

Also we set for § >0, M f(x) := (M#|f|5(x))l/6-
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2.3. Previous results

Here we enounce some known results for the operator Ty, ,,. See [18].

THEOREM 2.3. [18] Let 0 < oo <n, m € N and let Ty ,, be the integral operator
deﬁned by (1.2). For 1 <i< m, let ¥; be Young functions, 0 < o; < n such that
0 + -+ Oy =n— . Also suppose ki € Sy_o, v, VHy_o,p, and let the matrices A;
satisfy the hypothesis (H). If o =0, suppose Tp,, is of strong type (po, po) for some
1 < po < oo If ¢ is the complementary of the functions Yy,...,V,,, then there exists
C > 0 such that, for 0 <0 < 1 and f € LT (R")

ME(|Topf]) (x CEMa o f (A7 ). (2.2)

THEOREM 2.4. [18] Let 0 < o <n and m € N and let T, ,, be the integral op-
erator defined by (1.2). For 1 <i < m, let W; be Young functions, 0 < o < n such
that o + -+ -+ 0y, = n— ot. Also suppose ki € S,—o, w, VHy_ o, w, and that matrices A;
satisfy the hypothesis (H). If o =0, suppose Ty, is of strong type (po,po) for some
1 < pg<oo.Let 0 < p <oco. If ¢ is the complementary of the functions ¥y,...,"VYp,
then for f € LT (R") and w € A, there exists C > 0, C depending on the operator

Té‘_mb, n,p and w, such that,

[, Hamf@)Pwixar <c 21 [, Mapflrwiamar,

whenever the left-hand side is finite.

3. Main results

In this section we present the main results of the paper.

3.1. One weight norm inequalities

In this subsection, we state the boundedness of the operator, T amb in two different
ways, using the Coifman inequality and using a Cauchy integral formula.

THEOREM 3.1. Let b€ BMO, 0 < a <n, ke NU{0}, me N and 1 <i<m.
Let Y¥; be Young functions and 0 < o; < n such that oy +---+ 0y, =n— . Let Ty
be the integral operator defined by (1.2) and T(f_mJ) be the k-order commutator of Ty, .
Suppose that the matrices A; satisfy the hypoth/esis (H) and ki € Sp—g;w, "Hy— o w, k-
If =0, let Ty, be of strong type (po, po) for some 1 < po < oo.Let @t ) =tlog(e+
1) and let ¢ be a Young function such that W' (t)--- ¥, (1) (1)~ (1) St for
> 19, for some tp > 0. Let 1 < p <n/a and Ll] == — n. Suppose that one of the
following hypothesis holds:

1
P
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(a) Suppose there exists 1 < r < p such that K, < e. Let N be a Young function
such that n_l(t)t% < o 1(1) forevery t > 0. If ¢'Tia B for every s >
r(n—a)/(n—ar) and w" €Ap q.

r

(b) Suppose there exist B and C be Young functions such that B~'(1)C~(t) <ép (1),
t>1 >0, CeB;‘ and w € Ayp.

(c) Suppose that the operator Ty, is bounded from LP(wP) into L1(w9) for all w €
Apg-

If w satisfies the condition (1.4) then there exists ¢ > 0 such that, for every f €
LP(wP),
k k
[Tty < €l rt0lL

The constant, ¢ depends on the operator TX

ampr P and w.

3.2. Two weight norm inequalities

Next, we obtain two weight inequality for operators such that their adjoints satisfy
a Coifman inequality. Here, the weights are no longer in A..

THEOREM 3.2. Let ¢ be a Young function, 0 < o« <n and 1 < p < oo, Suppose

there exist Young functions &,.7 such that & € B,y and &' (1).7 (1) < ¢~ (1). Let
T be a linear operator such that its adjoint T* satzsﬁes

/H\T*f( )9w(x) /ZMa(pfo) w(x)dx (3.1)

forall 0 < g <ooandw e A..
Set D(t) = F('/P). If D is a Young function then for any weight u,

L rseorue< e [ 17017 3 Map sumyi 62)
For example, if T = Ty, is defined by (1.2), then its adjoint 7™ is
80 = [Rilx=a7"y) - Knlx =4, g (),
where k;(x) = k;(—A;x). If T* satisfies hypothesis of Theorem 1.1 then

[T f (x)]|9w(x)dx < C/Rn Z{ (Moo f(Aix))? w(x)dx.

Rr

forall 0 < g < e and w € A. So, we can apply the Theorem 3.1.
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In the following table, Table 1, we can see some examples.

Table 1: Examples

Mo g Range of p’s Moy o
Mo Liogrk I<p<eo My, progriernp-t+e
M 1 M . .
oL logL!' (k+1) SpeT a.L(é),logL(;W),((/"“)*P*le

Now we give an endpoint estimate for Tolfm , that derives from Theorems 1.1 and
3.2. '

THEOREM 3.3. Let b € BMO, k € NU{0}, me N and 1 <i<m. Let ¥; be
Young functions and 0 < o < n such that o +---+ &, = n. Let Ty,, be the integral
operator defined by (1.2) and T(fmb be the k-order commutator of Ty n,. Suppose that
the matrices A; satisfy the hypothesis (H) and ki € Sy—o; w; NHy—g; w, 1, and Ty, be
of strong type (po,po) for some 1 < py < oo. Let @(t) = tlog(e+1)* and let ¢ be
a Young function such that W' (t)--- ¥, (t)gr (1)~ (t) St for t > 1y, for some
to > 0.

(a) If there exists r > 1 such that t" < c(t) fort >ty >0, and ¢ € B, then

W € R (T, ()] > A} < C/Rn o (f(;)') g{Mq)u(A,-(x))dx. (3.3)

holds for every weight u.

(b) Suppose there exist Young functions &, suchthat & € By and &' (1).7 (1) <
O~ (1). Set D(t) = F(t'/?), then

u{xeR": \T&m7h(x)\ >A}< C/R" Ok (@) ngu(A,-(x))dx. (3.4)

holds for for all weight u.

REMARK 3.4. Observe that the pairs of weights given in (a) are better than the
one in (b). (See Remark 3.3 in [20])

4. Proof of the Coifman inequality

Recall some classical results concern to functions in BMO. For the proof see for
example the John-Niremberg theorem in [12].

LEMMA 4.1. Let b € BMO.
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1. For any measurable subsets B C By C R" such that |B,|,|Ba| > 0, we have

B,
b5, ~b5,| < 5 Wl
Let 1 <i<m. In particular, if A; are invertible matices, B is a measurable set

and B; = Al 'B, then
o= b sl < (14 3 lder (A7) Bl

i=1

2. Let B=B(cp,R) be a ball, centered at cp with radius R, and B/ = B(cp,2'R).
Then,
|bs — byl < cjl|bllmo-

The following lemma is part of the proof of Theorem 3.1 in [18],

LEMMA 4.2. Let 0< ax<n, meN and 1 <i<m. Let ¥; be Young functions
and 0 < o < n such that oy +---+ 0y, =n— Q. Suppose that the matrices A; satisfy
hypothesis (H) and ki € Sp—q;w, for I1<i<m. Let o (1 ) =tlog(e+1)* and let ¢

be a Young function such that W' (t)---¥,,' (1)or ' ()9~ (1) St for t > 19, some
to > 0. Let K(x,y) = kl(x—Aly)kQ(x—AQy)...km(x—Amy). Let B = B(cp,R) be
a ball centered at cg with radius R. We write B = B(cg,2R) and for 1 <i<?2, set
Bi=A; 'B.Ifz¢ Bj, for some 1 < j < m, then there exists a positive constant C such
that

/ K(y,2)|dy < CR.
B

To obtain an appropriate maximal operator, which controls in weighted L” norms
the operator Ta mp» We need the following theorem:

THEOREM 4.3. Let b€ BMO, 0< a <n, ke NU{0}, me N and 1 <i<m.
Let Y¥; be Young functions and 0 < o; < n such that o +---+ 0y, =n— . Let Ty
be the integral operator defined by (1.2) and T(f_mJ) be the k-order commutator of Ty, ;.
Suppose that the matrices A; satisfy the hypoth/esis (H) and ki € Sp—o, %, "VHp— o, w, -
If =0, let Ty, be of strong type (po, po) for some 1 < po < oo.Let @t ) =tlog(e+
)F and let ¢ be a Young function such that ¥, (t)--- ¥, (t)gr (1)~ (t) St for
t > to, some ty > 0. Then, there exists 0 < C=C(n,o Al, ,Am) such that, for 0 <
60 <e<land feL?(R")

M5(|TE o f])(x cznbnm T ) (%) +ClIblErio Y Moo f(AT %), (4.1)
i=1
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This Theorem is a generalization of several known results. The improvement of

having Mg was explored in [1], [25]. The following table illustrates some examples of
this result.

Table 2: Examples

‘Pi 1 < i <m (Z) Ma7¢
() ©° thg(6+Z)k Ma,Llong
.. 21 1
(ll) t"i7 1< rp < oo tslog(€+t)Sk, Z r_ + E =1 MOC,LSlogLSk
i=1"1
(i) ¥i=1,1<r<e 1" log(e +1)k+1" My, 1 1o (1)
Wy (r) =exp(r) — 1

The example (i) with m = 1 is the classical case proved in [4], (ii) with k=0
is the example of fractional rough kernel proved in [28]. The last example (iii) is the
commutator of the explicit operator given in [18].

In the proof of Theorem 4.3, we follow the original ideas of papers [1] and [25]
and for technical details of set partitions we follow Theorem 2.2 in [28].

Proof of Theorem 4.3. We just consider the case m =2 and k=1, i.e. Tolc.Z.b =
b, Ty, 2], and we will write [b, T,]. The general case is proved in an analogous way.

Let f be a bounded function with compact support, b € BMO and 0 < § <e < 1.
Let x € R” and let B = B(cp,R) be a ball that contains x, centered at ¢z with radius
R. We write B = B(cp,2R) and for 1 <i<2,set B; =A 'B, |B;| = |det(A;")||B].
Let fi= /x5 5 and o=/~ fi.
Suppose that a := Ty ((b — b 5,,5,)2) (cB) <

We write

(b, Tef1(x) = (b(x) = bp,08,) Tof (%) — T (b = bpug,u5,) ) (X)-

Now, we have

(i L —tia)

1/6
< (H/BW?()}) _béuéluéz)Taf(y”de)

(i1 =g ) 00 )%)1/5

1/8
+ (E/B|Ta((b_béuéluéz)f2)()’)—Ta((b—bguglugz)fz)(cB)de)
=I+11+111. 4.2)
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To estimate [, let ¢ =€/ > 1, by Holder’s inequality and Lemma 4.1,

1/8 |
s <B|/ by)Tef V)] dy) +1b5— bpo5,u8,] (E/BTaf(y)l‘sdy>

l/q’51 1/q6
< (7 floo- |‘f‘*dy) (131 s 0)1%as) " ClplloM T3

C|\bllsmoMe (T f)(x) + C||b|| BroMs (Tef) (x)
C|bl|BoMe (To.f ) (x).

For 11, by Jensen inequality

1/8

<
<

1
< — K0, 2)||b(z) — b 5.5 dzd
1, s IKO2NPE) b L ()

21
> 151 Jo 100~ bannllfi Q)] K2y @3
1 i

Then, using Lemma 4.2 we obtain

2
1
1< CR 3o [ 16) b /(2
=1 i

2

1
<R3, 5 | (9(2) b |+ g, b 1S Q)
i=1 171 i
2

<CY [RUIb = bpllexprs 1 g g, + 1BllmoMaf (A7 '5)]
i=1

2
< Cl|bllamo Y, Moo f(A; ' x).

i=1

For I11, by Jensen inequality we get
1
1< 0 [ a0 b, 2)) ~ Tl (6= b, )P ex)lly

1
S E//g UB,)e K (y,2) = K(cB,2)[|b(z) — bBUBluBZHf( z)|dzdy

< o3 K2 = Kien2)10(0)~ by, 0
=1

where
Z' = (ByUBy) N {z: |ep— Az <|cg —Anz|,r #£1,r =1,2}.

Let us estimate |K(y,z) — K(cp,z)| for y € B and z € Z',

IK(y,2) —K(cB,z)| <|ki(y —A12) —ki(cp — A1z)|[ka (y — Ar2) |
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+ |k1 (CB —A1Z)| |k2 (y —AQZ) — k2(CB —A2Z)|. (4.4)

For simplicity we estimate the first summand of (4.4), the other one follows in an
analogous way. For j € N, let

Dlj ={zeZ :|cg—Aiz| ~27T'R}.

Observe that D', C {z : [ep — Ajz| ~ 2/7'R} C A ' B(cp,2/*2R) =: By ;. Using genera-
lized Holder’s inequality

/|k1(y_AIZ)_kl(CB_AIZ)||k2(y_A2Z)||b(Z)_bEUBIUEZHf(Z)WZ
2 / e (= A12) — K (e — A12) ko (v — A02) [b(2) — b0, | £ (2)1dz

S

<

SR
Udz‘

Il
-

J: / [XD§-|k1(y_Alz) —ki(ep —Arz)[[ka(y — Az2)|

j Ljl /B

(1b)— b, |+ b5, ~ bpsml) 1] dz

Z 1By il (ki (y— A1) — ki(cB — AU A Ny Jep-ari2itir
j:

8

o (v =422z ey -a 212 (10 = by lexpr i, + <Blmar0)

<cllbllamo Y, |Bijljll(ki(y— A1) —ki(ca —A))xp, [, jcp—azl~2it1R
=1

|2 (y —A2')%D§. H‘I’z,\cB—A,z|~2J+1RHf”(p.ﬁ,#j'

~ Observe that |cp —Ajz| /2 < [y —Ajz| < 2|ep —Az| andif [cp —Ajz| ~ 2/+1R then
2/R < |y —Ajz| < 2/*2R. Thus, we have

Ikt (v = A0) 2 I Je—relatik < IOl gm0 () gy agioig < €(27R) ™
where the last inequality holds since k; € S, ¢, w, . Also, by hypothesis
ki (s — A )%D’ ) ep—Apz~2itiR < c(27HR)
For r # 1, let us prove that
[[kr(y — )%Dl lw, Jeg—azl2itiR < c(2/R)* (4.5)

If z € D, then [cp —Az| > |cp — Ajz| > 2/H!R, thatis D), C A;'B(cp, 2/ T 'R)".
Then D) C A 'B(cp,2/"?R) C A;'B(cp,2""/*?R) for some ¢ > 1 such that 2 >
J+t
|A,A; || We decompose Di» =U (Dlj);w where
k=j

(D,l/)k,r ={ze Di» tJep —Apz| ~ 2FTIRY.
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! ) j+1
Observe that (D})r, C {z:|cp—Asz| ~2/7'R}. Then, as k; € Sy—qa,.w, ,

1 kr(y —ArZ)XUI{J:r;(Dgi)kJ (Z)

. Y, dz
|A; ' B(cp,2/+2R)| Ja; 'B(cp2i+?R) A

_ 1 ” (M) dz
A lB(cB,zf‘+2R)\ AT B(ep 2RI D) A
8 e s, ¥ (5
AT 'B CB;ZJ+2R )| A7 Blen 22 R)INDY ) ' A

Jtt 1 kr(y _AVZ)X(DI,) (2)
= 2 - \Ilr Jokr dZ
 |A; ' B(cp, 27+ 2R)| (D_f,ak,, A

k=j
12“ IA; ' B(cg, 2F2R)| / k(y=Ar2) 2 ), , (2) .
r Z
“|A; ' B(c,272R)| |A; ' B(cs, 2k+2R )| JA7 ' B(cp,2H2R) A
_ ky(y—A
12“ [det(A, )] acjpm 1 v A=A, (2) o
" | det( Al_l | |A;7 ' B(cp, 252R) | Jar ' B(cp.2k42R) A

Observe that R > |c5 —A,z| > |cp — Ayz|, for every R > 0, implies that A,! B(cB,R) C
A;'B(cg,R). Then |A; 'B(cg,R)| < |A; 'B(cp,R)| and |det(A;1)| > |det( D], If we

consider A = % U, using that ¥, is convex we have
jit \det(Ar_l)|2(k—j)n 1
& ldet(a; )] A7 'B(cp, 2542R)
det(A ) &= A x ), (2)
></ ¥, | det( Cl)‘ (D)x, dz
A7 'B(cp,2¢2R) |det(A7 )] u
it . 1 ke(y —Ar2) X pry, (2)
g 2 2(](7])}1 — — 1 ( _,)k.r dz
y |A; " B(cp,2K2R)| Ja; ' B(cp,25+2R) u

it kr(y = A2 pty, ,(2)
<2tn 2 - / r ( ./)/‘>' dZ < 1.
k=j ‘A B CB 2k+2R ‘ 1B (cB, 2k+2R u

Finally, taking u = (r +1)2" Jt 1kr(y = Ar) s, oot = (€ + 12|k, (y —
A")||‘I’,,|chArz\~2“'R’ we obtain

Hki’(y_Ai")XDé||\I’,7|chAlz|~2.f“R = [kr(y—Ar )XUW (D), ||\11 Jep—Aiz|~2J 1R

et
m (t+1 )Ztn ZHkr(y_Ar') ||‘Pr7\CB—Ayz|~2k“R
I k=j
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it
S 2 [1&r () g, i m2tr o), a2kt 1R

< 2 (2kR) =% = ¢(2/R) ™
k>j

where the last inequality holds since k. € S,_q, v
Now for [ =1,

/Zl k1 (y — A12) — ki(cs — A12)[|ka (y — A22)|[b(2) — b 5,08, 11 2(2)]dz

<clbllsmo Y, (2R j|| (ki (y — A1) — ki (cs = A1)ty jep-azpmartrll g 5
=1

<c||bl| roMo.o f (A7 ' x ZWR )"l e r—=Ar) =ki (es—=A1))dpt by ey, 201k
<cl||b|| oM f(A] X),

where the last inequality follows since ki € H, o, w, 1
For [ =2, proceeding as (4.5), we obtain

H<k1<y—A1->—k1<cB—A1 Do

<c2

k>j

Ty Jep—Agz|~2/ IR

(1= A1)~ alew = A1),

W, lep—Az|~2kH1R ’

Then, we obtain

oo

Z,QJR)O‘! ‘(kl( 1) —ki(cp —Ar- ))XD i, jeptyzio2it iR

Jm1<21R>°" D] R O TR
;;Zal k) (2kR alkH ki(y—Ai) —ki(cg — Ay ))X(D et g, gt ot 1R
<ki ;(z ok )(sz “k | (v = A1) — ke = A1), s

<

HMX L

(2'R)k (kv = A1) = ka(en = A1) 202,

<c,
W lep—Arz|~2KFIR

where the last inequality follows since ki € H, o, w, 1 -
So, as in the case [ = 1, we obtain

/22 [k1(y — A1z) — ki (cp — Arz)|[ka (y — A22)|b(2) — bpug, U, I1.f (2)]dz
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<c|bllsuoMea.of (A7 x).

Then

2
I < c||bl|smo Y, Mg f(A; ' %).

For the case oo = 0, the argument above can be adapted as follows. Estimates for
terms / and //] are analogous to the ones in the case 0 < o < n. For /1, observe that Tj
is of weak-type (1, 1) with respect to the Lebesgue measure (see Lemma 5.3 in [18]),
as 0 < § < 1 and using Kolmogorov’s inequality (see Lemma 5.16 in [12]) we get

C & C 2 4
1< G [ 10y =3 i 10y < Smpa ),

and the theorem follows in this case.
For the case m > 2, the estimates for terms / and /I holds as the case m = 2. For
II1, we define Z', [ = 1,2,...,m, as

7' = (U BN {z:|cg—Aiz| <|ep— Az, r #1L,r=1,2,...,m}.

For y € B and z € Z, the inequality (4.4) in this case is

m

ki(y —Aiz) —ki(cs —A2)| [] |kiy—A4Aj)l.
J#ij=1

M=

|K(y,2) — K(cp,2)| <

I
—_

I

The estimate
[ JK(:2) = Ken,2) 16(2) = b 0, 2z < Clb oM f (47 )

is prove in an analogous way as above.
For the case k > 1, suppose that a := Ty ((b — bguglugz)kfz)(cg) < oo
We write

k—1
= ,Z()C (b(x) = b0, Topf (X) + Ta((b = by 08, ) (%)

and the term I, 11, III are
=1/ 1/8
1= (g1 100~ s o, 3 T f P
1=0 B
1 k 5, )\"°
11 = (17 f170 = b RO

1/8
1= (o [ 10~ b, )0) = Tul (0= g E ) Py )
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The estimate for / is analogous for the case k = 1. To obtain estimates /I and II1,
we observe that, by Lemma 4.1, we have [b—bg 5 5,1* < |b—bx[*+ j*[|bll 0 with
X =Bor EZJ, the rest follows as above.

Proof of Theorem 1.1. By the extrapolation result Theorem 1.1 in [9], estimate
(1.6) holds for all 0 < p < e and all w € A.. if, and only if, it holds for some 0 < pg < oo
and all w € A... Therefore, we will show that (1.6) is true for pg, which is taken
such that "= < py < eo. This will make some computations cleaner and avoid some
technicalities. We first consider the case on which w and b € L. By homogeneity, we
assume that ||b||gyo = 1. We proceed by induction.

When k =0, then TO mb = =Tom- As ki € Hy_o, w,0 = Hy— ¢, ¥, , Theorem 3.3 in
[18] implies that

/R T () P(x)dx < clﬁl /R Mo £ w(Ar)dx

Next, we assume that the result holds for all 0 < j < k— 1 and let us see how to
derive the case k. We fix W,...,W,, and ¢ so that ‘P;l(t)---‘P;l(t)@_l(t)(p_l(t) <
t for t > 1o, for some 79 > 0, with @ () =rlog(e+1)" and k; € S, o, %, VHy— oW, & -

Let f € LT. Without loss of generality, we assume that ||[Mg o f1|7r0(, ) L=
I,...,m and HTé"m’beLpo (w) are finite. Let w € Aw, then there exists r > 1 such that
weA,. Let 0< 6 <1 suchthat 1 <r< py/8, thus w €A, 5- We want to use the
Fefferman-Stein’s inequality. To do so we need to check that ||M5(T§7m7h Illeroqwy is
finite. Notice that since w € A, /s with po/d > 1 we have

(o)
)

mbf

1
3
HME(To]c{,m,bf)HLPO(W) = HM(TOIC{,m,bf)S‘ L%O

W) LPO(w

by assumption. Then, by Fefferman-Stein’s inequality and Lemma 4.3, for all & with
0 <& <1, wehave

Tk X
/I‘Q” oc.,m7bf( )
k S
<[ M (7,06) )
R n,
k—1
<C 3, [Me (720)
1=0
Since & < q/r < 1, we can take € > 0 such that § < &€ < po/r < 1, and so
we Apo/g. Hence,
/ €
[Me (Tems) | o, = M ([Ticmar| )
Notice that for 0 </ <k—1 and for all # > e, we have

E RGNS MOIANOI GRS SR ORE MO O OB

w(x)dx

po/6

w(x)dx < /n (Mg (T§7m7hf> (x)>1’0 Ww(x)dx

" S -1 Po
LPO(W)+CZI /]R (Moo f (A7 %)) w(x)dx. (4.6)

1/e l
oc.,m7bf

o,m, bf

C .
LPO/E (p S ‘ LPO (w)
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Besides, ki € S, w;, VHy—o; ¥,k C Sp—oy,%; VHy— g, 9,1 - Thus, the induction hypothe-
sis implies that, forany 0 </ < k—1,

mbf

e (7insr) | céAngf@#mmwmm,

LPO(w LPO(w

provided the middle term is finite. Assume for the moment that this is the case. Plug-
ging the last estimate into (4.6) it follows that

J.

Observe that we have not used that w and b € L™, this will be needed in the following
argument to show that some quantities are finite.
We still have to see that HTé_mbHLPO(W) <o forall 0 <I<k—1.As weL” and

Tom : L9(dx) — LP0(dx), with oL = 7 — %,

q
‘ Tl f
o,m,b.

T(i{,m,hf(x) " w(x)dx < Ci /]R" (Moo f(x))POw(Aix)dx
i=1

X et b I Tam(b'f) < Wl
LPO (w)

< ClwlolBll £ e < oo,

< oo,
LP0

[
2 e b I Ty m(bf)

LPO (w '

since f € L7 . Hence, for w and b € L™, (1.6) holds, that is

Je

where C does no depend on ||b||z= and ||w||z= (C only depends on the A.. constant of
w, po,k,T).

For any weight w € A.., we define wy = min{w, N}, then wy € Aw and [wy]a., <
C[wla., with C independent of N. Since wy € L™ then (1.6) holds with C not depend-
ingon N. Letting N — oo and using the monotone convergence theorem we conclude
that (1.6) holds for any w € A.

For the general case, if b € BMO, for any N € N we define by = by|_nn) +
NY(Neo) = NX(—eo—n)» then [|by|lw = [|bn|[Bro < 2[[b]|Bmo. Now, using convergence
theorems, for details see [21], we conclude that (1.6) holds for any b € BMO.

Thus, as mentioned, using the extrapolation results obtained in [9], (1.6) holds for
all 0 < p<oeo, be BMO and w € A

If w satisfies (1.4), we have

e

Té"m’bf(x)‘pow(x)dx < ClI5|m0 Z/R" (Mg f(x))Pow(Aix)dx,
=1

m

Ty (x)’pw(x)dx < cz / (Mo f(x))Pw(Ax)dx

n
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5. Proof of one weight norm inequalities

For the proof of Theorem 3.1 a) and b), we need the Coifman inequality (1.6)
and the boundedness of the maximal operator, given in [3] (see Theorem 2.6). In the
case of the classical Lebesgue spaces the theorem is the following.

THEOREM 5.1. [3]Let 0< a<n, w be aweight, Ll <B <p<n/oand 1/q=
1/p—oa/n. Let 1 be a Young function such that n1+n€_a € B pn forevery p > fB(n—

a)/(n—af), andlet ¢ be a Young function such that ¢~ (1)t%/" <n~1(r) for every
t>0. Ifwh e A§% , then My y is bounded form LP (wP) into LI(w?).

The boundedness of the M, ¢ from LP(w?”) into L9(w?) with bump conditions, given
in [11] (see Theorem 5.37), is the following,

THEOREM 5.2. [11]Let 0< a<n, 1 <p<n/a, let—— — % Let ¢,B and

1

P
C be Young functions such that B~'(1)C~'(t) < c¢~1(z), ¢ > 0>0.IfCe By and
w € Ay, then for every f € LP(wP),

/(Ma,¢f)qwq<C/\f\pwp.

Now we prove part (a) and (b) of Theorem 3.1,

Proof of Theorem 3.1 a) and b). From the previous Theorems, hypothesis (a) or
(b) implies that M, ¢ is bounded from LP(w?) into L¢(w?).Then, by Theorem 1.1 and
w satisfies (1.4),

T | ) < W0l Me o Flisn) < ool Flriur)

For the proof of Theorem 3.1 ¢) we use a Cauchy integral formula technique, see
[71,[5] and [2]. This technique is as follows, let 7 be a linear operator, we can write Tbk
as a complex integral operator

dk
T f = pE T (fe )
dz

ey L.(/)

. z
o 2mi =g LT

where € >0 and T;(f) = T (fe %), z € C. This is called the “conjugation” of T

by ¢?. Now, if || - || is a norm we can apply Minkowski inequality,
|71 < sopsup ITOIL e >o.
IZ\ €

Observe that using this technique we can obtain the boundedness of the commuta-
tor using the boundedness of the conjugation of the operator.
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LEMMA 5.3. [2] Fix 1 <r,m <oo. If W1 € A, and b € BMO. Then werb €A,
for every A € R verifying

) < min{1,p — 1}'
n'||bl[Bmo

Proof of Theorem 3.1 (c). Let T = Ty . Let w € Ap, and v = wefe@P  where
Re(z) is the real part of the complex number z. If v € A, 4, then

T2 A za(way = HT(fe_Zb)HLq(vq) < C||fe_ZbHLP(vP) = || fllerowr)s

since T is boundedness from L?(v?) into L9(v?).
Let us prove that v € A, ;. If we A, then w? € A1+I% and exists 7 > 1 such

o min{l,% .
that w EAl_,'_ﬁ.LetSQ:m,lf‘d:SOthen

min {1, ”—}
q
lqRe(2)| < qlz] = —77——

r|1bllsmo -
By Lemma 5.3, vi€A; ¢ and vEA,,.
P
Hence,
1
¥ < sup ||T; 7 < 5——1bll3 wa)-
(720,10, < 2t 298 1T < gl Nusc

6. Proof of two weight norm inequalities

For the proof of the two weight norm inequality we need the following auxiliary
results.

LEMMA 6.1. (a) [24] Let ® be a Young function. If ® € B, then for every weight
vV we have

[Mor@irviar < [17wIrmMy@ar

(b) [20]1If r > 1, then
M(M,) =~ M,.

Proof of Theorem 3.2. Let u a weight and v(x) = M), gu(x). By duality, (3.2)
turns out to be equivalent to

/]R" ‘T*f(x)‘p’v(x)l—pldx < C/R" ﬁi |f(Aix)|p’u(x)1—p/dx.
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Since v = Mapﬁgwl‘pl € A, see [4], then by Proposition 2.2 and the fact that
& e B, we get for all x € R",

Ma.,j’?(wiéﬁ )(Aix)l?/v(x)l—p/ _ Map,@(WA’_—l )(Aix)pl/pv(x)l—pl

< My o (w) (x)? /Py (x) 17

and using the Coifman inequality settled earlier, Theorem 1.1,
LTS v T dx < e [ Moo ram v 7 ax
]Rn
¢ [ M, P4 Moz 00 D) (i) v(x)! 7

/ Mg fw ,ll/p)(Aix)pldx

I

<c [ 17w Peampax=c [ 1A we " ax

Proof of Theorem 3.3. We proceed by induction on k. We consider m =2, T =
T(;il ,»- The general case is analogous.

We assume that the cases [ = 0,1,...,k— 1 are proved and we show the de-
sired estimate for Thk . Let u be a weight, suppose that u € L (otherwise consider
uy = min{u,N}xB(QN) and use monotone converge theorem). Let 0 < f € L7. By
homogeneity we can also assume that ||b]|gyo = 1.

By the standard Calder6n-Zygmund decomposition of f at height A, there exist
dyadic cubes {Q;}; such that

re— [ r<om.
‘QJ| Qj

and we can write f = g+ h where

8:fXR"\Uij+ZfQj?CQj7 h:Zhj:Z(f_fQj)XQj7
J J J

where fp, denotes the average of f over Q;. Let us recall that 0 < g < 2"A ae.
and also that each %; has vanishing integral. We set 0 ji» i = 1,2, the cube with
center A;c; with length 2,/nMI1(Q;), where M = lrg;gizﬂA,-H , Q= U (0j1UQ;2) and
s j

I = U)pm - Then

u{x ER": |TFF(x)] > A} <u(Q) +u{x e R"\ Q: [Tfh(x)| > A/2}

+u{x e R"\Q: |Tfg(x)| > A/2} =1+ 1T +1II.

We estimate each term separately. For I, observe that |Q;;| = (2/nM)"|Q;].

Then, we have

1= (U 0,1 ué.f,z>) < W@+ 1G]

7 7
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— S u(Qj1)  u(Q)2) le u(Q;2)
= (2vaM) 2[ G0l 1052 i< AZ[ G0l 10,2 ]/ij

< z;/Q, [Mu(A x) +Mu(Asx)] f(x)dx,

where the last inequality follows since x € Q; then A;x € Qj,i. Then,

I< %Z / [Mu(Ar) + Mu(Azx)] £(x)dx

<02/ (pk< ) [Mu(Ax) + Mu(Axx) | dx,

and we observe that Mu is pointwise controlled by either Myu or Mgu. So the desired
estimate follows in all cases.
To estimate 11, we write

Tfh(x) ZT,,kh

- 2 T} (2 (b=bg,06,,u6; 2)’”h.,) (x) +z(b(x) — ijUQ“uQ,_J)kTh i)
= J

J

= F1(x) + Fa(x).
Then,

II=u{xcR"\Q: |Th(x)| > 1/2}
Su{x e R"\Q: |F(x)] > A/4} +u{x e R"\ Q: |F(x)| > 1/4}.

For F}, we would like to use the induction hypothesis. We consider the case (a).
IfO<I<k—1then H,_g, w1 C Hy_g,w,; and so k; € S, 9, N H,_g; ;1 - Also, as
©.(1) <,(t) we have

L) (09 (09() ST (R (e~ (1) S,

for t > 1, for some 7y > 0. Thus the hypothesis on () are satisfied for every 0 <[ <

k — 1 and therefore
> A/ C}

12 =bg.06,,06,,) “h|
<Z/n ( J Qj i] Q). U ) (Mq)lZ(Al(x))—l—Mq)IZ(AZ(x)))dx

u{x e R"\ Q:|F(x)| > A/4}

k—1
<Y {x T (2(1; — ijUQNUQj‘Z)k‘lh ,-) (x)
=0 j

J

SR (b "’Q.fuéj‘lugj.zk_l'h’> (M1 (3)) + My Ao(o)
far j 79 A ’ ¢
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> f Myii(A; b—bo,u0;,00,,I" )] .
;; Zessm q)u( (x)) /Q_,-(pl 0 X,

i=1 J

where the last inequality holds by Myii ~ essQ inf Myii, see [20]. Let us observe that
J

C, 1(t)Ck,fl(t) < ¢! (). Then, Young inequality implies

k=11, .
, <|b bQ,UQ,IAUQJJ 'h">dx

k—I1
J)der/ (Pkl clb=bg.0u6;,00,,! )
hj

P (u) det [ &P reml gy
A Q)

< 0 |hl|)dx+ ec‘b_ij|+‘ij_bQ_,-qu‘1UQj,2|dx
j A Q)
h . h;
</ ¢k<|7(|)dx+ / e‘h bQJIdx,S/ (pk<71|)dx+Qj.
o Q) Qj

As ||bllmo = 1, using John-Nirenberg theorem, we get that ||b — b, |lexp.0; < ¢ and
|bQ_,. bQ,»uQ,-luQ,2| < ¢. Besides, using that (pk , 0 < 6 <1, is concave, therefore

subadditive, it follows that ¢ is quasi-subadditive, this is @g(1; +22) S @ (t1) + @i (12) .
Then, by Jensen inequality

o (G Yo (3w (5 ) <2 o (2) o

Also, by Calder6n-Zygmund descomposition

o< [, ras< [ o )ar

Then, we obtain

"Q: i il i X
W{x R\ Q: |Fi(x )|>/l/4}<126;<;ess inf Moi(A ())) /quok<k)d

< [ o0 (§) Moaasto)-+ Myias o)

This gives the desired estimate for F] in case (a). Notice that the same computations
hold in case (b) replacing everywhere My by My . Next, we estimate F>,

u{x ER"\ Q: |F(x)| > 1/4}

xz/n\g Q,UQ,IUQJZ\ |Thj(x)|u(x)dx
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N

4 / k‘

_2 b —bp 5 05 / (K(x,y) — K (x,¢)))h;(y)dy| u(x)dx

2’ R”\Q QIUQ]‘IUQJ.Z Qj

4

T2y WO [, o000 = b,u0, 0, (K (53) = Koy lu(x)dd.
J

We claim that for every Q, with center c¢, and for every y € Q we have

2
) = bpus s FlK (x,y) = K (x,¢0)) [u(x)dx < ¢ Y ess inf Mou(Aix),

‘/Rn\(Qj‘lUQj‘Z) QU0 U Q E{ x€0; l

(6.1)

where Q;, i = 1,2, is the cube with center A;co with length 2,/nMI(Q), and M =
ln<1;1<x2HAi|| . This estimate applied to each Q; drives us to
RIS

2
u{x eR"\Q:|R(x)|>1/4} < %ZZ CSESQinfM(])M(Ai)C)./ |hj(y)|dy
i xeld; Qj
<7 2 y) [Mou(Ary) + Mou(Azy)] dy

<[ o (%) (M1 () + M)

Observe that this leads to the desired estimate in (@) and also in (b), since My < My,
see Remark 3.4. Collecting the obtained inequalities for F| and F, we complete the
estimate of /1.

Let us proof (6.1). Let Q be a cube with center cg, and Q;, i = 1,2, be the
cubes with center A;co with length 2\/nMI1(Q), where M = 111<1?<X2||AiH- Using (4.4),

we obtain

b(x)—b, » ~ka,y—Kx7c u(x)dx
/n\@lu@)' (¥) ~ bguguug, (K (x.y) — K (x,c0) ()
< [ 160 = b 0,00,k (v=A1y) =k (x = Asco) [a(v = Aay) (x)dx
66 = bgug,ug, Hlka (k= Arcg) ol — Aay) — ka(x — Azco) (),
where Z' =R"\ (01 UQx) N{x: [x—Ay| < [x—Ayy|,r #i}.

We only estimate the first summand, the other follows in an analogous way. Using
generalized Holder’s inequality and observing that |Q;| = (24/nM)"|Q|, we have

[ 1660 =g g,00, k(6 = A13) =k (= vl ka6 = Azy) ()

,S ZlQb(x)—thﬂ ‘k+|er+1 _bQUQ1UQ2 ‘k>‘k1 (x—Aly)—kl (x—Alcj)| |k2 (x—Agy) |u(x)dx
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LI | R —
C;NQ(( o) <pk.,Q’“+ 10— Aw) = ki (- —Aicj) X\ o v 0

sz(- —A2y)XQt+l\Q/ w0 u
the last inequality holds using Lemma 4.1 and the fact that Q" is the cube with center
Ajcp and length 2'\/nMI(Q). Observe Q' = Q.

Since ||b||gyo =1, then ||(b_th+l)kH(pk’Qt+l < C. Now as ky € Sy—q, @,, We
obtain

C‘Qt|—062/n.

Hk2( _A2y)XQI+l\Qt) W, g1 X
Also, if x € Q; then forall 1 € N we get Ajx € Q;; C Q' and

0|7 |||, o+ Sc esg inf Mou(A;-).

Then,

| M= A1) = k= A1) ale = Aoy) ()

. .- L}
<cess inf Mou(A;-) Y, |0'| 7 * Hkl(- —Ary) —ki(- —Aicj) X oo 1
Qj =1 \Pvat+

<c esz inf Mpu(A;-),
j

where the last inequality holds since ki € Hy— g, w, -
In an analogous way, we obtain

L1660 = bg0,00, Pk (v = A15) =k (r= Arco) al = A (x)dx

<c esg inf Mopu(Az-).
j

The estimate 11 is different in each case. We start with (a). For p > 1, using
Theorem 1.1, the fact that M,u € A and Lemma 6.1, we get

I =u{x e R"\Q: |Tg(x)| >1/2} < )ZL—I;/ |Tg(x)|Pa(x)dx

21’
}, P Jrn

A,,2/ 8047 ) M (0, A,,z/ 8047 )" My (x)dx

c c
< — p (A < — p (A
<55 [ 1ewl izle,umlx)dx\ & L 1swl izlewAlx)dx

T5(x) P Mi()dx < 5 2/ Mo (A7 0 Mi(x)d
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where the last inequality holds using that 1" < ®(¢) for t > 1y > 0. Since g < 2"4,

2
11 < M/ |1’2Mq>qu )L/ )|;M¢IZ(A,-x)dx

c

< 7 e EMq)u iX dx</ (pk< ) (Myi(A1(x)) +Myii(A2(x)))dx,

which completes the proof of (a). To show (b), we only have to estimate 771. We can
apply Theorem 3.2, to the adjoint of 7,F. Observe that (Tbk)* = (T*)’ib, where T* is
the integral operator with kernel

R(y,x) =ki(y— A7 0k (y — A7 '),

and Igi(x) = ki(—A,-x) . Since k; € S"*ah\l’i OH,,_ah\yhk , we have ]gi S S"*ah\l’i OH,,_ah\yhk s
then we can apply Theorem 1.1 to (Thk)* . Hence, by Theorem 3.2 we obtain

o n\ & . |71k g k Py
I =u{x e R"\Q: [T g(x)| >1/2} < T \Tbg(x)| ii(x)dx
2

<ﬁ/wg pZMgu Aix)dx < ZM/u

i=1 i=1

< [, 00 (§) o0 0+ Moz,

which completes the Theorem.
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