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SHARP OFF–DIAGONAL WEIGHTED WEAK

TYPE ESTIMATES FOR SPARSE OPERATORS

QIANJUN HE AND DUNYAN YAN

Abstract. We prove sharp weak type weighted estimates for a class of sparse operators that
includes majorants of standard singular integrals, fractional integral operators, and square func-
tions. These bounds are known to be sharp in many cases, and our main new result is the optimal
bound
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Moreover, we study a class of sparse maximal operators and give the weak type off-diagonal
two-weight sharp bound.
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