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WEIGHTED ESTIMATES OF MULTILINEAR FRACTIONAL
INTEGRAL OPERATORS FOR RADIAL FUNCTIONS

YASUO KOMORI-FURUYA ™ AND ENJI SATO

(Communicated by J. Soria)

Abstract. Moen (2009) proved weighted estimates for multilinear fractional integral operators.
We consider weighted estimates of these operators for radial functions and power weights and
obtain a better result. Our result is a multilinear variant of the one by De Napoli, Drelichman and
Durédn (2011). As applications, we get improvements of the bilinear Caffarelli-Kohn-Nirenberg’s
inequality.

1. Introduction

Consider the fractional integral operator

Iaf(x):/ L)idy, O<a<n.
R |x—y[*m*
Weighted estimates for this operator were proved by Stein and Weiss [10].

THEOREM A. [f0<a<n1<p<qg<eA<n/p',B<n/q,

1 1 a—-A-B
A+B>0 and -=—-———"—
q p n

)

then
H|x|_BIafHLq < C|||x|AfHL,,.

De Napoli, Drelichman and Duran [3] proved the following.
THEOREM B. I[f0 <o <n,1<p<g<e,A<n/p ,B<n/q,
1 1 1 1 a—A-B
A+B>(n—1)<———> and —=—————,
q p q P n

then
|| |x|_BIafHLq < C|| |x|Af||L,, for any radial function f.
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It will be very important to notice that when we restrict our attention to func-
tions with radial symmetry, we get a better result. Indeed, such results have many
applications to PDE. For example, in [4] the authors proved a radial improvement of
Caffarelli-Kohn-Nirenberg’s theorem [1]; see also [2].

In this paper we consider multilinear fractional integrals restricted to radial func-
tions and prove weighted estimates. As applications, we show some bilinear variants of
Caffarelli-Kohn-Nirenberg’s inequality ; see Section 5. Our result cannot be obtained
by the general theory for multilinear fractional integral operators by Moen [8]; see The-
orem C. Our proof is not an analogy of the linear case [3]. The proof in [3] is technical,
and not applicable to multilinear case. For simplicity of notation, we consider bilinear
fractional integral operators.

DEFINITION 1.

_ f(»)g(2)
Io(f,8)(x) = //RZ" =yl + r—2) @ dydz, 0< a<2n.

Our result is the following.

THEOREM 1. Let

1 1 1
—i=—+4+— and A I=A1 +A2.
p PL P2

Assume that 0 < o0 < 2n,1 < py,py <oo,p < q<o0,A; <n/p|,Ay <n/ph,B<n/q,

1 1 1
A—|—B>(n—1)<———> and —=——
q p q

Then for any radial functions [ and g,

|||x|_BIa(f,g)||Lq < CH‘X‘AIJCHUH H‘x‘AngU’z'

Throughout this paper we will let C denote a positive constant whose value may
change from line to line, but which is independent of essential parameters.

REMARK 1. Note that

XL (1£1,181) (x) < Clal Pt hq | £1(x) - 1312 Loy g (),

where oo = o1 + oo and B = By + B, . However our theorem cannot be obtained from
Theorem B and Holder’s inequality.

Moen proved the following.
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THEOREM C ([8, Corollary 2.4]). Let 1/p:=1/p1+1/py and A := A + A;.
Assume that 0 < o < 2n,1 < p1,py <oo,p < g <eo,A; <n/p|,Ay <n/ph and B <
n/q. If

Jnt1/g—1/p (1 B Va1 A v
sup |Q|*/mt1/a- P<_/x_qu) —/x_"p"dx < oo,
Q:balls‘ | 0] Q‘ | E\Q| Q‘ |

then
1131~ 1ec(f:8) | o < CIXI A o [l *28 ] -

As a corollary of Theorem C we can only prove Theorem 1 with A+ B > 0 (cf.
[6, p.285]). This is a bilinear variant of Theorem A.

We use the following notation. For any measurable set E, |E| = [p dx, w(E) =
Jgw(x)dx and xg is the characteristic function of E. We also denote ||f||1r(,) =

(Jan | £ () [Pw(x)dx) /7.
2. Proof of Theorem 1

We define maximal operators introduced by Lerner, Ombrosi, Pérez, Torres and
Trujillo-Gonzélez [7] and Moen [8].

DEFINITION 2. Let o« > 0.

Mo .8)() = sup [ (é / f<y>|dy) (é / |g<y>|dy),

where the supremum is taken over all balls containing x.

We define some variants of these maximal operators.

DEFINITION 3. For 0 < o < 2n,

matr ) = sup & (g [ 10y (5 [ lslay)

Let 0 < o < 2. For radial functions f(x) = fo(|x|) and g(x) = go(|x]),

atrw = s & (3 [ o) (5 [ solas).

We know the following lemma by Duoandikoetxea [5].

LEMMA 1. If R < |x|/2, then for any radial function h(x) = ho(

),

C C’
< < o / hO)| dy.
o OIS / )]s < g [ In)]dy
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By Lemma 1, we have the following lemma.

LEMMA 2. For any radial functions f and g,

’%O(f7g)(x) < CMO(fag)(x)

The next lemma is essentially proved by Duoandikoetxea [5].

LEMMA 3. For any radial functions f(x) = fo(|x|) and g(x) = go(|x|),
Mo (f,8)(x) < Cma(f,8)(x) if =2, (1
Mo(f,8)(x) < C(ma(f,8) (%) +Ma(f,8)(x)) i 0<a<2. @

Proof. Let x be fixed and let Q= {y: |[x—y| <R}.
If >0 and R > |x]/2,

o (o5 L iroiar) (g [ leiar)

< R (Ri [ f<y>|dy) (Ri [ |g<y>|dy) <COma(f8)). )

If 0 < <2 and R < |x|/2, we have by Lemma 1,

e (é / |f<y>dy) (ﬁ / |g<y>|dy) <CRlf ). @

By (3) and (4), we obtain (2).
If « >2and R < |x]/2,

R (5 [ noas) (& [ leololas)

2|x] 2x]
<2 [ 1lds: [ lgols)las

x|/2 |x]/2
<2l [ Ay el
[y1<2[x] Iyl <2lx]
< Cimalf.0)(0). )

By (3) and (5), we obtain (1). [
The following lemma is essential for our proof.

LEMMA 4. Let 1/p:=1/p1+1/py and A := Ay +A,. Assume that A+ B >
(n—1)(1/g—1/p),1/q=1/p—(t—A—B)/n and p < q < e=. Then for any radial
Jfunctions f(x) = fo(|x|) and g(x) = go(|x]),

HI [2g

1—-¢
A by () (x)°

l1-¢

o (f,8)(x) <CH|.|A1JC

LP1 P

where € = p/q.
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Proof. Let x be fixed and for any 0 < R < |x|/2, we have

rer (3 [ eas) (5 [ laloas)

< CRa72 .Rl/[)/1+l/[7,2

[x[+R 1/p1 |x|+R 1/p2
([ meras) ([T wloreas)

W+R /m
<CRa71/P|x|*A1*(nfl)/171 (/ |f0(S)SA1|p'S"1ds)
x| —R
x| +R 1/p2
X |x| 42~ (1=1)/p2 </|| |g0(s)sA2|1’2s”1ds>
x|—R
a=1/p||—A=(n=1)/p||| . |A1 . A2
< CROV/7x] 11 12 ,u (©6)
Also
I < CRMy(f,g)(x). (7
By (6) and (7), we obtain
1< CRO1/P(-8) y(=a-(=1)/p)1-e)] || |A1f HAZ I-e
L1 L
X R**My(f,8)(x)*
I R [ e s e L PP I

Lr2

Since 1/g—1/p=—a/n+(A+B)/n>—a/n+(1—1/n)(1/g—1/p),wehave 1/g—
1/p+ o > 0. Therefore

A (f,0) (x)F. O

Lr2

r<c|irg),

MR

L
The next two propositions are corollaries of the theorems proved by Lerner et al.
[7] and Moen [8].

PROPOSITION 1. Assume the same conditions as in Theorem 1. Then

| lx*Mo(f.g C||Ix* £

HLP g |X|A2g} 28

PROPOSITION 2. If 0 < g < oo and B <n/q, then
[1x1™PLa(f,8) | o < I[P Ma(f.8)]] -

The next proposition is a bilinear version of the theorem by Moen [9].
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PROPOSITION 3. Assume the same conditions as in Theorem 1. Then

1B (£,8)| 0 < || £ o |[161428] | 1o -

Assuming these propositions temporarily, we prove Theorem 1. We shall prove
them in the following sections.

Proof of Theorem 1. By Proposition 2 and Lemma 3, it suffices to show the fol-
lowing:

Cllxl™ Lo [xlgly. - when >0, ®)

H\x\_Bma(f g) <
<CH\x\A1f||L,,1H\x\AngU,z when 0< o <2. 9)

[l mal(f,8

Iz

Mz
Inequality (8) is proved in Proposition 3.

Let € = p/q. By Lemma 4 and Proposition 1, we have

ClIR £l - ([t 2]l ([t Mo (£ 2) I,
ClR fl o 1228 o

112~ (£ 8)]| 1 <
<

3. Proofs of Propositions 1 and 2

We recall some important properties for weight functions. Let 1 /p=1/p;+1/p,.

In this section, w; and w, are nonnegative functions and ¢ = w/ /1 -wg/ bz

Following Lerner et al. [7], we define some weight classes.

DEFINITION 4. We say that (wi,w2) € A(,, ) if

sup<|Q/ o(x )dx) Upfli(é/gwi(x)l—!’;dx)l/pi < oo,

where the supremum is taken over all balls.

PROPOSITION 4. ([7, Theorem 3.6]) A pair of weights (wy,ws) € A
only if

(pi.po) i and

=P a =r e d A
wy S 2wl W2 € 2p, AN O € Agp,

where Ag is the Muckenhoupt weight class.

REMARK 2. Power weights |x|? € A, if and only if —n <a <n(s—1).
For elementary properties of the Muckenhoupt weight classes, see for example [6].

THEOREM D ([7, Theorem 3.7]). If (wy,wz) € A then

P1.02)’
1Mo(f,8) e (o) < CNFllzrr o)l 8l1 o2 ()

As a corollary of Theorem D we can prove Proposition 1.



WEIGHTED ESTIMATES OF MULTILINEAR FRACTIONAL INTEGRAL OPERATORS 251

Proof of Proposition 1. By Theorem D, it suffices to show that
(WPt |l 2r2) € Ay, ).

By Proposition 4 we need to show that
/ /
x[Arprd=p) ¢ Aoy, |x[A2p2(1=P2) ¢ Aoy and x|A? € Agp.

By Remark 2, it is sufficient to show the following:

—n<Aip1(1-p)) <n2p)—1), (10)
—n<Azpy(1=ph) <n(2py—1), (1D
—n<Ap<n(2p-—1). (12)

These inequalities are easily proved by the assumptions for the indices. We prove (10)
and (12).
The inequalities in (10) are equivalent to

1
i,>A1>—n<1+—>.
P P1

SinceA> (n—1)(1/q—1/p)—B> (—n+1)/p—1/q, we have

We prove (12) as follows.

11 11 11
A}(n—l)(———)—B>(n—1)<———)—EZ—E-F———?—E
q p p p q P

and

1
A=A +A; < 1,+£,=n<2——). O
Py P> P

Moen [8] proved the following theorem.

THEOREM E ([8, Theorem 3.1]). If a nonnegative function w(x) € U= Ay, then

1o (f8) | aw) < ClIMe(f8) | aw)

where 0 < g < oo.

As a corollary of Theorem E we can prove Proposition 2.
Proof of Proposition 2. By Remark 2, |x| 787 € J A, if and only if B <
n/q. O
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4. Proof of Proposition 3

Following an idea of Moen [9], we define other maximal operators and weight
classes. Let Z be the set of all open balls centered at the origin.

DEFINITION 5. Let 07 and 0, be nonnegative locally integrable functions.

M, o) (f,8)()
/ lg(y)]oa2(y) dy)

= 0 (G Llroemo) (5

where the supremum is taken over all balls Q € & containing x.

DEFINITION 6. Let 0 < o < 2n.

M) = sup Jol"h (é [ rola) (é [ Jelas).

Note that M7 (f,g)(x) = mq(f,g)(x) ; see Definition 3.

LEMMA 5. Let 1 < pi,p» <oo,1/p=1/p1+1/ps and 6 = Gp/pl p/pz.Then

1M, ) (F:8)lr(e) < CllF Nt (o) I8l 72 o)

Proof. Consider the following maximal operators

MZh(x) == sup /|h o) dy,  i=1,2.
i @GI

xeQe

Since M;f is bounded on L?i(o;) (cf. [5, p.559]), the lemma is proved by Holder’s
inequality. [J

DEFINITION 7. Let 1 < py,ps <eo,1/p=1/p1+ 1/p270 <g<ooand 0<
2n. For nonnegative functions u,w; and w, let o; = W1 n ,0p = wé e and 0 =
f?/m, é’/m. We say (u,wi,wa) € Spupmﬂ if 01,00 € L} (R") and

(fQ [ma (X001, X002)(x)]7u(x) dx) Va

wiwalss ol o(0)17P < oo,

The next lemma is a bilinear variant of Theorem 4.1 in [9].

LEMMA 6. Let 1 < pi,pp <eoo,1/p=1/p1+1/ps,p <q<eoand 0 < o <2n.

If (u,w1,wr) € Sp1 pa.g.00 Then

Hma(ﬁg)”uf(u) < CHf”LPl(wl)”g”L”Z(wz)'
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Proof. The proof is almost the same as the one in [9] (see also [5, Theorem 3.5]).
We show only an outline of the proof. Since M7 (f,g)(x) ~ mg/(f,g)(x) we prove the
claim for M7 (f,g).

Let Q = {x: 25 < MZ(f,¢)(x) <2}, For any x € Q, there exists a ball
0, € & such that

| /n ! dy— dy > 2%,
0 ‘Qx|/Qx\f(y)l y‘Qx‘/QX\g@)\ V>

Let By = Uyeq, Qx- Then By € & and

1 1
Bl [ U 0dy s [ lelay>2" and i C B
|Bi| /By |Bx| /B,
By this property, our proof is easier than the one in [9]. We write
7 q
[ M2 (9 () dx

<exu(@) (180 [ Olavr [ leolar)’

< k kT =
k |Bk| By |BX| By

— [ s®dut)
VA

where

e = (55 f, UONo0) or)ay

q
Y)|02(Y)102(>’)d>’>

and u is a discrete measure on 7Z with

(k) = () (|B 2480 éB(J cr'zgjw)

Let T, = {k€Z:g(k) > A} and G = User, Bx- Note that G; € #. Since

ur = 3, u(@p) (e SHE B0’

kel Be|  |Byl
< G M(;%(GIXG)L7G2%GA)(X)LIM(X) dx
A

< [u,wl,wz]sg ' o G(GA)Q/p

<Cluwiwalgy  ol{x: My 6, (f/01,.8/02) () > A1),
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we have
/gdu=/ p(I)da
Z 0
<Cluwiwlsy | oM o, (/01.8/0)0)7 > 2})7
i dt
| ot M5 o, (1 01.8/02) (07 > 1) 7
» q/p
([, M 0/01 8/ 00 o))

<Cluwiwalgs  NF/012 o) I8/ s )

=Clu, whwz]sﬁ e

<Clu, W17W2]5pﬁi e

:C[uv wi, W2]Sﬁ‘1~p2‘q‘a ”fHLm (wy) HgHLl’z(Wz)
by Lemma5. [

Proof of Proposition 3.

By Lemma 6, it suffices to show that (|x| =54, [x[4171, |x[A2r2) € §7 | Let o) =

w110 6y = [xjh2r2(1-7) ¢ = 6P 67/72 u = [x| P4 and Q = {y: |y] < R}.
Since (A;(1—p})+A>(1—ph))p > —n, we have
o(0)'/? = crMU —pP)+A2(1=ph)+n/p. (13)

Since A1pi(1—p}) > —n and Ayp,(1 — pb) > —n, we have for x € Q,

Mma (X001, X002)(x) =

1 1 /
maxq sup SO‘< / |y Aipr= pl)dy) ( / |y[A2r2(1-r2) dy),
|x|<S<R lyl<s yl<S
1 1 /
sup S* ( / ‘y‘AlPI (1- pl)dy> ( / yA2P2(1—P2)dy)
S>R [y[<R [yI<R

< Cmax(|x|°‘+A1m( —P)HA2p2(1-ph) patAipi(l *171)+A2172(1*17’2)).
Since (a2 +A1pi(1—p})+Aspa(1—ps) —B)g> —n and —Bg > —n, we have
(/Q[ma (X001, %002) ()] u(x) dx) 19 < CRaA U= A= Bl (14
By (13) and (14), we obtain the desired result. [

5. Applications

We show some bilinear variants of Caffarelli-Kohn-Nirenberg’s theorem. Our re-
sults improve the ones in [8, Section 7]. First we rewrite Theorem 1 as follows. Let
1/p=1/pi+1/p;and A=A, +A,.
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THEOREM 2. Assume that 1 < py,py <eo,p < q<o,A; <n/p|,Ay <n/p5,0<
o <2n,

1 1
a—E<A and ——o<—.

p p q
Then for any radial functions [ and g,
1%L (f,8) [ g < Cll Pt £ oy [ cl*28 ]|

where B=A+n(1/p—1/q)—

By using this theorem, we obtain the next theorems.

THEOREM 3. Assume that 1 < py,py <eo,p < g <e,A; <n/p},Ay <n/ph,
- ea ana Lot
p p q
Then for any radial functions f,g € C2(R"),
I - ll o
C ([[x VA o (128 oo + ([ F L [ et V] 2)
where B=A+n(l/p—1/q)—1.

Proof. Let Vs, be the gradient in R?". By the argument in Stein [1 1, p.125]

[Van (f(x = y)g(x = 2))]
st <e [[, PG
<C VALl + (17 V)W), O

THEOREM 4. Assume that n > 2,1 < py,py < eo,p < q < e0,A] < n/p},A; <
n/ph and

2-Zca
p
Then for any radial functions f,g € C=(R"),

Il 7 -8l < ClRE VAL o 1l oo+ ([t Ao 11 A 2

where B=A+n(1/p—1/q)—2 and A= 21182

Proof. Let Ay, be the Laplacian in R**. Since
A
R (| — y|2+|x—z )@n=2)/2

[f()gx)| < C(L(AS][g]) () + L f],[Ag)) (). T

we have
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