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REMARKS ON A LIMITING CASE OF HARDY TYPE INEQUALITIES

MEGUMI SANO AND TAKUYA SOBUKAWA

Abstract. The classical Hardy inequality holds in Sobolev spaces W 1,p
0 when 1 � p < N . In

the limiting case where p = N , it is known that by introducing a logarithmic weight function
in the Hardy potential, some inequality which is called the critical Hardy inequality holds in
W 1,N

0 . In this note, in order to give an explanation of the appearance of the logarithmic function
in the potential, we derive the logarithmic function from the classical Hardy inequality with
best constant via some limiting procedure as p ↗ N . We show that our limiting procedure
is also available for the classical Rellich inequality in second order Sobolev spaces W 2,p

0 with
p ∈ (1, N

2 ) and the Poincaré inequality.
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[8] H. BREZIS, J. L. VÁZQUEZ, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ.
Complut. Madrid 10 (1997), No. 2, 443–469.
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