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HERMITE––HADAMARD TYPE INEQUALITY

FOR CERTAIN SCHUR CONVEX FUNCTIONS

PÁL BURAI ∗ , JUDIT MAKÓ AND PATRICIA SZOKOL

(Communicated by C. P. Niculescu)

Abstract. The main goal of this paper is to prove a Hermite-Hadamard type inequality for certain
Schur convex functions using, as one of the main tools in the proof, a Korovkin-type approxima-
tion theorem.

1. Introduction

The classical Hermite–Hadamard inequality [16] is a very important and investi-
gated result concerning convex functions. It states, that if f : [a,b]→ R is convex, then
it satisfies the following chain of inequalities

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x) dx � f (a)+ f (b)

2
. (1)

In fact, together with continuity, the left-hand side inequality (usually called the
lower Hermite-Hadamard inequality) implies convexity (see Theorem 2). Similarly, the
upper Hermite-Hadamard inequality together with continuity also implies convexity of
f .

There are many interesting results concerning this topic. Among others we empha-
size that in [7], the authors proved an analogous statement concerning convex functions
with respect to a Chebyshev system.

One can find several generalizations of (1) in the literature, see e.g. [5, 6, 13, 23,
24, 29] and the references therein.

The main motivation of the present paper comes from [11], where the connec-
tion between a Hermite–Hadamard type inequality and a Jensen type inequality was
investigated.
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THEOREM 1. Let X be a normed space, D⊆X be a nonempty convex subset of X
and f : D×D→R be bounded, lower semicontinuous and symmetric function. Assume
that μ is a probability measure on [0,1] , such that μ /∈ {αδ0 +(1−α)δ1 | α ∈ [0,1]} .
Moreover, assume that, for all x,y ∈ D, the function f satisfies the following Hermite–
Hadamard type inequality∫

[0,1]

f (tx+(1− t)y,(1− t)y+ tx)dμ(t)� f (x,y).

Then f is Jensen convex in the following sense:

f

(
x+ y

2
,
x+ y

2

)
� f (x,y), x,y ∈ D.

A simple consequence of this theorem is the following classical result (see [16]).

THEOREM 2. Let I be a proper interval and f : I → R be a continuous function
on I . Then f is convex if and only if

∫ 1

0
f (tx+(1− t)y)dt � f (x)+ f (y)

2
, x,y ∈ I.

One of the key tools in the proof of Theorem 1 is the following Korovkin-type
theorem from [21].

THEOREM 3. Let Tm : C ([0,1]) → R (m ∈ N) be a sequence of positive linear
operators such that

lim
m→∞

(Tm1) = 1,

where 1 stands for the constant 1 function. Suppose that there exists a function g ∈
C ([0,1]) with g

(1
2

)
= 0 and g > 0 on [0,1] \{1

2

}
such that lim

m→∞
(Tmg) = 0 . Then,

for all bounded lower semicontinuous function h : [0,1] → R ,

lim
m→∞

Tmh = h
( 1

2

)
.

We recall, the statement of the classical Korovkin theorem. Let I be a bounded,
closed interval and Lm : C (I) → C (I), m ∈ N be a sequence of positive, linear map-
pings. If Lm f → f in supremum norm for the functions 1,x,x2 , then Lm f → f for all
f ∈ C (I) .

As a matter of fact, in [18] Korovkin obtained a result, which has a consequence
similar to the previous one. More precisely, if the sequence Lm defined on the set of
all continuous functions that are periodic with period 2π , and ‖ f −Lm f‖∞ → 0 for the
constant 1, cosine and sine functions, then ‖ f −Lm f‖∞ → 0 for every periodic function
f . For more details see e.g. [8, 17, 18].

One of the most important consequences of the classical Korovkin theorem is the
well-known first approximation theorem of Weierstrass, which says that all continuous
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functions defined on a compact interval can be approximated uniformly by polynomi-
als. Besides that fundamental theorem of approximation theory, there are many other
variants of Korovkin type theorems in the literature. For more different versions, gen-
eralizations, and applications we refer to the papers [1, 19, 22, 21] and the references
therein.

In the main theorem of this paper we are going to prove a result, which can be
considered as a multivariable case of Theorem 1. More precisely, we will investi-
gate symmetric, continuous functions whose domain is in R

n that satisfies a Hermite–
Hadamard type inequality. Our aim is to confirm that such functions are necessarily
Jensen-convex.

One of the main tools, just as in the case of two-variables functions, is a Korovkin-
type theorem (Theorem 5). However, we need also some lemmas, and the proof of the
main result is quite lengthy and more difficult from technical point of view than the
proof of Theorem 1.

Our work is organized as follows. Section 2 recalls some known results, which
will be important for our later purposes, and introduces notations and terminology used
throughout this paper. Section 3 contains the main result and a Korovkin-type theorem
together with its proof. Section 4 is devoted to the proof of the main theorem. Finally,
Section 5 presents some applications.

2. Notations and basic results

Let n ∈ N be a fixed natural number, c ∈ R
n be an arbitrary vector and (cm)

be a sequence in R
n . The i th coordinates of c and cm are denoted by ci and ci

m ,
respectively, i.e.

c =
[
c1, . . . , cn

]
, and cm =

[
c1
m, . . . , cn

m

]
.

An n×n square matrix is said to be doubly stochastic if its elements are all non-negative
and all row and column sums are one.

Furthermore, we define a special class of doubly stochastic matrices. For this, let
us recall the definition of simplices in R

n . Let Sn(a1, . . . ,an) = Sn(a) be an arbitrary
simplex in R

n , where a1, . . . ,an, a j > 0, j = 1, . . .n and

Sn(a) =
{

c ∈ R
n
∣∣∣ c1

a1 + . . .+
cn

an = 1, c j � 0, j = 1, . . . ,n

}
.

The volume of Sn(a1, . . . ,an) is (see e.g. [4] or [14])

volSn(a) =
a1∫
0

. . .

an
(
1− c1

a1 −...− cn−1

an−1

)
∫
0

1 dcn . . .dc1 = ∏n
i=1 ai

n!
. (2)

For the sake of simplicity, we denote the standard simplex in R
n , i.e. the simplex

with unit sides by Sn . In particular, the equation (2) gives

volSn = volSn(1, . . . ,1) =
1
n!

.
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We say, that a matrix is circulant doubly stochastic (see e.g. [12]) generated by c =
(c1, . . . ,cn) ∈ Sn if it has the following form

C = circ(c) = circ
[
c1, . . . , cn

]
=

⎡
⎢⎢⎢⎣

c1 c2 . . . cn−1 cn

cn c1 · · · cn−2 cn−1

...
... · · · ...

...
c2 c3 . . . cn c1

⎤
⎥⎥⎥⎦ .

3. Main results

Our main result shows that a certain Hermite–Hadamard type inequality implies a
Jensen-type inequality .

THEOREM 4. Let D be a nonempty, convex subset of R
n and f : D → R be a

symmetric, continuous function for which

1
volSn

∫
Sn

f (circ(c)x) dλ n(c) � f (x), x ∈ D, (3)

where λ n denotes the Lebesgue measure on R
n . Then

f

(
x1 + · · ·+ xn

n
, . . . ,

x1 + · · ·+ xn

n

)
� f (x1, . . . ,xn), (4)

for all (x1, . . . ,xn) ∈ D.

Its proof is based on our second main theorem, which can be considered as a
Korovkin-type result.

For the readers convenience, we recall the definition of monotone and positive
operators and the relationship between them.

DEFINITION 1. Let K be a compact subset of R
n and C (K) denote the set of all

continuous real-valued functions on K . We say, that a functional T : C (K) → R is

(a) monotone, if f (x) � g(x) , (x ∈ K) implies that T ( f ) � T (g) ;

(b) positive, if f (x) � 0, (x ∈ K) implies that T ( f ) � 0.

By the previous definition it is easy to see, that every positive, linear functional is
monotone. Indeed, let f ,g ∈ C (K) , such that f (x) � g(x) , (x ∈ K) . Then, 0 � g(x)−
f (x) (x ∈K) and hence 0 � T (g− f ) . By the linearity of T we infer T ( f ) � T (g) .

The reverse implication is trivially not true.
We can formulate now our second main theorem.
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THEOREM 5. Let K be a compact subset of R
n with non-empty interior (K◦ �=

/0 ), Tm : C (K) → R be a sequence of positive, linear functionals for which

lim
m→∞

Tm1 = 1. (5)

Moreover, let p ∈ K◦, g ∈ C (K) such that

g(p) = 0, and g > 0 on K \ {p}, (6)

and
lim
m→∞

Tmg = 0 = g(p). (7)

Then
lim
m→∞

Tmh = h(p), h ∈ C (K). (8)

Proof. Let h∈C (K) , and ε > 0 be arbitrary. Let us define the following function

ϕ(x) =
ε −|h(x)−h(p)|

g(x)
, x ∈ K \ {p}.

Because of (6) ϕ is well-defined.
By the continuity of h , there is a δ such that

|h(x)−h(p)|< ε if ‖x− p‖< δ .

So, ϕ > 0 on B(p,δ ) \ {p} , where B(p,δ ) denotes the open ball with center p and
with radius δ .

The function ϕ is continuous on the compact set K \B(p,δ ) . Let us denote by L
the minimum of ϕ on K \B(p,δ ) and let L̃ be the minimum of L and zero. Then

ϕ > L̃ on K \ {p}.
Using this latter inequality we have

ε −|h(x)−h(p)|
g(x)

> L̃ on K \ {p}.

This implies
−ε + L̃g(x) < h(x)−h(p) < ε − L̃g(x).

Applying Tm on the previous trail of inequalities, using its monotonicity and linearity,
we get

−εTm1+ L̃Tmg < Tmh− (Tm1)h(p) < εTm1− L̃Tmg.

Taking the limits, because of (5) and (7) we can derive the following inequality

−ε � Tmh−h(p) � ε,

which entails (8).
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4. Proof of the main theorem

The proof of Theorem 4 is quite lengthy, and besides of Theorem 5, some technical
lemmas are also needed. This is why we devote a full section to its proof.

LEMMA 1. Let m be an arbitrary natural number, c1, . . . ,cm ∈ Sn . Besides of the
assumption of Theorem 4 we have

1
(volSn)m

∫
Sn

· · ·
∫
Sn

f (circ(c1) · · ·circ(cm)x) dλ n(c1) · · ·dλ n(cm) � f (x)

for every x ∈ D.

Proof. It comes from (3) using induction with respect to m .

LEMMA 2. Let m be an arbitrary natural number, c1, . . . ,cm ∈ Sn and

Tm = circ(c1) . . .circ(cm) = circ(tm),

then for all m � 2

tα
m =

1
n
+

n

∑
im−1=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)(
ci2−i1+1
2 − 1

n

)
· · ·
(
cα−im−1+1
m − 1

n

)
, (9)

where α = 1, . . . ,n and the index α − im−1 +1 is taken modulo n.

Proof. We prove the lemma by induction with respect to m . Let m = 2, and
T2 = circ(c1)circ(c2) = circ(t2) . Applying the circulant property of circ(c2) and the
fact ∑n

i=1 ci
1 = ∑n

i=1 ci
2 = 1, we get that

tα
2 =

n

∑
i=1

ci
1c

α−i+1
2 =

n

∑
i=1

[
1
n

+
(

ci
1−

1
n

)][
1
n

+
(

cα−i+1
2 − 1

n

)]

=
n

∑
i=1

[
1
n2 +

1
n

(
ci
1 −

1
n

+ cα−i+1
2 − 1

n

)
+
(

ci
1−

1
n

)(
cα−i+1
2 − 1

n

)]

=
1
n

+
n

∑
i=1

(
ci
1−

1
n

)(
cα−i+1
2 − 1

n

)
, α = 1, . . . ,n,

where the index (α − i+1) is taken modulo n .
Assume now that (9) holds for m = k and we are going to show that it holds for

m = k+1, as well. Let Tk+1 = circ(c1) . . .circ(ck)circ(ck+1) . Then,

tα
k+1 =

n

∑
ik=1

tikk cα−ik+1
k+1 ,
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where by the induction hypothesis we know that for all α = 1, . . . ,n

tα
k =

1
n

+
n

∑
ik−1=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)(
ci2−i1+1
2 − 1

n

)
· · ·
(

c
α−ik−1+1
k − 1

n

)
.

Then,

tα
k+1 =

n

∑
ik=1

[
1
n
+

n

∑
ik−1=1

. . .
n

∑
i1=1

(
ci1
1 −

1
n

)
· · ·
(
c
ik−ik−1+1
k −1

n

)]
×
[
1
n
+
(
cα−ik+1
k+1 −1

n

)]

=
1
n

+
1
n

n

∑
ik=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)
. . .

(
c
ik−ik−1+1
k − 1

n

)

+
1
n

n

∑
ik=1

(
cα−ik+1
k+1 − 1

n

)
+

n

∑
ik=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)
. . .

(
cα−ik+1
k+1 − 1

n

)
.

It can be shown that the second and third terms of the previous expression are equal to
0. Indeed, using that ∑n

i=1 ci
k = 1 we get that

n

∑
ik=1

(
c
ik−ik−1+1
k − 1

n

)
= 0

and hence, concerning the second term

1
n

n

∑
ik=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)
. . .

(
cik−ik−1+1
k − 1

n

)

=
1
n

n

∑
ik−1=1

. . .
n

∑
i1=1

(
ci1
1 − 1

n

)
. . .

n

∑
ik=1

(
c
ik−ik−1+1
k − 1

n

)
= 0.

Similarly, ∑n
i=1 ci

k+1 = 1, which implies that the third term is also equal to 0. Conse-
quently, we get that the desired formula for tα

k+1 .
In the proof of Theorem 4 we need to have an explicit formula of the following

two integrals. Let s be an arbitrary positive real number and In(s) , Jn(s) denote the
integrals

In(s) :=
s∫

0

1−c1∫
0

. . .

1−c1−...−cn−1∫
0

1dλ (cn) . . .dλ (c2)dλ (c1);

and

Jn(s) :=
s∫

0

1−c1∫
0

. . .

1−c1−...−cn−1∫
0

c1 dλ (cn) . . .dλ (c2)dλ (c1),

respectively.
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LEMMA 3. Let s � 0 be an arbitrary real number. Then,

In(s) = −
n

∑
i=1

1
i!(n− i)!

(−s)i, n ∈ N; (10)

and

Jn(s) =
n

∑
i=1

i
(i+1)!(n− i)!

(−s)i+1, n ∈ N. (11)

Besides the integrals over a simplex In(s) and Jn(s) , we recall an other nice expression,
which will be used in the proof of Theorem 4. Let s be an arbitrary positive real number,
then

Kn(s) :=
s∫

0

s−c1∫
0

. . .

s−c1−...−cn∫
0

c1 dλ (cn) . . .dλ (c2)dλ (c1) =
sn+1

(n+1)!
. (12)

For more details see e.g [28].
Now, we are in a position to prove Lemma 3.

Proof. It is easy to see, that the integral In(s) can be formulated in the following
way

In(s) =
s∫

0

⎛
⎜⎜⎜⎜⎜⎝

1−c1∫
0

(1−c1)
(
1− c2

1−c1

)
∫
0

. . .

(1−c1)

(
1−

n−1
∑
j=1

c j

1−c1

)
∫
0

1dλ (cn) . . .dλ (c2)

⎞
⎟⎟⎟⎟⎟⎠dλ (c1),

where the integral appearing in the brackets is the volume of the simplex Sn−1(1−
c1, . . . ,1− c1) . By (2) we get

vol(Sn−1(1− c1, . . . ,1− c1)) =
(1− c1)n−1

(n−1)!
.

Consequently,

In(s) =
1

(n−1)!

s∫
0

(1− c1)n−1 dλ (c1) = − 1
n(n−1)!

[
(1− c1)n]s

0

= − 1
n!

(
n

∑
i=0

(
n
i

)
(−s)i −1

)
= −

n

∑
i=1

1
i!(n− i)!

(−s)i.
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Just as in the case of In(s) , one can rewrite the integral Jn(s) and apply (2)

Jn(s) =
s∫

0

1−c1∫
0

. . .

1−c1−c2−...−cn−1∫
0

c1 dλ (cn) . . .dλ (c2)dλ (c1)

=
s∫

0

c1Sn−1(1− c1, . . . ,1− c1)dλ (c1) =
1

(n−1)!

s∫
0

c1(1− c1)n−1dλ (c1).

Using the binomial theorem for the expression (1− c1)n−1 , we get that

c1
n−1

∑
j=0

(
n−1

j

)
(−c1) j = −

n−1

∑
j=0

(
n−1

j

)
(−c1) j+1 = −

n

∑
i=1

(
n−1
i−1

)
(−c1)i.

It implies, that

Jn(s) = − 1
(n−1)!

n

∑
i=1

⎛
⎝(n−1

i−1

) s∫
0

(−c1)i dc1

⎞
⎠=

n

∑
i=1

i
(i+1)!(n− i)!

(−s)i+1,

which completes the proof.
Now, we are going to present the proof of the main theorem 4.

Proof of Theorem 4. In the proof we are going to apply the Korovkin-type Theo-
rem 5. To do this we need to define a sequence of operators Tm : C (Sn) → R , m ∈ N ,
which satisfies the assumptions appearing in Theorem 5. Let h : Sn → R . Then the
operators Tm , m ∈ N defined by

Tm(h) =
1

(volSn)m

∫
Sn

. . .

∫
Sn

h(circ(c1) · · ·circ(cm)) dλ n(c1) · · ·dλ n(cm)

are positive, linear on C (Sn) . Moreover,

Tm(1) =
1

(volSn)m

∫
Sn

· · ·
∫
Sn

1 dλ n(c1) · · ·dλ n(cm) =
(volSn)m

(volSn)m = 1,

for all m ∈ N , i.e. it also satisfies (5).
Now, we are going to introduce the function g : Sn → R defined by

g(t1, . . . ,tn) =
n

∑
j=1

∣∣∣∣t j − 1
n

∣∣∣∣ , (t1, . . . ,tn) ∈ Sn.

Then it is easy to see that g vanishes at
(

1
n , . . . , 1

n

)
and g is strictly positive elsewhere.

To apply Theorem 5 we need to show that g satisfies the assumption (7), that is

lim
m→∞

Tmg = 0 = g

(
1
n
, . . . ,

1
n

)
, (13)
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or equivalently

lim
m→∞

1
(volSn)m

∫
Sn

. . .

∫
Sn

g(t1m, . . . ,tnm) dλ n(c1) . . .λ n(cm) = 0, (14)

where tm is the first row of circ(c1) · · · circ(cm) , i.e.

circ(c1) · · · circ(cm) = circ(tm).

We are going to apply the squeeze theorem. On the one hand, the above mentioned
integral is positive since we take the integral of a nonnegative function over a simplex.
On the other hand we verify that it can be majorized by a null sequence. More precisely,

1
(volSn)m

∫
Sn

. . .
∫
Sn

g(t1m, . . . ,tnm) dλ n(c1) . . .λ n(cm) �
(

nIn

volSn

)m

(15)

where

In =
∫
Sn

∣∣∣∣c1 − 1
n

∣∣∣∣ dλ n(c), c ∈ Sn.

Moreover, the right-hand side of (15) tends to 0, if m → ∞ .
Firstly, we show that the inequality (15) holds.
By Lemma 2 we know that

tα
m =

1
n

+
n

∑
im−1=1

...
n

∑
i1=1

(
ci1
1 − 1

n

)(
ci2−i1+1
2 − 1

n

)
...

(
cα−im−1+1
m − 1

n

)
.

Then,

g(t1m, . . . ,tnm) =
n

∑
α=1

∣∣∣∣∣
n

∑
im−1=1

...
n

∑
i1=1

(
ci1
1 − 1

n

)
...

(
cα−im−1+1
m − 1

n

)∣∣∣∣∣
�

n

∑
α=1

n

∑
im−1=1

...
n

∑
i1=1

∣∣∣∣
(

ci1
1 − 1

n

)
...

(
cα−im−1+1
m − 1

n

)∣∣∣∣
which means that there are n · nm−1 = nm products in which all terms ci

j are pairwise
independent ( j = 1, . . . ,m, i = 1, . . . ,n) . Moreover, if c ∈ Sn is arbitrary, then, it is
easy to see, that

∫
Sn

∣∣∣∣ci
j −

1
n

∣∣∣∣dλ n(c j) =
∫
Sn

∣∣∣∣c1− 1
n

∣∣∣∣dλ n(c) = In

for any j = 1, . . . ,m , i = 1, . . . ,n . Consequently,

1
(volSn)m

∫
Sn

. . .

∫
Sn

g(t1m, . . . ,tnm) dλ n(c1) . . .λ n(cm) � nmI m
n

(volSn)m .
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Now, we prove that the right-hand side of (15) tends to 0, if m → ∞ . Applying
Lemma 3 for s = 1

n , one can calculate the value of In . Let c ∈ Sn . Then,

In =
1∫

0

1−c1∫
0

. . .

1−c1−...−cn−1∫
0

∣∣∣∣c1 − 1
n

∣∣∣∣ dλ n(c)

=

1
n∫

0

1−c1∫
0

. . .

1−c1−...−cn−1∫
0

(
−c1 +

1
n

)
dλ (cn) . . .dλ (c2)dλ (c1)

+
1∫

1
n

1−c1∫
0

. . .

1−c1−...−cn−1∫
0

(
c1− 1

n

)
dλ (cn) . . .dλ (c2)dλ (c1).

The first integral of the right-hand side can separated into two parts and using the
notation In(s),Jn(s) , we get that it equals to −Jn(1/n)+ 1/nIn(1/n) . Concerning the
second integral we introduce a new variable. Let b = c1 − 1

n , then the second part of
In equals to

1− 1
n∫

0

(1− 1
n )−b∫

0

. . .

(1− 1
n )−b−...−cn−1∫

0

b dλ (cn) . . .dλ (c2)dλ (b) = Kn

(
1− 1

n

)
.

Consequently, applying Lemma 3 and (12) we get that

In = −Jn

(
1
n

)
+

1
n
In

(
1
n

)
+Kn

(
1− 1

n

)

=
1
n

[
n

∑
i=1

1
i!(n− i)!

(
−1

n

)i( i
i+1

−1

)]
+

(
1− 1

n

)n+1

(n+1)!
.

Now, we are in a position to prove that

nIn

volSn
= n ·n! ·In < 1, ∀n ∈ N.

Easy calculation shows that

n ·n! ·In = n!

[
n

∑
i=1

1
i!(n− i)!

(
−1

n

)i( i
i+1

−1

)
+

(n−1)n+1

nn(n+1)!

]

=
n

∑
i=1

n
i!(n− i)!

(
−1

n

)i( i
i+1

−1

)
+

(n−1)n+1

nn(n+1)
.

Separating the first sum into two parts and applying the binomial theorem we infer that

n ·n! ·In =
n

∑
i=1

(
n
i

)
i

i+1

(
−1

n

)i

−
(

1− 1
n

)n

+1+
(

1− 1
n

)n n−1
n+1

.
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To prove that the previous expression is strictly less than 1, it is enough to show that
n ·n! ·In−1 < 0, i.e.

−
(

1− 1
n

)n

· 2
n+1

+
n

∑
i=1

(
n
i

)
i

i+1

(
−1

n

)i

< 0.

The first term is zero for n = 1 and negative for n > 1. Therefore it is enough to show
that the second term is negative for n = 1 and non-positive for n > 1.

The second term starts with − 1
2 and it consists of alternating terms which are

monotone decreasing in absolute value. Indeed, let i be fixed i = 1, . . . ,n− 1. Then,
we assert that ∣∣∣∣∣ i

i+1

(
n
i

)(
−1

n

)i
∣∣∣∣∣>
∣∣∣∣∣ i+1
i+2

(
n

i+1

)(
−1

n

)i+1
∣∣∣∣∣ .

Independently of the parity of i , the previous inequality is equivalent to the following
one

i
i+1

(
n
i

)
1
ni >

i+1
i+2

(
n

i+1

)
1

ni+1 ,

which, after simplification, becomes

1 >
i+1
i+2

· n− i
n

· 1
i
.

The above inequality is trivially true, so is the following one.

nIn

volSn
< 1,

hence (
nIn

volSn

)m

→ ∞, as m → ∞.

Consequently, we get that the assumption (7) is also satisfied. Applying Theorem
5, we infer

lim
m→∞

Tmh = h

(
1
n
, . . . ,

1
n

)
, h ∈ C (Sn). (16)

Let x =
(
x1, . . . ,xn

)
be a fixed element of D and h : Sn → R be defined by

h(c) = f (circ(c)x), c ∈ Sn.

Then, h ∈ C (Sn) , hence (16) holds for h , that is to say,

lim
m→∞

Tm(h) = h

(
1
n
, . . . ,

1
n

)
= f

(
circ

(
1
n
, . . . ,

1
n

)
x

)

= f

(
x1 + · · ·+ xn

n
, . . . ,

x1 + · · ·+ xn

n

)

Finally, by Lemma 1 we also get that limm→∞ Tm(h) � f (x1, . . . ,xn) , which com-
pletes the proof.
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5. Applications and special cases

Convexity, quasi-convexity and strong convexity have a significant role in opti-
mization theory. Their use is based on the local-global minimum property (see e.g.
[10], [9] and the references therein). More precisely, all local minimizers of the previ-
ously listed functions are global minimizers as well.

We deal with only the one-variable case here. The interested reader can derive
higher dimensional examples in a pretty similar way.

5.1. Proving convexity with Theorem 4

Let I ⊂ R be an open interval, and g : I → R be a continuous function. If the
function f (x1,x2) = g(x1)+g(x2) fulfils inequality (3), then, according to Theorem 4,
it also fulfils inequality (4), which takes the following shape:

2g

(
x1 + x2

2

)
� g(x1)+g(x2), x1,x2 ∈ I,

which means g is Jensen convex. This implies its convexity together with continuity
(see e.g. [20, Theorem 7.1.1]).

So, we have to check the fulfilment of inequality (3), that is to say:

1
2

1∫
0

1−t∫
0

g(sx1 + tx2)+g(tx1 + sx2) dsdt � g(x1)+g(x2).

In fact, by changing variables we obtain that this inequality is equivalent to the
following one

1∫
0

1−t∫
0

g(sx1 + tx2) dsdt � g(x1)+g(x2).

EXAMPLE 1. Let g(x) = x2 , x ∈ R . Then, we have to show that

1∫
0

1−t∫
0

(
sx1 + tx2)2 dsdt � (x1)2 +(x2)2, x1,x2 ∈ R.

Calculating the double integral, the previous inequality implies that

1
12

(
(x1)2 +(x2)2 + x1x2)� (x1)2 +(x2)2,

or equivalently,

0 � (x1)2 +(x2)2− 1
12

(
(x1)2 +(x2)2 + x1x2) , x1,x2 ∈ R.
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To take the complete square of the expression appearing on the right-hand side with
respect to x1 , we get

11
12

(
x1 − 1

22
x2
)2

+
161
76

(x2)2,

which is nonnegative. Consequently, the inequality assumption (3) holds, which entails
convexity of g .

EXAMPLE 2. Let us consider the function g(x) = 1
x , x > 0. Assuming that 0 <

x1 � x2 we have

1∫
0

1−t∫
0

1
sx1+tx2 dsdt �

1∫
0

1−t∫
0

1
(s+t)x1 dsdt �− 1

x1

1∫
0

ln(t)dt =
1
x1 � 1

x1 +
1
x2 =g(x1)+g(x2).

So, as it is well known, the function g is convex on ]0,∞[ .

EXAMPLE 3. Using a similar calculation to the previous example, one can easily
show that the function g(x) = ex is convex. Indeed, assuming that x1 � x2 we have

1∫
0

1−t∫
0

esx1+tx2
dsdt �

1∫
0

1−t∫
0

e(s+t)x2
dsdt =

1
2
ex2 � ex1

+ ex2

where the right-hand side is equal to g(x1)+g(x2) .

5.2. Proving quasi-convexity with Theorem 4

If otherwise not stated, we assume (without losses) throughout the remaining two
subsections that x1 � x2 .

Let I ⊂R be an open interval, and g : I →R be a continuous function. If the func-
tion f (x1,x2) = max{g(x1),g(x2)} fulfils inequality (3), then, according to Theorem 4,
it also fulfils inequality (4), which takes the following shape:

max

{
g

(
x1 + x2

2

)
,g

(
x1 + x2

2

)}
� max{g(x1),g(x2)}, x1,x2 ∈ I,

which means g is Jensen quasi-convex. Using continuity, this implies quasi-convexity
of g (see [25, Remark 1. and Theorem 2.], [3, Theorem 2.2.] or [15, Theorem 2. and
Corollary 3.]).

So, we have to check the fulfilment of inequality (3), that is to say:

1
2

1∫
0

1−t∫
0

max{g(sx1 + tx2),g(tx1 + sx2)} dsdt � max{g(x1),g(x2)}.
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EXAMPLE 4. Let g(x) = logx .

1
2

1∫
0

1−t∫
0

max{g(sx1 + tx2),g(tx1 + sx2)} dsdt

=
1
2

1∫
0

1−t∫
0

max{log(sx1 + tx2), log(tx1 + sx2)} dsdt

�1
2

1∫
0

1−t∫
0

max{log(sx1 + tx1), log(tx1 + sx1)}dsdt

=
1
2

1∫
0

1−t∫
0

log((s+ t)x1)dsdt = −1
8

+
1
4

logx1 � logx1 = max{g(x1),g(x2)}.

So, g(x) = logx is quasi-convex. Actually, it is concave, hence it is also quasi-concave,
which implies that it is quasi-affine.

EXAMPLE 5. Let g(x) =
√|x| . This function is neither convex, nor concave.

1
2

1∫
0

1−t∫
0

max{g(sx1 + tx2),g(tx1 + sx2)} dsdt

=
1
2

1∫
0

1−t∫
0

max{
√
|sx1 + tx2|,

√
|tx1 + sx2|} dsdt

�1
2

1∫
0

1−t∫
0

√
(s+ t)

√
|x1|dsdt =

√|x1|
5

�
√
|x1| = max{g(x1),g(x2)}.

So, g(x) =
√|x| is quasi-convex.

5.3. Proving strong convexity with Theorem 4

The concept of strongly convex functions was introduced in [27] by Polyak who
proved existence of solutions certain optimization problems.

Let I ⊂ R be an interval. A function g : I → R is said to be strongly convex with
modulus c , where c � 0 is a constant, if

g(tx1 +(1− t)x2) � tg(x1)+ (1− t)g(x2)− ct(1− t)|x1− x2|2,
for every x1,x2 ∈ I and for for every t ∈ [0,1] . If the previous inequality is fulfilled
with fixed t = 1

2 , then g is called strongly midconvex (see e.g. [2]).
In [26, Lemma 2.1.] the authors gave the following nice characterization of strongly

convex functions.
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THEOREM 6. With the previous notations, a function g is strongly convex(strongly
midconvex) with modulus c if and only if the function ϕ = g−c| · |2 is convex(midconvex).

Furthermore, a Bernstein-Doetsch type result is proved in [2, Corollary 2.2.].

THEOREM 7. A continuous function is strongly convex with modulus c if and only
if it is strongly midconvex with modulus c.

Let g : I → R be a continuous strongly convex function with modulus c . Then,
because of Theorem 6 there is a convex function ϕ : I → R such that ϕ = g− c| · |2 .
Following the trail of thoughts at the beginning of subsection 5.1 with ϕ we get that the
function f (x1,x2) = ϕ(x1)+ϕ(x2) fulfils inequality (3), then, according to Theorem 4,
it also fulfils inequality (4), which takes the following shape:

2ϕ
(

x1 + x2

2

)
� ϕ(x1)+ ϕ(x2), x1,x2 ∈ I,

which can be transformed into

g

(
x1 + x2

2

)
− c

4
|x1 + x2|2 � g(x1)+g(x2)

2
− c

2
(|x1|2 + |x2|2)

Because
− c

2
(|x1|2 + |x2|2)+

c
4
|x1 + x2|2 = − c

4
|x1 − x2|2,

we get that g is a continuous, strongly midconvex function with modulus c . Theorem
7 implies the strong convexity of g .

So, we have to check the fulfilment of inequality (3), that is to say:

1
2

1∫
0

1−t∫
0

(
g(sx1 + tx2)− c

4
|sx1 + tx2|2 +g(tx1 + sx2)− c

4
|tx1 + sx2|2) dsdt

�g(x1)− c
4
|x1|2 +g(x2)− c

4
|x2|2.

More precisely, just as in the case of convexity (Section 5.1) it is equivalent to the
following inequality:

1∫
0

1−t∫
0

(
g(sx1 + tx2)− c

4
|sx1 + tx2|2) dsdt � g(x1)− c

4
|x1|2 +g(x2)− c

4
|x2|2.

Since the integral of the modulus part is equal to

− c
4

1∫
0

1−t∫
0

(|sx1 + tx2|2) dsdt = − c
24

(
(x1)2 + x1x2 +(x2)2) ,
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the above-mentioned inequality can be rewitten as

1∫
0

1−t∫
0

(
g(sx1 + tx2)

)
dsdt � g(x1)+g(x2)+

c
48

(x1x2 −11(x1)2 −11(x2)2). (17)

EXAMPLE 6. Let g(x) = 1
x and 0 < a < b < ∞ . We intend to prove that g is

strongly convex with modulus c = 1
b3 . For this, we can perform the following estimates

concerning the right hand side of (17).

1∫
0

1−t∫
0

(
1

sx1 + tx2

)
dsdt �

1∫
0

1−t∫
0

(
1

sx1 + tx1

)
dsdt =

1
x1

1∫
0

1−t∫
0

1
s+ t

dsdt =
1
x1 .

For the estimation of the left hand side of (17) we can write the followings.

1
x1 +

1
x2 +

1
b348

(x1x2−11(x1)2 −11(x2)2)

� 1
x1 +

1
x2 +

1
b348

(a2−22b2) � 1
x1 +

1
b

+
a2

48b3 −
1
2b

� 1
x1 .

Which implies that g is really strong convex with modulus 1
b3 on the interval [a,b] .
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