athematical
nequalities
& Papplications
Volume 23, Number 1 (2020), 287-306 doi:10.7153/mia-2020-23-22

REGULAR COSINE FAMILIES OF LINEAR SET-VALUED FUNCTIONS

MASOUMEH AGHAJANI

(Communicated by M. S. Moslehian)

Abstract. This paper is concerned with the properties of regular cosine families of continuous
linear set-valued functions defined on convex cones of normed spaces. We consider conditions
under which a regular cosine family of continuous linear set-valued functions is continuous and
then generalize some recent results on commutativity and Hukuhara’s derivative of regular cosine
families of continuous linear set-valued functions.

1. Introduction

Let X be a vector space. Throughout this paper all vector spaces are supposed to
be real. We denote by n(X) the family of all nonempty subsets of X with addition

A+B:={a+b:acAbecB}

and scalar multiplication
AA:={Aa:acA}

forevery A,B€n(X) and A € R.

LEMMA 1. [9] For subsets A,B C X and real numbers s,t we have:
s(A+B) =sA+sB, (s+1)A CsA+1A.
Also, if A is convex and s,t =0 (or s,t <0), then (s+1)A = sA+1A.
A set-valued function F : [a,b] — n(X) is said to be

e concave if F(At+ (1—A)s) CAF(t)+ (1 —A)F(s) for every s,z € [a,b] and
A€ (0,1);

e increasing if F(s) C F(¢) forevery s, € [a,b] with s <1;
e decreasing if F(r) C F(s) forevery s,t € [a,b] with s <1.

Mathematics subject classification (2010): 54C60, 28B20, 47D09.

Keywords and phrases: Riemann integral of set-valued functions, cosine families, Hukuhara’s deriva-
tive, linear set-valued functions.

© ey, Zagreb

Paper MIA-23-22

287


http://dx.doi.org/10.7153/mia-2020-23-22

288 M. AGHAJANI

A set-valued function F : R — n(X) is said to be even if F(r) = F(—t) forevery r € R.

A subset K of X is said to be a convex coneif x+y € K and tx € K forall x,y € K
and 7 > 0. For two linear spaces X and Y and a convex cone K C X, the set-valued
function F : K — n(Y) is said to be

o additive if F(x+y) =F(x)+F(y)
e linearif F(x+y) = F(x)+ F(y) and F(tx) = tF(x)

forall x,y € K and ¢t > 0.

Assume that X is a normed space, K C X is a convex cone and cc(K) denotes the
family of all nonempty compact convex subsets of K. For A, B € cc(K), the difference
A—B is aset C € cc(K) satisfying A = B+ C. Uniqueness of this difference is a
conclusion of Lemma 2 in [14].

Let d(a,B) := infpepg||a — b|| for a € A. Then,

h(A,B) := max{supd(a,B),supd(b,A)}, (A,B€ cc(X))
acA beB

defines a metric on cc(X), which is called Hausdorff metric.
‘We understand the continuity of a set-valued function with respect to the Hausdorff
metric ) derived from the norm in X .

DEFINITION 1. [5] Assume that X is a normed space, K C X is a convex cone
and F :[0,4o) — cc(K) is a set-valued function. If all the differences F(s) — F ()
exist for #,s € [0,4o0) with s > ¢, then the Hukuhara derivative of F at ¢ is defined by
the formula

DF(f) = tim LW =FO _ ) FO=F(s)

s—tt s—t s—t~ r—s

whenever both limits exist with respect to the Hausdorff metric h in cc(K) derived
from the norm in X . Also,

DF(0) = lim F(s)=F(0).

s—0+F s

Consider X,Y and Z are nonempty sets. The superposition G o F of set-valued func-
tions F: X —n(Y) and G:Y — n(Z) is defined by (GoF)(x) = U,ep(xG(y) forevery
xeX.

DEFINITION 2. Let X be a normed space and K C X be a convex cone.
o A family {F} : K — n(K)};>¢ is called a cosine family if
Fris(x) + Fos(x) = 2F (Fy(x)), Fo(x) = {x}

forevery x € K and 0 < s <. A cosine family {F; :# > 0} is said to be regular
if lim, o+ h(F(x),{x}) =0 forevery x € K.
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o A family {F : K — n(K)},cr is called a cosine family if
Fris () + Fis(x) = 2 (F5(x)),  Fo(x) = {x}

forevery x € K and 7,5 € R. A cosine family {F; : 7 € R} is said to be regular if
lim, o h(F; (x),{x}) =0 for every x € K.

If X is a normed space, K is a convex cone in X and {F; : ¢ € R} is a cosine family of
set-valued functions F; : K — cc(K), then

Fy(x) 4+ F_y(x) = 2FpFy(x) = 2F(x).

By Radstrom cancelation Lemma, Fy(x) = F_y(x) for all x € K and s € R. That is,
the set-valued functions ¢ — F;(x) are even.
The following Lemma is an immediate consequence of Lemma 1 in [15].

LEMMA 2. Let X and Y be two topological vector spaces, K be a convex cone in
X, F:K — cc(Y) is an additive set-valued function and A,B € cc(K). If the difference
A — B exists, then F(A) — F(B) exists and F(A) —F(B) = F(A—B).

By Lemma 4 in [17] (see also Lemma 3 in [19]), we have the following lemma.

LEMMA 3. Let X and Y be two normed spaces and K be a convex cone in X.
If {F;: K — n(Y) }ier is a family of continuous linear set-valued functions, K is of the
second category in K and for every x € K, UiciFi(x) is bounded in Y, then there exists
a positive number M with

1Fi(x)[] == sup{[[yl| : y € Fi(x)} < M|x]|
foreveryiecl and x € K.

And, by Lemma 2 in [17], we have the following result.

LEMMA 4. If X, Y and K have the same meaning as in Lemma 3, then the func-

tional F
F—||F]||:= sup{% :x € K,x#0}

is finite for every continuous linear set-valued function F : K — cc(Y).

LEMMA 5. [17] Let X and Y be two normed spaces, §) be the Hausdorff distance
derived from the normin Y and K be a convex cone in X with nonempty interior. Then,
there is a positive number My such that for every continuous linear set-valued function
F :K — cc(Y) the inequality §(F (x),F(y)) < Myl |F||||x — y|| holds for all x,y € K.

LEMMA 6. [16] Consider two metric spaces (X,dy) and (Y,dy) and let b and
by be the corresponding Hausdorff metrics. If F : X — n(Y) is a set-valued function
and M is a positive number satisfying by (F (x),F(y)) < Md, (x,y) forall x,y € X, then
h2(F(A),F(B)) < MY, (A,B) forevery A,B € n(X).
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LEMMA 7. [16] Let D and Y be a nonempty set and a normed space, respectively.
If Fy,F, : D — c(Y) are set-valued functions such that the sequence (F,) uniformly
converges to Fy on D, then
lim F,(D) = Fo(D).
Since normed spaces and the cones are not supposed to be complete, so our main results
generalize some recent results on cosine families of linear set-valued functions.

2. Main results

For a normed space X, we use the notations Xy, intxK and clxK for the comple-
tion X, the interior of K in X and the closure of K in X, respectively. If the symbol ~
denotes Radstrom’s equivalence relation in cc(Xp) with (A,B) ~ (D,E) < A+E =
B+ D for all A,B,D,E € cc(Xo) and [A,B] is the equivalence class of (A,B). Then,
the vector space A of all equivalence classes with operations

[A,B]+ [D,E]=[A+D,B+E],

AA,B] = [AA,AB], (A >0),
A[A,B] = [-AB,—AA], (A <0)

is a normed space with the norm ||[A, B]|| := h(A,B) (see [14]). By Theorems 3.85 and
3.88in [3], (cc(Xp),bh) is a complete metric space.

2.1. Continuity properties of regular cosine families

From now on, unless explicitly stated otherwise, X and Y are normed spaces and
K is a convex cone in X such that intxyK # 0. Note that (cc(clx,K),b) is a complete
metric space. If F : K — cc(K) is a continuous linear set-valued function, then by
Theorem 1 in [2], F has a unique continuous linear extension F : clx,K — cc(clx,K)
such that ||F|| = ||F||. Identifying F' with the unique continuous linear extension of F,
we have the following results.

LEMMA 8. If {F; :t € R} is a regular cosine family of continuous linear set-
valued functions F, : K — cc(K), then the function t — ||F|| is bounded on some
neighborhood of zero if and only if the set-valued function t — F;(x) is continuous
forevery x € cly K.

Proof. Let the function # — ||F;|| be bounded on some neighborhood of zero and
X € K be arbitrary. Put G,(x) := F;(x) and H;(x) := F_;(x) for every r > 0. Itis easy
to see that {G; :# > 0} and {H; : 7 > 0} are regular cosine families. By Theorem 2
in [2], the set-valued function ¢ +— £ (x) is continuous on [0,c) and (—eo,0] for every
x € clx,K . Hence, the set-valued function ¢ — F;(x) is continuous for all x € clx K.

Conversely, if the set-valued function 7 — F;(x) is continuous for every x € cly,K .
Then, putting E = [—1,1], Usep B (x) is compact for every x € clx,K. By Lemmas 3
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and 4, there is a positive constant M such that ||£|| = || F;|| < M forevery ¢ € E. Thus,
t — ||F;|| is bounded on some neighborhood of zero.

It is natural to ask whether the continuity of 7 — F;(x) forevery x € K, can be equivalent
to the boundedness of ¢ — ||F;|| on some neighborhood of zero. In the following, we
will list the results of this issue.

THEOREM 1. If {F; :t € R} is a regular cosine family of continuous linear set-
valued functions F, : K — cc(K), then the following statements are equivalent.

1. t— F;(x) is continuous for every x € K.
2. The function t — ||F|| is bounded on some neighborhood of zero.

3. Forevery x € clx,K the set-valued function t — F;(x) is continuous.

Proof. (1) = (2) Assume by way of contradiction that there exists a sequence
(t4) in [0,o0) satisfying lim,_.?, =0 and ||F, || = ||F,|| = n forall n € N. By Lemma
3, there exists xg € clx,K such that (||F,(xo)|) is unbounded. Since xg € clx,K, so
there is (x,) in K such that lim,_.x, = xo. Define real functions f, : R — R by
Su@®) = ||[F(x,),{O0}]|| for all # € R and n € N. Since ¢ +— F;(x) is continuous for
every x € K, so {f, :n € N} is a family of continuous real functions. On the other hand,
x+— F;(x) is a continuous linear set-valued function for every r € R, thus x — F;(x) is
uniformly continuous for every ¢ € R and consequently (F;(x,)) is a Cauchy sequence
in cc(K) and therefore bounded for every € R. Hence, (f,(¢)) is bounded for every
t € R. Since R is a complete metric space, so by uniform boundedness principle (see
[8], pp- 299) there is an open neighborhood Uy of R on which the functions f, are
uniformly bounded, that is, there is Lo > 0 such that |f,(r)| < Ly for all # € Uy and
n € N. Thus, there are Ly > 0 and 0 < § < n such that ||F(x,)|| < Lo for every
t €[0,1] CUp and n € N. As n — o, by Theorem 1 in [2] we have:

I (xo)ll < Lo

forevery ¢ € [0,1]. Now, consider real functions f;, : [26,21] — R by f,(¢) =

I|[F (x4),{0}]|| forall r € [26,2n] and n € N. So as above, there is an open neighbor-
hood Vj of [28,2n] on which the functions f, are uniformly bounded, that is, there is
L{, > 0 such that ||£(xo)|| < L;, for every ¢ € V and n € N.

Put L = max{Ly,Lj,1}. For some 21y € Vp, there exists an n € N such that
[2t9,219 + 2] C Vy and [to,t0 + 2] € [6,1m]. We claim that [|F(xo)|| is bounded on
[0,52]. Without loss of generality we can assume that L > ||Fy||. Since [t,70 + 2] C
[8,1]. so forall 7 € [tg,70+ 2] we have:

[E—rgxo)ll < [ Frr (o) |+ 211 B || |72 (x0) |
< 312

Hence, 7 — ||F;(xo)|| is bounded on some neighborhood [0, 2] which is a contradic-
tion. Thus, 7 — ||F;|| is bounded on some neighborhood of zero.
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(2) = (3) The proof is an immediate consequence of Lemma 8.

(3) = (1) The proofis clear.
By the proof of Theorem 1, the corresponding result holds for a regular cosine family
{F; :t > 0}. Hence, the answer to the considered question in Remark 1 in [2] is yes.
That is, the boundedness of the function 7 — ||¢;|| on some neighborhood of zero in
Theorem 2 is essential.

Let {F; :t € R} be a regular cosine family of continuous linear set-valued func-
tions F; : K — cc(K). Since for all x € K the set-valued functions ¢ — F;(x) are even,
o)

2F(Fs(x)) = Frys(x) + Fro5(x) = Fops (x) + Foi (x) = 2F5(F (x))
for x € K and s,r € R. Thatis, F;(Fy(x)) = Fy(F;(x)). For u,v € R putting r = %
and s = 5% in Fy5(x) + F(x) = 2F(Fy(x)), we have

Fo(x) + Fy(x) = 2Fut (F% (x)).

=
If x € F;(x) forall x € K and 7 € R, then
F F,
F%()OQM'

By Theorem 4.2 in [9], ¢t — F;(x) is continuous and by Theorem 4.1 in [9], this set-
valued function is concave. For 0 < u < v, there exists A € [0,1] such that u = (1 —
A)0+ Av. Thus,

F,(x) C (1=1)FK(x) +AF(x)
= (1=A)x+AF(x)
C  (1-A)F(x) +AF(x) =F(x).
And, for v < u <0 we have F,(x) C F,(x). Hence ¢ — F;(x) is increasing in [0, ) and
decreasing in (—eo,0]. Conversely, if # — F;(x) is increasing in [0,e0) or decreasing in
(—e0,0], then x € F(x) forall xe K and 7 € R.

The immediate consequence of the preceding theorem is:

COROLLARY 1. Let {F; :t € R} be a regular cosine family of continuous linear
set-valued functions F, : K — cc(K) such that {F;(x) : t € R} is increasing in [0,0)
forevery x € K. Then,

1. t — F,(x) is continuous for every x € K.

2. the function t — ||F;|| is bounded on some neighborhood of zero.

3. for every x € clx,K the set-valued function t — F,(x) is continuous.
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2.2. Commutativity and Hukuhara’s derivative of regular cosine families

Recall that if {F; : 7 € R} is a regular cosine family of continuous linear set-valued
functions F; : K — cc(K) such that x € F;(x) forevery x € K and ¢ € R, then for every
x € K the set-valued function ¢ — F;(x) is concave, continuous, even, decreasing in
(—o0,0] and increasing in [0, +c0). Also, Fyo F; = F; o Fy for every s,z € R (see [18]).
For some more properties of sine and cosine equations, see also [4].

THEOREM 2. If {F; : K — cc(K)}i>0 is a regular cosine family of continuous
linear set-valued functions such that t — ||F;|| is bounded on some neighborhood of
zero, then

limy(F, (D), Fy(D)) = 0

for every nonempty compact subset D of K.
Proof. Let (t,) be a sequence in [0,c0) such that #, — s. Putting ¢, (x) := F;, (x)
and ¢(x) := Fy(x) we have lim, . ¢,(x) = ¢(x) for every x € clx,K . By Lemma 7 in

[16], (¢,) is uniformly convergent to ¢ on each nonempty compact subset D and by
Lemma 7, lim, . ¢,(D) = ¢ (D). Therefore,

lim(F (D). (D)) = 0

1—s

for every nonempty compact subset D of K.
The corresponding result (given in Theorem 2) holds for a regular cosine family {F; :
K — cc(K) },er of continuous linear set-valued functions.

LEMMA 9. If F : R — cc(X) is continuous, then the set-valued function
t
00 = [ Fladu, (t>a)
a
is continuous.

Proof. The proof is identical to the proof of Lemma 10 in [12]. Let 2> 0 and
t > a. By Lemmas 7 and 8 in [1], we have

h(¢(2), ¢(t +1))

b(J; F(w)du, [} F(w)du+ ;" F (u)du)
b(J;" F(u)du,{0})
hsup;, i |1 (u)]].

As h— 0, we have h(¢(r),¢(t +h)) — 0. Thatis, ¢ is continuous.

NN

LEMMA 10. Let F : R — cc(X) be continuous, then for every t € R,

1 [tt+h
lim — F =F(t).
lim - t (u)du (1)
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Proof. Consider t € R, a =1—1 and B =7+ 1. Define H(s) = [, F(u)du for
every s € [o,B]. Since F : [o, ] — cc(X) is continuous, so by Lemma 9 in [1], H

is differentiable and limy, o =10 — £(1) or Tlimy, .o L [/*" F(u)du = F (1) for all
teR.

LEMMA 11. If F : [0,00) — cc(X) is continuous, then
! N 1
/O (/O F(u)du)ds:/o (t — W) F(w)du (1 >0). (1)

Proof. The proof is identical to that of Lemma 12 in [12]. For sake of convenience
we give the proof. Define

o) =0(/ ([ Pludwds, [ 6t—wFwdu) ¢>0)
By Lemma 9, ¢ is continuous and by Lemma 8 in [1] we have
OU+h) = b (o Fw)du)ds, f5™" (e +h— u)F (u)du)
< b(Jo(Uo Fu)du)ds, Jo(t — u)F (u)du)
+ (S Fw)du)ds, [T+ B — w)F(u)du+ h [} F(1)du).
Thus,

q)(t+h h/Hh/F Ydu)ds, _/ h(t—!—h—u)F(u)du—F/OtF(u)du)

forall 7 >0 and i > 0. Since F is continuous, so there is M > 0 such that ||F (u)|| < M
for u € [t,t +1]. By Lemma 7 in [1],

1 t+h 1 t+h Mh
HE/ (t—l—h—u)F(u)duHéz/ (t—l—h—u)HF(u)HduéT
t t

for every h € [0, 1]. Therefore,
. 1 [t+h
hlilzl)l+ ) (t+h—u)F(u)du={0}.
Consequently, by Lemmas 9 and 10 we have
liminf,_,y+ w limy, o+ b(+ tt+h(f0 (u)du)ds, [o F (u)du)
limy, o+ ||+ /(¢ h— u) F (u)dul|

b(fo F (w)du, [ F (u)du)+0=0.

Hence, ¢ is nonincreasing. Then, ¢(¢) < ¢(0) for every ¢ > 0. This completes the
proof.

N

+
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LEMMA 12. Let F : [a,B] — cc(X) be continuous and a,b,A,B be real numbers
satisfying a < b, Aa+B = o and Ab+ B = . Then,

/f F(t)di = A/ahF(Au +B)du.

Proof. Consider F : o, ] — cc(Xp). By Lemma3in[11], foeF(t)dt :AffF(Au—k
B)du. And, f(g F(t)dt,ffF(Au + B)du € cc(X), which completes the proof.

LEMMA 13. Let F : R — cc(X) be continuous. Then,
b t—a

/ F(u)du = F(t —u)du
a t—b

forevery t e R.

Proof. Consider F : R — cc(Xo). By Lemma 4 in [11], [*F(u)du= [ F(t —
u)du forevery r € R. And, fabF(u)dm " F(t —u)du € cc(X), which completes the
proof.

LEMMA 14. If F : K — cc(X) is continuous linear and G : [a,b] — cc(K) is
continuous, then fabF(G(t))dt = F(ff G(t)dr).

Proof. Consider F : cly,K — cc(Xo) and G : [a,b] — cc(clx,K). By Lemma 5 in
(111, [PF(G@)dt = F([2 G(r)dr).

We have [ G(1)dt € ce(K) and [P F(G(1))dt,F([” G(t)dr) € cc(X), which com-
plete the proof.

THEOREM 3. Let {F; :t € R} be a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) such that t — ||F|| is bounded on some neighborhood
of zero. For any set D € cc(K) such that Fy4(D) + F,—s(D) = 2F,Fs(D) for every
s, € R, the set-valued function ¢ : R — cc(K) satisfying

06) = [ (s=VRD)ay, (s>0)

is a continuous even solution of
Ot 4s)+ 0t —s) =2F(9(s)) +20(1) 2)
with 6(0) = {0}, D¢ (0) = {0}.
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Proof. By Theorem 2 (which also holds for a regular cosine family on all reals),
set-valued functions ¢ — F,(D) are continuous. Define

06) = [ s=WRDID. 530,

9(s) = 9(=s), s<0.

By Lemma 9, ¢ is continuous. By Lemmas 10 and 11, D¢ (r) = lim;,_o w =

Jo Fo(D)dv for every ¢ > 0. It is easy to see that ¢ is even, ¢(0) = {0} and D¢ (0) =
limy,_o M ={0}.If s € [0,], then by Lemma 12,
s 1+s
/O (5= V)Fyo(D)dv = / (t +5—v)F,(D)dv. 3)
1

And, by Lemma 13,

/O (5= v)E_(D)dv = /tis(s—t—i-v)Fv(D)dv. @)
By Lemma 1, Lemma 8 in [1] and (3) we have
dt+s)+o@t—s) = [T +s—v)E(D)dv+ [t —s—v)F,(D)dv
= [0 (t+s—v)R(D)dv+ [ (t+s—Vv)F,(D)dv
+ [Pt +s—v)F(D)dv+ [§70(t — s —v)F,(D)dv
= 2[y "(t=v)F(D)dv+ [5(s—v)Fsv(D)dv

J-s(t+s—v)E(D)dv.
By the equality

1 t
/ (t4+5—WF, ()dv—/ (s—1+4v)Fy(D dv+2/ (t = )F,(D)dv,
r—s r—s

Lemma 14 and (4) we have

Ot +s)+ (1 —s)

55— Vs (D)dv -+ (s = v) oy (D)
+ 2[5t —v)F,(D)dv

= 2F(fy(s—v)R(D)dv) +2 [5(t = v)F,(D)dv
= 2F(¢(s)+20().

That is, ¢ is a solution of equation (2) for 0 < s < 7. Now we prove that F;(¢(s)) +
(1) =Fs(¢(t))+¢(s) forall s,t € R. If 0 < s <1, then by Lemmas 12, 13 and Lemma
8in [1],

4 t+s
/O (t = v)Fsi(D)dv = / (t+s—v)E(D)dv

and
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Jit = v)Fo o (D)dv

Jo(t =v)E—y(D)dv + [{(t = v)F,—s(D)dv
Jot —s+Vv)E,(D)dv+ [ (t — s — v)F,(D)av.

Consequently, by Lemma 14 we have

2F5(0(2)) +29(s)

Also, by Lemma 1,

2F,( [ (t —v)F(D)dv) +2 [3 (s — v)E,(D)dv

Jo(t =v)Fen(D)dv + [3(t = v)Fy—y(D)dv

2 [y (s—=Vv)F,(D)dv

[t +s—v)F(D)dv+ [ (t —s+Vv)E(D)dv
Jo *(t=s=v)F(D)dv+2 [5(s = v)F,(D)dv.

s

/()S(t_s+v) W(D dv+2/ s—vF(D)dv:/O(t-i—s—v)Fv(D)dv

and by Lemma 8 in [1],

[Hs(t—i—s—v)Fv(D)dv [t(t—l—s—v) dv—f—/tﬂ (t +s5—v)F,(D)dv.

Therefore,

2F(9(1))  +

From

f('; (t+s—v)F,(D)dv

we have:

2¢(s)

[t + s —v)Fy(D)dv+ [t +5—v)F(D)dv

Jo St —s—v)F,(D)dv.

+ 57— s—v)R(D)dv

= [ (t+s—v)E(D)dv+ [ (2t —2v)F,(D)dv
= [l (s—t+Vv)F(D)dv+2 [ (t—v)F,(D)dv
+ 2[5 (t—v)F,(D)dv

= [l (s—t+Vv)F(D)dv+2 [i(t—v)F,(D)dv,
2¢(s)

[t +s—v)E(D)dv+ [ (s—t+Vv)F,(D)dv

2 fole -

v)F,(D)dv.

According to (3), (4) and Lemma 14,
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2F5(0(1))  + 20(s)

Jo(s =v)Fipu(D)dv+ [y (s —v)Fi—y(D)dv
+ 2 fg(t—v)F(D)dv

2F,(Jo (s —v)Fy(D)dv) +29(1)
2F(9(s)) +29(2)-

Hence, F(¢(s)) + ¢(t) = Fi(¢(¢)) + ¢(s) for every s, € R. Since for all x € K,
t — F,(x) and ¢ are even, so ¢ satisfies (2) for all s,7 € R.

EXAMPLE 1. Let {F; :t € R} be a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) and x € F;(x) for every x € K and ¢ € R. Then, for
every set D € cc(K) satisfying 0 € D and F; (D) + F,_4(D) = 2F;(Fy(D)) for every
s,t € R, the set-valued function ¢ : R — cc(K) via

66) = [ = wFD)du, (s>0)

and
d(s) =(=s), (s<0)

is a continuous even solution of (2) with ¢(0) = {0}, D¢ (0) = {0} and 0 € ¢(s) for
all s e R.

LEMMA 15. Let (A,) and (B,) be two sequences in cc(X) such that A, — A
and B, — B. If there exist the Hukuhara differences A, — By, in cc(X) forevery n € N,
then there exists the Hukuhara difference A— B and A, —B,, — A —B.

Proof. There is no loss of generality in supposing that (A,) and (B,) are two
sequences in cc(Xy) such that A, — A and B, — B in cc(Xp). By Lemma 1 in [13],
there exists Hukuhara difference A — B in cc(Xy) and A, — B, — A — B. Now, put
C:=A—-B and C, := A, — B, for n € N, by definition of the Hukuhara difference
A=B+C and A, =B, +C, for n € N. Since for all n € N, A,,B,,A, B are compact
subsets in c¢(X), so B, +Cy,B+C € cc(X) for n € N and consequently C,,,C € cc(X)
forall n € N.

The next Lemma is the normed space version of Lemma 11 in [1 1] which can be easily
obtained via a similar argument if we just replace Lemma 1 in [13] with Lemma 15.

LEMMA 16. If a continuous set-valued function ¢ : R — cc(K) fulfills (2) and
¢(0) = {0}, then for all 0 < s <t Hukuhara differences ¢(t) — ¢(s) exist.

THEOREM 4. Let {F; :t € R} be a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) such that t — ||F|| is bounded on some neighborhood
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of zero. If a Hukuhara differentiable set-valued function ¢ : R — cc(K) is an even so-
lution of (2) such that D¢ is continuous, ¢(0) = {0}, D¢$(0) = {0} and lim,_ g+ D(p[(t)
exists, then there is a set D € cc(K) satisfying

E+S(D)+E—S(D) ZZE(R(D))7 (S7t GR)

o(s) = / (s—wF,(D)dv, (s>0)
0
¢(s) =¢(=s), (s<0).
Proof. Since by assumption ¢ is even, SO
Ot +5)+ 0t —s) =2F(9(t)) +2¢(s), (s,s €R). ©)
Consider 0 < s < ¢, and replace # by #+v in (5). Then,
Ot +s+v)+o(t—s+v)=2F(¢(r+v)) +20(s) (6)
where v > 0. By (5), (6) and Lemma 16 we obtain

O(t+s+v)—0o(+s) +¢(t—s—|—v)—¢(t—s) :2Fs(¢(t+v)_¢(t)

).

Asv— 0", we get
D¢(t+s) +Do(t —s) =2F(Do(t)) (7

for 0 < s <. By Lemma 16, the Hukuhara differences ¢ (1) — ¢(s) exist for 0 < s <7.
Consider 0 < s <t and 0 <v <t —s and replace s by s+ v in (2). Then,

Pt +s+v)+o(t—s—v) =2F(9(s+v))+20 (). (8)

Adding both sides of (2) and (8) yields
Pt+s+v) +  O(t—s—v)+2F(9(s) +20()
= Q+s)+o(t—s)+2F(0(s+v))+20().
Hence,
O +5+v)— 0 +5) = 2E(0(s+v) — 0(5)) + 0l —5) — 9t s —v).
Dividing by v and letting v — 0" we have
Do(t +5) = 2F(D¢(s)) + Do(t — s) ©)

for 0 < s <. From (9) we have

F,(D9(1 +5)) = 2F,(F (D9 (5))) + R (Do (1 —5))
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and replacing in (7) ¢ by t+s and s by v and next ¢ by ¢t —s and s by v, we have

1 1 1 1
§D¢(t+s+v)+§D¢(t+s—v) :2FV(F,(D¢(S)))+§D¢(t—s+v)+§D¢(t—s—v).

By (9), we get
Fv(D(s)) + F—y(D9(s)) = 2F,(Fi (D¢ (s)))

for 0 < v <t —s. Dividing by s and letting s — 0", we have
Ft+v(D)+Ft—v(D):2Fv(Ft(D))v (10)

where D := lim, o+ ¢() . Define

v = [ G=vRD)ay (>0)

and

Wit = w(-1), (1 <0).
By Theorem 3, v is continuous, holds in (2) and Dy(r) = [ F,(D)dv. Moreover, by
Lemma 10 we have

lim 2¥®)

t—0t t

To end the proof it suffices to show that ¢ = y. Define h(r) = h(Do(1),Dy(t)) for
every t > 0. Then,

1/t
= lim — | F,(D)dv=Fy(D)=D.
t—>lr(§}r 1[) V( ) ' O( )

h(t+s) — h()
= h(Do(t+5+73), Dyt +5+3)) —b(De(),Dy(r))
= h2F5(DO(3)) +D9(1),2F, 5 (Dy(3)) + Dy (1)) = b(Do (1), Dy (1))
< 20(Fi5(DO(3)) Fry 5 (DY(3)))-

By Lemmas 5 and 6, there is My > 0 with

ML) HE) <y, (P2 g
s 3 i

—~

Dy(3) D¢(%) Dy(3)

) < Mol|F5 1[5 ( ;
2

).

[T
[TEY

By Theorem 1, £+ F1(x) is continuous for every x € clx, K , consequently Use (o 1F7 5 (x)
is bounded for every x € clx,K. By Lemma 3, there exists M >0 such that [|[F,, 5 || <M
for s € [0,1]. Thus,

h( ) gMMOh( s ’ )

2

a+5) ~ Dos) Dy(),

[3S11=c}

Hence, liminf,_+ M < 0. By Zygmund’s Lemma (see [6], p. 174) & is non-
increasing. So, h(¢) < h(0) for all + > 0. That is, D¢ = Dy. Since D$ = Dy,
¢(0) = w(0) and ¢,y are even,so ¢ = .
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EXAMPLE 2. Let {F, :t € R} is a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) and x € F;(x) for every x € K and 7 € R. If a set-
valued function ¢ : R — cc(k) is a concave continuous even solution of (2) with ¢ (0) =
{0}, D¢ (0) ={0} and 0 € ¢(¢) forall r € R, then by Corollary 1, ¢ — ||F;|| is bounded
on some neighborhood of zero. By Lemma 16, the differences ¢ (1) — ¢(s) exist for all
0 < s <t. And, by Theorem 3.2 in [10], there exists

lim M =D"%¢

and o) — ot — )
o) —et—h)
Jlim S22 = D0 (1), (1> 0).

By (2), we have

¢t +5)—9(t) =2F(9(s)) +¢(t) — 9t —s)

forall 0 <s<t.Divide by s and let s — 0", then D" ¢ (1) = D™ ¢(r) =: D¢(t) for all
t > 0. Thatis, ¢ is Hukuhara differentiable at every ¢ > 0. Since by assumption ¢ is
even, so

Ot +s)+ ¢t —s) =2F(0(t)) +2¢(s), (s,t €R). (11)
Consider 0 < s <t and replace ¢ by t +v in (11), then
Ot+s+v)+o(r—s+v)=2F(¢(t+v))+2¢(s) (12)

where v > 0. By (11) and (12), we get
O(t+s+v)—0o(+s) n Gt—s+v)—0o(@—s)
v

v

Pt+v)—90()

v
As v — 0", we get DOt +5)+ Dt —s) = 2F,(D¢(t)) for all 0 < s < 7. Putting
r=" and s = 5* we have

DY(v) + Do () = 2P (DY(*T1))

where 0 < u < v. By assumption x € F;(x), we have Dq)(”TJ”’) - w. Let
[a,b] C [0,%0) and fix it. By Theorem 3.2 in [10], D¢ is increasing and for 7 € [a,b],
D¢(t) C D¢ (b). Thus, D¢ is bounded on [a,b] and by Theorem 4.4 in [9], D¢ is
continuous on (0,e) and by Theorem 4.1 in [9], is concave. Therefore, there exists

lim %(t) € cc(K).

t—0t

Since D¢ (0) = {0}, D¢ is increasing and 0 € D¢ (¢) for 7 > 0. Hence by Theorem 4,
thereis a set D € cc(K) with 0 € D and

Fres(D) + Fiy(D) = 2E(F(D)), (5,1 €R)
06) = [ = wFD)du, (s>0)
8(s) = 6(=s), (s<0).
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LEMMA 17. If set-valued functions F,G,H : K — cc(K) are continuous and lin-
ear, then there exists at most one continuous linear set-valued function @ : [0,00) X K —
cc(K) which is twice differentiable with respect to the first variable and it satisfies the
following differentiable problem

Dt2(P(t7x) = (P(t’H(x))7(p(0’x) = F(x)aDt(P(t7x)‘t=O = G(x) (13)

Proof. Let ¢,y :[0,00) x K — cc(K) be two solutions of problem (13). By Lem-
mas 9 and 10, we have

Do(1,x) = G(x) + /(: 0 (u, H (x))du

and
¢(t7x)=F(x)+tG(x)+/0 (/O 0 (1, H (x))du)ds.
Also, )
D(t,%) = G(x) + /0 w(u, H(x))du
and

w(t,x) = F(x) +1G(x) + /0 ( /O ", H (x))du)ds.

By Theorem 1 in [2], F,G,H and ¢,y have continuous linear extensions F,G,H :
cly,K — cc(clx,K) and @, : [0,0) x clx,K — cc(cly,K), respectively. By Lemma 7
in [1], we obtain ¢(t,x) = F (x) +1G(x) + J¢ (Jo & (u,H (x))du)ds and P (t,x) = F(x) +
tG(x)+ [ (Js W(u,H(x))du)ds. Thus, ¢(¢,x) and J(t,x) are two solutions of problem
(13). By Theorem 2 in [7], ¢(z,x) = {(t,x) and consequently ¢(r,x) = w(t,x) for
every (t,x) € [0,%0) x cc(K).

From now, we use the abbreviation G;(x) for limj,_ M .

THEOREM 5. Let {F; :t > 0} be a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) such that t — ||F|| is bounded on some neighborhood
of zero. If l(ilgnh_>0+ M exists, then {F, :t > 0} is differentiable. Moreover, if

Gp(x

limy,_,+ =5~ 1= H(x) exists, then
F(F(x)) = F(F (x))

for xe K and s,t > 0.

Proof. Since F14(x) + F—s(x) = 2F;(Fs(x)) for all x € K and 0 < s <1, so

Bl g By | BOx p e 07 then
. F(x)—x,
Jim £ (———) = {0}. (14)

By Lemmas 5 and 6, there exists My > 0 such that
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b(F(G(x).Clx)) < bE(GHX) F(CX))+b(F(Cx)),C(x))
< MollE[[H(G(x),C(x)) +h(F(Clx)),C(x)),

where C;(x) := F’(Xt)_x and C(x) := lim,_ ¢+ M Since ¢ — ||F;|| is bounded on

some neighborhood of zero, so there exist positive constants 0 and M such that || || <
M for t € [0,0]. Moreover, by Theorem 3 in [1],

lim b(F;(D), D) =0

for every nonempty compact subset D of K. Therefore,
Jim b(F (G (x)),C(x)) =0. (15)

From (14) and (15) we have C(x) = lim,_y+ F— = {0} forevery x € K. By Lemma
2, we obtain Fyj,(x) — F;(x) = 2F; (Fp(x) — )—i—E( )—F_p(x) for 0 < h <t. Dividing

this equality by i we get

Fin(x) — F(x)
h

Fo9) —x) | F(¥) = Fioalx)

=25 )+

Letting & — 0", we have

lim Fryn(x) — F(x) F(x) — F_p(x)

=0+ h o0t h =G (#>0).

This implies that the family {F; : 7 > 0} is differentiable.
Let s > 0, define @(7,x) := Fy(F15(x)) and y(z,x) := F1s(Fs(x)) forall x € K
and ¢ > 0. We have

¢(0,x) = Fy(Fs(x)) = y(0,x), (x € K).
By Lemma 2, we have

FY(F;+/1+.Y)(X Fy (E‘+S)(x)

Dt+ ¢ (trx) = 1iInh4>0Jr

)—
h
Fygin(x)—
h

= Fy(limy,_ o+ frast))

= Fs (Gt+s (x))

for x€ K and 1 > 0. And, similarly D, ¢(7,x) = F;(G;4(x)) for t >0 and x € K.
Moreover, we obtain

D[Jr l//(t,x) — limh*)(yr Fyson(Fs(x )L Fiys(Fs(x)) )
)—
h

[ Fiosin(®)—Frias(x) 4 F/+h()‘;l—F/(X)]

= %limhﬁo
= 3[Gras(x) + Gi(x)] = Dy w(t,x).

Also, for 0 < s <t we obtain
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2(Gy(x)) = 2F(limy_ g Dl By
| 2o () -2 (Fs (%)
h

= llmhﬁo

= limh*)OJr Fosin()+F 5 (X]?l_ (Fris(x)+F—g(x))

[Ft+s+h()‘2l_1:}+x(x) _ F}f_r(x)—}?—x—h(x)}

= lin‘lh*“yr
= Gri5(x) — Gi—s(x).
And,

N
N}
=
=
=
L
=
~—
Q
Y
—~
=
~—
~—

h(2F5(Gs(x)), Gas(x))

(P )P @A) 4 B 9 (G (x))

M ,Gos(x))
PEE)2BED) 5 (G, (x))

N+
=

fild== fo})
b(Gas(x), M)

2Mo | Fy [ ER=Es®) G () 4 (= f0}).

N+ o+
N}

_|_

Therefore,
Giis(x) = G5 (x) + 2F(G4(x)), (x€K,0< s <1). (16)

By equation (16), D,;¢(t,x) = F;(G,+5(x)) and D,y(t,x) = %(Gt—‘rZs(x) +G(x)) we
have D, ¢(t,x)|;=0 = Fs(Gs(x)) = Dy y(t,x)|;=0 for x € K. Putting

Gran(x) = Gi(x)

i) = hLl})l+ h ’
we have
slil(l)l+ G[+2S(x2)s = B slim+ EH(GSS(X)) = hHE)
for x € K,t > 0 and
i 2~ iy () = R )
forx e K,t > 0.
D/'Dio(t,x) = D/ Fy(Gi5(x))

= limy_o+ FS(M)
=  F(Hi1s(x))=0(t,H(x)) =D, D;o(t,x),

and
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D/Dy(t,x) = 3D/ (Gios(x)+ Gi(x))

! (Grzenl)=Gran(®) 4 Gran)=Cilo)
= 3(Hri2s(x) + Hy(x)) = Dy Dyy (1)

where H;(x) = F,(H(x)).
Hence, we have

thl//(t’x) = FtJrs(Hv(x)) = FI+\(FS(H(X))) = W(I7H(x))'

Therefore, the set-valued functions ¢ and y are solutions of problem
D} ¢(t,x) = ¢(t,H(x)), ¢(0.x) = F(x), Dyp(t,x)|i—0 = G(x)

with F(x) := Fy(F;(x)),G(x) := Fy(Gg(x)) and H(x) := D?F;(x)|—o. By Lemma 17,
o(t,x) = y(t,x). Thus, Fy(Fi4s(x)) = Fi+s(F(x)) for s,r > 0,x € K. This completes
the proof.

Theorem 5 shows that a regular cosine family {F; : 7 > 0} of continuous linear set-
valued functions can be extended to a regular cosine family {F; :r € R}.

EXAMPLE 3. Let {F; :7 > 0} be a regular cosine family of continuous linear set-
valued functions F; : K — cc(K) such that x € F;(x) for all x € K and ¢ > 0. By
Corollary 1, t +— ||F;|| is bounded on some neighborhood of zero and by Theorem 2
in [2], {Ft 1 > 0} is a regular cosine family of continuous linear set-valued functions
F; @ clx,K — cc(cly,K) such that x € F;(x) for all x € cly,K and ¢ > 0. By Theorem
4.2in [18], F (F(x)) = Fs(F (x)) and consequently F;(Fy(x)) = Fy(F;(x)) forall x € K
and t > 0.
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