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LINEAR MAPS OF POSITIVE PARTIAL TRANSPOSE

MATRICES AND SINGULAR VALUE INEQUALITIES
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Abstract. Linear maps Φ : Mn → Mk are called m -PPT if [Φ(Ai j)]mi, j=1 are positive partial
transpose matrices for all positive semi-definite matrices [Ai j]mi, j=1 ∈ Mm(Mn) . In this paper,
connections between m -PPT maps, m -positive maps and m -copositive maps are given. In con-
sequence, characterizations of completely PPT maps are obtained. The results are applied to
study two linear maps X �→ X + a(trX)I and X �→ a(trX)I−X for a � 0 . Moreover, singular
values inequalities of 2× 2 positive block matrices under these two linear maps are given. In
particular, we prove an open singular values inequality formulated by Lin [Linear Algebra Appl,
520 (2017)] for n � 3.
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