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SHARP SOBOLEV INEQUALITIES ON THE COMPLEX SPHERE

YAZHOU HAN* AND SHUTAO ZHANG

(Communicated by J. Pecaric)

Abstract. This paper is devoted to establish a class of sharp Sobolev inequalities on the unit
complex sphere as follows:
1)Case 0 <d < Q=2n+2:forany f€C” and 2< g < %,

80-2) Q-4+ ([
1 < GGy T iy (s T 54

r2((Q+d)/4) , .
’W/SM 171 dé‘) +/S |fPdE;

2) Case d = Q: forany f € C"NRZ and 2 < g < 4o,

2 9-2 [ ’ ' 2
1 < gy [ Florae+ [, \rPde.

where #7;(0 < d < Q) are the intertwining operator, ,;zfé is the conditional intertwinor intro-

duced in [2], and d¢& is the normalized surface measure of S+l

1. Introduction

It is well known that the classical Sobolev inequalities and Hardy-Littlewood-
Sobolev(HLS) inequalities are basic tools in analysis and geometry and their sharp
constants play an essential role because they contain geometric and probabilistic in-
formation (see e.g., [1, 3, 14, 15]). Recently, many interesting and challenging results
on Riemannian geometry and sub-Riemannian manifolds ( such as Heisenberg Group,
CR sphere) were also obtained to understand different geometry framework. In par-
ticular, many interesting geometric inequalities, Sobolev-type inequalities and HLS in-
equality on the sub-Riemannian manifolds attracted the attention of analysts (see e.g.,
[2, 5, 6, 8, 9]). Based on the work of Frank and Lieb [6] this paper establishes the CR-
sphere counterpart of the Sobolev inequalities discussed in [1] in the Euclidean-sphere
setting.

For convenience, we firstly introduce some notations and known facts about the
complex sphere S?*1. More details can be found in [2] and references therein.

Mathematics subject classification (2010): 26D10.
Keywords and phrases: Sharp Sobolev inequality, sharp Hardy-Littlewood-Sobolev inequality, com-
plex sphere, CR manifold.
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Denote by S***! the complex sphere
n+1
s =& = (61,8, &) €C: S G =1},
=

Then CTS>'*! is generated by the vectors T;,T;, j=1,2,---,n+1 and 7, where

d ntl in+l 0
i=3% éZék&g,J 12...,n+17andy_—z(§k8€k é"a_§>

Let Q = 2n+2 be the homogeneous dimension induced from Heisenberg group by
Cayley transformation and denote by d& the normalized surface measure on S?**1.
It is known that L?(S*"+1) can be decomposed into its U (1 + 1)-irreducible com-
ponents
(S = P H, (1.1)

J:k=0

where % is the space of restrictions to S?+1 of harmonic polynomials p(z,z) on
crtl Wthh are homogeneous of degree j in z and degree k in z. Take {¥} as an
orthonormal basis of .7¢};. Moreover, denote the Hardy spaces as follows:

H =B A
Jj=0
= {L? boundary values of holomorphic functions on the unit ball},
H =P H;
Jj=0
= {L boundary values of antiholomorphic functions on the unit ball},
P = @(%o & Hpj) @%O = {L2 CR-pluriharmonic functions},
J>0

R = {L? real-valued CR pluriharmonic functions}.

For 0 < d < Q, the general intertwining operator <f; of order d is defined with
respect to the spherical harmonics as

ﬂdevk:A‘( )A‘k( ) Jiks jak:()alaza"'a (12)

where

r(Q+d)/4+))
L((Q—d)/4+))

In particular, <% is the conformal sublaplacian 9 = £ + é =2+ (%(2))? with

Aj(d) = Jj=0,1,2,---

1+
:—52 (I;T; +T;T;).
j=1
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Recently, Branson et al [2] introduced a class of intertwinors MQ’ of order Q, named
conditional intertwinors and defined on &2 as

DpYio = Aj(Q)Yjo = j(j+1)---(j+nm)Yjo, FpYor = Ai(Q)Yor- (1.3)

In [10] and [6], two classes of Sobolev inequalities (see Theorem 3.1 and Corollary
2.3 of [6]) were established as follows:

"2 20/(0-2) (0-2)/0
£l =" (/SW | dé) (1.4)

and

4(q—2) ) v 20
Wéoo[u] + ot ‘u| d& 2 (/SZ;H»I u|qd€> y 2 < q< —— (15)

where &[u] = &lu] + %u and

+
2 (1 Tul® + T jul?).

I\JI'—‘

If we adopt the notations of intertwining operator, inequalities (1.4) and (1.5) can be
rewrote as:

(0-2)/0

n2
/SZn+l u@udé > Z (/2n+1 |u‘2Q/ e 2 dé) (16)

and, f0r2<q< Q

4(qg—2) ’ 2/q
W/Szwl u.i”udé +/Szn+1 ‘u| d% 2 (/2 11 |uqd€> y (1.7)

respectively.

What is the Sobolev inequality corresponding to the general intertwining op-
erator .«7;?

To answer this question and motivated by the idea “fractional integration controls
Sobolev inequality”, we establish firstly the following HLS inequalities.

THEOREM 1.1. (Subcritical HLS inequalities) Ler 0 <A < Q =2n+2 and 2Q o7 <
p < 2. Then for any f,g € LP(S***1), it holds

f(&)g(n)
/SZ)HI /S2)1+1 |1 — g . ﬁ‘l/2d€dn g CA,n (18)

where

r(Q/2)T((Q—-2)/2)
Crp = /Sw\l_g A1 2dm — (20 - 2)/4)

Moreover, Equality in (1.8) holds if and only if f and g are all constants.
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REMARK 1.2. When p = for 0 < A < Q, then (1.8) is the classical HLS

inequalities

2QA

<
/SZH+I/SZn+l = —‘)L/gdédrl Con

Moreover, by Theorem 2.2 of [6], we know that equality in (1.9) holds if and only if

(1.9)

c/

f6)= |1_Z.§C|(2Q—)L)/2’ 8(n) = 1—C-£|20-1)/2 (1.10)

for some ¢,c’ € C and some { € C"*! with || < 1 (unless f =0 or g =0).

Take f=g=7%>0Y;x in (1.8) and (1.9). Then, we have by (A.5) that

20
Zi/lk/zﬂ\Y,klzdé 1717, ZQ_A<p<2. (1.11)
J:k=0

By a duality argument and letting A = Q — d , we get the following Sobolev inequalities
on the S'*1:

1
> / LA
Js

k=0 7jk

+ (20— 1) /4T (k+ (20— 1) /4)T*(A/4)
_%o T WA+ AATTEA AT o V0
> T(j+(Q+d)/4)T(k+(Q+d)/H)T*(Q— d)/4)/ ¥, 42
iS00+ (Q—d)/T(k+(Q—d)/4)T*(Q+d)/4) Jsmi o
1 2
= o fon TS E 250 Q—_Qd. (1.12)

Particularly, if d =2 and q= Q 2 , then (1.12) is Sobolev inequality (1.6). While for

d=2and 2<g< Q 2, we find that the constant - is strictly bigger than the

(10(2))
constant (QT of (1.7) and therefore not sharp. Next theorem gives the sharp form of
the Sobolev inequalities on the CR-sphere.

THEOREM 1.3. Forany f € C*(S*!) and 0 < d < Q, we have:
1) Conformal Sobolev inequalities: For g = o-d

r*((Q-d)/4)
I2((Q+d)/4) Jsa

Moreover, equality holds if and only if
fE)=cll=C g (1.14)

for some ¢ € C and some { € C"! with |{| < 1.

1712 < [y fd&. (1.13)
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2) Subcritical Sobolev inequalities: For 2 < g < %,

8(g—2) T*((Q—d)/4+1)
d(Q—d) T*((Q+d)/4)

~Gola@)? [, Pag )+ [P, (1.15)

I£117 < feafdg
S2n+1

Moreover, for 2 < q < %, equality holds if and only if f is constant.

REMARK 1.4. The conformal Sobolev inequalities (1.13) and their derivation from
Frank and Lieb HLS inequality on the Heisenberg group ([6]) are well known within
the group of researchers interested in conformal geometry (see [2] for further details).
We provide concise proof for completeness. On the other hand the subcritical Sobolev
inequalities (1.15) are new. Their Euclidean counterpart can be found in [1].

REMARK 1.5. When d =2, (1.13) and (1.15) are (1.6) and (1.7), respectively.

Combining the method of Beckner in [1] with the HLS inequality on the Heisen-
berg group ([6]) and letting d — Q~, we have the following sharp inequalities.

THEOREM 1.6. Forany f € C*(S*"*)YNRZ, we have:
1) Beckner-Onofri’s inequality

1

- / _ fdE > 0-
2(n+1)! /Sznﬂ Jpfds+ /Szn+1 fd& —log /Szn+1 elds > 0; (1.16)
2) Subcritical Sobolev inequalities: for 2 < g < +oo,

q—2
(n+1)!

1412 < Lo Iarde+ [ 17Pac. (1.17)

REMARK 1.7. Note that Beckner-Onofri’s inequalities (1.16) is the main result of
[2]. The authors of [2] were well aware that (1.16) could be derived from (1.13) and
they also say how, but [2] was made available as a preprint several years before [6] was
published and at the time (1.13) was only a conjecture. So, for conciseness, we omit
the proof.

REMARK 1.8. As in [1], by making the substitution f — 1+ éf in (1.17) and
taking the limit ¢ — oo for bounded f, we can obtain (1.16) again.

The plan of the paper is as follows. Section 2 is devoted to the proof of Theorem
1.1, Theorem 1.3 and the subcritical case of Theorem 1.6. Our main tools are the Funck-
Heck Theorem on the complex sphere and the duality argument. For completeness, in
Appendix A, we state the Fuck-Heck theorem established by Frank and Lieb in [6] and
give some applications.
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2. Proofs of Theorem 1.1, Theorem 1.3 and Theorem 1.6

Proof of Theorem 1.1. 1) Case 25—91 <p<2.

Firstly, we claim that, for any A; and A, satisfying 0 < A; < A, < Q and any
f € L*(S**1), it holds

fg2n+l fg2n+l “{(?%dédn fg2n+l ngrﬁl %d&d”

< !
Jepwtr 1 =& -m|~}1/2dn Joprt |1 =& -m|~%2/2dn

2.1

Moreover, equality holds if and only if f is constant.

Now, taking A; = A and A, =2Q(1—1/p) in (2.1), noting the positivity of the left
side of (1.8) and combining with the classical HLS inequalities (1.9), we can complete
the proof of Theorem 1.1 for the case 25—91 < p <2 since L*(S**!) is dense in

LP(S?"*1). Therefore, it is sufficient to prove (2.1).

To prove inequality (2.1), we only need to show ){L}{ < )&i, J,k=0,1,2,--- by
(A5). '

Obviously, qéb = qé%. While for j+4k > 1, it is easy to see that

/oo (20— A)/4T(j+A/AT(k+2/4)
HETT(j+ (20~ A) /4T (k+ (20— 1) /4)T>(1/4)

is strictly increasing with respect to A. Therefore, (2.1) holds. Moreover, by the de-
composition of L? function, we know that equality in (2.1) holds if and only if f is a
constant.
2) Case p=2

Take the spherical harmonic expansion f(§) = ¥ >0 Yjx(§) with Y;; € .
Then inequality (1.8) is equivalent to

S o[, M@rag < X[ &Pt
J:k=0 J:k=0

On the other hand, it is easy to obtain that 7&0 =1 and yfk <1 for j+k>=1. So, we
complete the proof. ' O

Proof of Part 1) of Theorem 1.3: Conformal Sobolev inequalities.
By (1.11), we know that, for any g(&) = %50 Yjx(§) € C(S*1),

. 20
DI /QHI\YJ-,deKHgHi with p= 2.2)

jkso s 20-2°
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So, forany f(&) =¥, 420Zjx(§) € C™(S* 1),

éhHﬁEk@»ﬁ’:

2 2
Véwﬂ Jo bz [ 5 [ W

1
1
<lglo| X = [, 12
k>0 Y;Ek S2n+1

Z; Y; d
jém@HIM@>m@>g

%g> :gp<CBéﬁESMHﬂ%ﬂﬁ)z7<z$

where d = Q0 — A € (0,0). Because of the arbitrariness of g and the density, we get

1
(Ao(d))2 S2nt1

forany f € LI(S***!) and g = %

A direct computation shows that, if f is defined as in (1.14), then equality in
(2.4) holds. So, the constant T ( o) of (2.4) is sharp. In the following we discuss the
extremal functions.

Assume nonnegative function fy € L‘I(SZ"“) be an extremal function of (2.4),
ie.,

I1£1l5 < felyfdé (2.4)

Ifoll = Joy fod§&. (2.5)

1
(Ao(d))? Jspn1
By (2.3), we have
20

| <Jo.g> 1< follgllglly  with q’=m- (2.6)

It is known that there exists some function go € L (S***1) such that equality in (2.6)
0-d

holds. Using the property of Holder inequality, we know that fy = cgé)W , where ¢
is some constant. Substituting fy and go into (2.3), we find that go is an extremal
function of (1.9). So, the extremal function fy must have the form (1.14). O

Proof of Part 2) of Theorem 1.3: Subcritical Sobolev inequalities.

Note that case g = 2 is trivial. Therefore, we assume 2 < g < % in the sequel.

If
2 ((Q—di)/4)
(0 d1)/3) Jon T Za S
_8(g=2) TX((@-d)/4+1)
d(Q—d) TX((Q+d)/4)

o) [, rPag )+ [ 1P e

( §2n+1 fﬂdfdg
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holds for di = Q(1 —2/q) and 75%; > g > 2, then we can get (1.15) by combining
(1.13). For showing inequality (2 7) by the definition of operator <7;, we need to
prove

Ajld)ldy) ) 8(g—2) ’(Q-d)/4+1)
(Ao(d1))*  —  d(Q—d) T*((Q+d)/4)

for j,k > 0, So, we will prove that, for j,k >0,

(Ai(d)M(d) = (Ro(d))?),

24 q

T+ 5T+ £)T(5)
o) T2(2d Q+d Q+d 2(0+d

=2 PCe Y <r<]+Q4d>r<k+Q4d>_r2<Q4d ) 08
0-d) (&4 \I(j+L9re+%4) 1%

where ¢’ is the conjugate number of ¢, i.e., }1 + % = 1. A direct calculation shows that
equality in (2.8) occurs at (j,k) = (0,0),(1,0) or (0,1).
To prove (2.8), we differentiate with respect to j and k. If the left derivation is

less than the right for j+k > 1, then we can deduce (2.8) for all j,k > 0 from the
monotonicity. In fact,

i(ﬂﬁ%)ﬂﬂ%)rz(%))
K\ T(j+ T (ke+ ) (57)
TG+ 2T+ 2)T(2) (Tk+52) T+ £)
TG+ £+ £)r %)(r(mz% Fk+%)>
T(j+52)T(k+ 2)T2() &= ! 1
TTG Tk (2 S\k+ 21kt 2 +l>
TG+ )T+ )T (%)2%+Z ) 09
T(j+£)0(k+ 22 (%) S0+ +50+k)+ (515 '
and
9], 8a-2) (%41 <r<j+ GOk 25 rz(%")ﬂ
dk | d(@—d) (&L \T(j+EHrk+29) (L9
C8(g—-2) (G )T+ LTk + %Y (r, 4 T k+QTd)>
dQ—d) T2(ZH) T+ LYTk+%L9 \Tk+244)  Tk+%9)
_GT(EH TG EIN*+FY) & q-2 2.10)
(2 TG+ STk + L9 (5 (1 +k)2+ L1+ k) + L4 2
Combining the facts %Fl(f(x)) Oforx>0and [ >0, dxr((iJr)) 0 for x > 0 and
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[>1,and % <g <2<gqg< %,wehave,forj—f—k}l
L0 0
F(1+W)l;)(k+2—q/) < r(,+%‘)gr+§+%)7
2(37) r2(55%)
r 9] ! [9] ., 0-d 0-d (2'11)
39T+ 25) | TG+ 2N (k+%59)
grg) T e
Moreover, since f(x) = x(1 —x) is strictly increasing on [0, 5], then
0—-d 0+d 0—d 1 11
= <)==
20 20 20 q 9
which implies that
-2 -2
a < a (2.12)

I+ + 41+ + (5L

v (+R2+ 5 +h)+ 5o

for k>0 and [ > 0. So the k derivative of the LHS of (2.8) is less of the one of the
RHS and, the same is true for the j derivative. Then, we get (2.8).

From the above proof, we know that equality of (2.8) occurs only at (j, k) =
(0,0), (1,0) or (0,1). Therefore, equality of (2.7) holds if and only if

fe oA, P Ao
Combining the extremal result of (1.14), we know that equality of (1.15) for 2 < g <
% holds if and only if f is constant. O

Proof of part 2) of Theorem 1.6: Subcritical Sobolev inequalities.
For any Y;o € ¢, j=0,1,2,---, wehave,as d — Q™
8(¢—2) I*((Q—d)/4+1)
d(Q—d) T*((Q+d)/4
g GAHEHD (4D

a¥jo

_ 5 S al .
d (L4 (&lyj-1
JU+D-(+n),  q-2

—(a-2) (n+1)! Yjo= (n+1)!%yf'°'

Similarly, the above result holds for any Yy, € 54, k =0,1,2,---. On the other hand,

we have
Ao(d)—0, as d—Q .

So, we get (1.17) via letting d — Q™ in (1.15).

A. Appendix The Funk-Hecke Theorem on the complex sphere

In [6], Frank and Lieb established the following two results. Notice that, in the
following formulas, the factor [S?"*!| appears in the denominators because we use the
normalized surface measure.
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PROPOSITION A.1. (Proposition 5.2 of [6]) Let K be an integrable function on
the unit ball in C. Then the operator on S with kernel K(E -T) is diagonal with
respect to decomposition (1.1), and on the space ¢ its eigenvalue is given by

1 '"m! ) 1 |j—k|/2 p(n—1,1j—k)
|§2n+1|2n+|1 k| /2 (m+n—1)! / di(1 (1+1) b ©

(A.1)
X dqu(e‘”” (141)/2)eV=09

-7

(o,B)

where m :=min{j,k} and Py, "’ are the Jacobi polynomials.

PROPOSITION A.2. (Corollary 5.3 of [6]) Let —1 < o < “5L.
(1) The eigenvalue of the operator with kernel |1 — & -T| 7% on the subspace Ky
is
27" T (n+1-2a) T(j+ ) T(k+ o)
ISR () T(j+n+l—-a)T(k+n+1—0a)
(2)The eigenvalue of the operator with kernel |& -T|?|1 — & - 7| ~>* on the subspace
A is

Ejj:= (A.2)

j—l+o)(j+n+l—a)k—1+a)k+n+l—o

When o =0 or 1, formula (A.3) and (A.2) are to be understood by taking limits with
fixed j and k.

(1_( (0 —1)(n+1-20)2jk+n(j+k—1+a) )) (A3)

As application, we have the following result.

PROPOSITION A.3. For 0 <A < Q, we have

e = I

For f(&) = Yjkz0Yjx with Y € I, then

pob %d&m =2 / Y x(8)PdE (A.5)
fSZ"+l |1 - é : ﬁ‘il/zdﬂn k> ,’k S§2n+1 J’k :

with

_ TH(2Q-2A)/4T(+A/4T(k+A/4) .
Y4 = 7 20— A) BTG+ 20— )ATiaya; A=
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